
Proximity Visualization via Common Fate Luminance Changes

Lior Wolf Chen Goldberg Yehezkel Yeshurun
The Blavatnik School of Computer Science

Tel Aviv University

Multi-Dimensional Scaling Two frames from the proposed visualization

Figure 1: A comparison between two visualizations of the NASDAQ-100 list. Proximities between stocks were computed based on their 2007
daily prices. (left) The conventional 2D embedding visualization, modified slightly to eliminate occlusions. One panel is the entire space and
the other is a zoomed in view. (right) two frames out of the proposed animated visualization. The proposed design depicts several prominent
connections that are not depicted by the conventional visualization. For example, SanDisk and Intel’s prices were correlated in 2007, as were
the prices of Intel and Oracle. However, the prices of Oracle and SanDisk were much less correlated. This can be easily observed in the
proposed design, but not in the conventional visualization. The interactive animation is available in the accompanying supplementary material
http://www.cs.tau.ac.il/~wolf/demos/commonfate.zip.

Abstract
We introduce a new design for visualizing high dimensional data.
Points in high dimensional space are often illustrated through 2D
or 3D embeddings, which are often cluttered and may-be unacces-
sible to non-scientific audience. In our design, instead of represent-
ing data points as 2D/3D vectors, each data point is represented by
a smoothly varying function of time. These smooth functions are
used to control the luminance of iconic representations of the data
points, where the value of each such function determines the lumi-
nance of one icon that is associated with the underlying data point.

The resulting display has a high capacity and is intuitively clear
to the viewer. Perceptually, it is based on a fundamental psy-
chophysical principle, namely the Gestalt law of Common Fate.
Algorithmically, we present two methods designed to meet the de-
mands of the visualization: a new non-negative matrix factorization
method, and a partition-based grid embedding technique.

1 Introduction
Perhaps the earliest record of a dynamic screen-like display is the
one of the biblical Chosen (Exodus 28) that was a sacred garment
in which 12 precious stones were set in a grid. The Hebrew high
priest would communicate with the divine by interpreting the pat-
terns of glowing gems. We propose a visualization design of a sim-
ilar structure. Icons are placed on a grid, and their individual lumi-
nance values change over time. In the proposed design, the patterns
of luminance-change convey proximities between the objects repre-
sented by the icons. In particular, icons that are lit and unlit together
in a synchronized fashion are perceived as related. Thus, correlative
information is conveyed to the user intuitively and effortlessly.

Problem formulation In this work we visualize proximity infor-
mation between tens or hundreds of data points. The proximity can
arise from Euclidean distances in the case of vectorial data, from
the analysis of a given graph structure, or based on other means

of measuring correlations. In all of these cases, the input to our
method is the same – the number of data points n, iconic repre-
sentations of the n points, and a symmetric n× n affinity matrix A
containing positive values. A high affinity value between points i
and j (a large A(i, j) entry) indicates that data points i and j are
similar. Low values indicate distant, dissimilar points.

In this work we concentrate on visualizations for the non-
professional audience, and we adhere to several design require-
ments. First the data points are required to be effortlessly identi-
fiable. Therefore, we are interested in visualizations that display
icons (e.g., text, logos or thumbnails) and not glyphs (e.g., dots),
as in most scatter-plots. Second, we wish for the display to be in-
tuitively clear to the user, with no need for elaborate user train-
ing. This limits us to visual encoding which is cognitively natural.
Third, we wish to have a clean uncluttered display that is visually
attractive.

2 Related work
Many times the proximity we wish to visualize is estimated based
on high-dimensional data. The visualization of such data is often
treated as a Dimensionality-Reduction problem, where each data
point i is represented by a vector xi ∈ ℜm, for an arbitrary m. The
vectors xi, 1 ≤ i ≤ n are chosen such that they are correlated, up
to some error that the method minimizes, according to the pair-
wise correlations in A. One such method is multidimensional scal-
ing (MDS) [Shepard 1962], which has been used extensively for
visualization purposes (e.g., the ThemeScape system [Wise et al.
1995]). In such applications, one recovers m = 2 or m = 3 dimen-
sions, which are used to determine the screen-location of each data
glyph or icon.

Other Dimensionality Reduction methods have also been
adapted for visualization purposes. Recently, Venna and
Samuel [Venna and Kaski 2007] have compared classical MDS
(closely related to PCA), ISOMAP [Balasubramanian et al. 2002],



Curvilinear Component Analysis [Pierre Demartines and Jeanny
Herault 1997], Locally Linear Embedding [Roweis and Saul 2000]
and Laplacian Eigenmaps [Belkin and Niyogi 2001]. The results
show that all embedding methods face difficulties when reducing
the dimensionality to as low as two dimensions, and that Curvi-
linear Component Analysis (CCA) seems to behave better than the
other methods. CCA is a weighted version of MDS, which takes
into account only distances that are smaller than a threshold.

The capacity of Dimensionality Reduction based scatter plots is
limited by the low-dimensionality. Potentially, more dimensions
can be added by color-coding or other means, but such combina-
tions seem to be cognitively taxing for the viewers [Treisman and
Gormican 1988]. Also, if we choose to display icons and not dots,
the icons would many times overlap, creating a cluttered inappre-
hensive and unattractive visualization. This can be partly avoided
at the expense of accuracy by adjusting the locations of the icons.

An alternative methods for the display of multi-dimensional data
is the Parallel Coordinates method [Inselberg and Dimsdale 1990].
In this method each coordinate is typically associated with one ver-
tical line, and each data point is drawn as a polyline with vertices on
the parallel axes that are positioned according to the coordinates of
the point. In Parallel coordinates the variables (less than 10 is most
examples) are identifiable and the individual data points are typi-
cally not identifiable without interaction. In contrast, our method
displays the affinity between the data points and does not assume
the existence of an underlying vector representation; Individual data
points are represented by large identifiable icons. Parallel coor-
dinates tend to become cluttered when displaying large datasets,
and the power of the method is mostly in understanding global
patterns. The method has been extended to reduce clutter [Ellis
and Dix 2006; Fua et al. 1999], and to create a focus+context dis-
play [Novotny and Hauser 2006].

Another successful Focus+context method for displaying large
tabular datasets is the Table Lens technique [Rao and Card 1994].
In this method the sizes of the rows and columns of a tabular dis-
play change dynamically to allow focus on individual data points
(rows) and variables (columns). The Table Lens method is able to
allow the exploration of thousands of data points and tens of vari-
ables. The problem it solves, however, is quite different from ours.
We focus on the display of affinities that might be handed directly,
arise from graph structures, from very sparse matrices, or from con-
tinuous time data. In all of these cases, a tabular representation may
be inappropriate.

An alternative method for displaying affinity information di-
rectly (and not tabular information), is the Generalized Associa-
tion Plots (GAP) method. In this method the correlation matrix of
the data is iteratively updated to reflect the correlations between its
columns. This iterative process produces correlation matrices of
gradually decreasing ranks that can be used to generate a hierarchi-
cal clustering of the data points. In addition, it produces a series of
elliptical 2D embeddings. Each such 2D embedding induces a 1D
embedding of the data points (ordering of the rows and columns of
the correlation matrix). This form of visualization can handle ex-
tremely large datasets, and does not focus on identifying individual
data points.

As a dynamic technique, GAP can be animated and each data
point can move along a path governed by its location in the series
of elliptical embeddings. Since the correlation matrix is iteratively
simplified, the clustering of the data becomes more and more clear
as the process progresses. On the other hand, information regarding
proximity to points in other clusters, that is not depicted in the 2D
embedding of the first iteration, will probably not emerge. In this
limited sense the GAP method suffers from the capacity problem of
other 2D methods.

Use of animation for visualization Animation is extremely suit-
able for expressing causality. The work of Michotte [Michotte

1963] shows that with appropriate timing of events, a causal rela-
tionship is perceived. It can also express communication by animat-
ing messages moving from message sources to message destination
objects [Stasko 1990]. Most naturally, animation can be used to
visualize dynamic and serial processes. The classical movie “Sort-
ing Out Sorting” uses animation to illustrate a number of computer
sorting algorithms [Baecker 1998].

Recently, Heer and Robertson [Heer and Robertson 2007] have
studied the use of animated transitions between statistical graphs.
The transitions were carefully designed to match the shift between
the various aspects of the displayed data, and were shown to in-
crease its apprehension.

More related to our work, Limoges et al. [Limoges et al. 1989]
evaluated the use of motion in visualizing properties of data points.
They enhanced a conventional scatter plot representation by allow-
ing the points to oscillate sinusoidally, either horizontally or ver-
tically about a center point. The type and amount of motion (fre-
quency, phase and amplitude) were used as visualization properties.
The results show that data mapped to phase is perceived as effec-
tively as more conventional properties, such as point size or gray
value.

Ware and Bobrow [Ware and Bobrow 2005] show that motion
based highlighting is effective for visualizing local neighborhoods
in graphs that contain many nodes. Moreover, they showed that
motion highlighting and static highlighting can be combined to al-
low efficient visualization of set intersections. Can an entire graph
be visualized by highlighting the neighborhood of each node se-
quentially? In Section 5 we report from our experience that such a
visualization is hard to apprehend.

Using synchronized motion patterns is one of the many man-
ifestations of the well known Gestalt principle of Common Fate.
According to this principle, stimulus elements are likely to be per-
ceived as a unit if they move together. However, there is some psy-
chophysical evidence substantiating the view that luminance-based
common fate is also very prominent [Sekuler and Bennett 2001]. In
our work, the position of points does not change in order to com-
municate correlations. Instead, information is encoded by synchro-
nization of light patterns, which is related to the concept of phase.
Note, however, that the capacity of our method is much higher since
the patterns we display evolve over time.

3 The proposed design
In our visualization a fixed grid of icons changes over time by asso-
ciating a dynamic luminance value to each individual icon. There
are two computational questions that need addressing. The first is
how to determine the luminance of each icon as a function of time.
The second question is how to distribute the icons in space.

The two questions are related. In the datasets that we consider
there are more data points than the number of icons that the display
window can accommodate at once. This requires us to pan the dis-
play over the grid as the animation progresses. Therefore, ideally,
all icons that are lit at once are contained in a region of the grid
which is small enough to display.

3.1 Embedding in time

In our design, every data point i = 1..n is represented by a posi-
tive function fi(t) that captures its luminance over time. The cor-
relations between these functions should adhere to the given affin-
ity matrix A, which suggests that we minimize a discrepancy score
such as

∑
i, j

(A(i, j)− fi · f j)2

where

f ·g :=
∫

t
f (t)g(t)dt



In addition, to create a smooth animation, the luminance should
change gradually. Therefore, we also minimize

∑
i
||∂ fi/∂ t||2 := ∑

i

∫
t
(∂ fi/∂ t)2(t)dt

In the optimization process, we discretize the functions fi and
use vectors vi ∈ ℜm instead. The continuous derivative operator
becomes a matrix operator, given by the m×m matrix H that has a
main diagonal of -1, all values of the adjacent upper diagonal equal
1, and the rest of the elements are zero. Furthermore, in order to
play the animation in a loop, we modify the first element in the last
row of H to be 1. This alteration connects the last frame to the first.

Let V be the matrix whose columns are v1,v2,...,vn. Our opti-
mization procedure minimizes the following energy function for
some given parameter λ

E = ||A−V>V ||2F +λ ||HV ||2F

Replacing the Frobenius norms with the equivalent traces and
eliminating constants, we obtain:

E = tr(V>VV>V )−2tr(V>VA)+λ tr(V>H>HV )

Differentiating:

∂E
∂V

= 4VV>V −4VA+2λH>HV

We optimize in an iterative manner until convergence, using the
gradient projection method (e.g., [Nocedal and Wright 1999]). We
initialize a random matrix V 0 and update it by the following rule:

V s+1 = max(V s−η
∂E
∂V

,0) ,

where η is the learning rate, and the maximization is performed
element by element.

Note that without the smoothness term, our computational prob-
lem would have been similar to the problem of (Symmetric) Non-
negative Matrix Factorization (NMF) [Lee and Seung 2001; Li et al.
2007] . NMF solutions are known to be sparse. In our case, this
means that most icons would be unlit most of the time, which is de-
sirable since it allows the viewer to focus on a handful of lit icons
at every frame.

3.2 Motion and embedding in space
The proposed visualization-technique is designed for hundreds of
data-points. However, at any given time only 25-100 can be dis-
played, depending on the screen size. We solve this by panning a
display window such that it is centered at each frame on the center
of mass of all lit icons. In other words, let xi, yi (i = 1..n) be the
grid locations of the icons associated with the n data points. The
center of the window in time t is placed in coordinates x(t), and
y(t), where

x(t) =
1

∑
n
i=1 vi(t)

n

∑
i=1

vi(t)xi

and similarly for y(t).
As mentioned above, the main requirement for the spatial grid

embedding is that icons that are lit together would fit together in a
region small enough to display at once. The computational problem
is as follows: given a threshold θ , embed a set of vectors vi, i = 1..n
in a 2D grid, such that for every pair i and j for which there exists a
frame index t such that both vi(t) ≥ θ and v j(t) ≥ θ , the maximal
horizontal and vertical distances between the embedding of i and j
is not larger than a specified amount.

We are not guaranteed that such an embedding exists. Fur-
thermore, finding such an embedding is an NP-complete problem
(by reduction to the Maximal Common Subgraph problem, details
omitted). In a sense, this grid embedding challenge is a conse-
quence of the unsuitability of 2D embeddings for the display of
high-dimensional data. However, the constraints here are more re-
laxed since nearby pairs of points that have low affinities are still
separated by the luminance modulation.

To heuristically solve the embedding problem we employ the fol-
lowing method, which is based on a quadtree partitioning of the
space [Samet 1984]. First, we compute an n×n co-occurrence ma-
trix O, in which O(i,j) is one if there is a frame index t such that
both vi(t) and v j(t) are larger than the threshold θ = 0.1, zero oth-
erwise. Next, we embed all n points in 2D by applying MDS to the
matrix O and obtaining coordinates (x̃i, ỹi), i = 1..n. We then par-
tition the grid horizontally to two sub-grids, followed by a vertical
partitions of each sub-grid. At each partitioning stage, we divide
the points between the grid partitions. The splitting process repeats
recursively until all the partitions contain a single point.

At each stage of the recursion, there is a rectangular sx× sy sub-
grid in which we need to embed sxsy icons. Assume that the next
partitioning operation is along the horizontal axis, and that sx is an
even number. We sort all points that are assigned to the sub-grid
by their x̃i value, and assign the sxsy/2 points with the lowest x̃i
values to the left sx/2× sy partition. The rest are assigned to the
right partition of the same size. If sx is an odd number, we compute
the minimum, median, and maximal values of the x-axis embedding
x̃i of all points that are associated with the grid. We then check if
this median is to the left or to the right of the middle of the section
between the min value and the max value. The middle grid column
is assigned to the left or right half-grid accordingly.

3.3 Interactivity

The proposed design enables one to select data-points by clicking
on the corresponding icons. Once there are selected points, the only
frames that are shown are frames t for which for every selected data-
point i, the value of vi(t) is larger than a threshold θ = 0.1.

Some data points, which do not share strong links with the other
points, may not be lit in all of the computed frames. Similarly, in the
multiple selection case, the set of frames that are lit for all selected
data-points may be empty. In such cases the selection frame turns
from green to red and the selected icons are all lit up. In the case of
an empty multiple selection, a text message appears to explain the
situation.

Once a point is selected, a “deselect all” icon appears. Mouse-
clicking on this icon returns the display to the normal display mode
starting from the last frame that is shown in the selection mode.
Note that other forms of selection are also possible based on the
application. For example, one might wish to display all frames for
which there is at least one icon lit out of the selected icons.

3.4 Limitations

The information-capacity of our visualization is not limited to 2D
or 3D, but instead is limited by the length of the animation sequence
and by its speed (how fast the luminance of the icons change). Long
sequences convey more information, as do faster changing ones.
Put differently, their effective dimension as an embedding space is
higher. The utilization of the higher dimensionality is bounded, of
course, by the memory and attentiveness of the viewer.

Our visualization method is limited in that when no user interac-
tion is present, the user takes a passive observing role following a
predetermined animation. In contrast, a 2D-projection type visual-
ization may allow the viewers to freely foveate (interactive zooming
may be required for large datasets). Depending on the application,
the user may prefer to search around for the desired information, or
to effortlessly observe an animation sequence.



Parameter value
m Target dimension (Sec. 3.1) n

Video length (in frames) 30m
λ Smoothness weight (Sec. 3.1) 3
η Learning rate (Sec. 3.1) 0.01
ε Convergence Threshold (Sec. 3.1) 10−5

Max number of iterations (Sec. 3.1) 1000
θ Visibility threshold (Sec. 3.2) 0.1

Table 1: The set of fixed parameters used throughout the reported
experiments and in the online facebook application.

Tversky et al. [Tversky et al. 2002] pointed to possible pitfalls of
certain kinds of animations, analyzing animated visualization based
on congruence between internal and external representations and on
the apprehensibility of the resulting animation. In congruent visu-
alizations the format and the contents of the graphics match those
of the displayed concept; Apprehensive visualizations are those in
which the graphical information is perceived appropriately and ac-
curately enough.

We believe that although we use animation not to depict time
based dynamics, our animation is congruent since what appears in
our mind together is thought of as linked. As for apprehensibility,
this property lacks mostly in high paced animations, where transi-
tions are rapid. The smoothness in time of our underlying repre-
sentation eliminates some of this danger. While the user cannot be
expected to extract all the information that exists in the visualiza-
tion, the capacity of the proposed visualization is much larger than
the one of 2D embedding even after considering loses arising from
partial apprehension.

4 Results
We implemented our visualization design using the ActionScript
programming language, which is used to create Adobe Flash ani-
mation. The computational part is performed in Matlab and saved
as XML files. This separation between computation and visualiza-
tion is natural for our design and implies its suitability in the client-
server setting. In fact, the facebook visualization below is already
implemented as a “facebook application” that was shown on actual
facebook user-pages.

We use the design to visualize four different datasets, described
below. In each dataset, we embed the data in an m dimensional
space of smooth vectors as described in Section 3.1, where m is set
to be the number of data points. In the actual visualization we in-
terpolate this data to 30m frames by employing linear interpolation
between every two consecutive coordinates. We then display the
resulting animation at 30 frames per second.

The parameters used to visualize all four datasets are summa-
rized in Table 1. These parameters seem to be appropriate for a
wide range of dataset sizes. For example, we have had users for our
facebook visualization with as few as 5 friends and users with as
many as 800.

For the graph based data (facebook) we use the adjacency graph
as the affinity matrix. In the case of vectorial data (all other
datasets), the data points are normalized to have a norm of one,
and the proximity is computed by considering the dot product be-
tween every two data points. Many other alternatives exist in the
kernel methods literature (e.g., [von Luxburg 2007]). For exam-
ple a Guassian kernel can be employed which computes affinities
as A(i, j) = exp(−||xi− x j||2/2σ2), and the Matrix Laplacian can
be used instead of the original affinity matrix. Our choice to em-
ploy the linear dot-product kernel was primarily motivated by our
wish to minimize the number of parameters we need to tune during
the data representation stage, thus validating the robustness of our

method.

Netflix DVD Ratings A dataset containing DVD ratings by over
480,000 users was downloaded from the Netflix Prize website
(www.netflixprize.com). We selected the subset of the 512
DVDs that were released in 2005, which is the last year for which
DVD ratings are included in the dataset. Similarities were com-
puted based on the user-specified ratings only, i.e., from long vec-
tors where each user corresponds to one coordinate. Reviews are
specified on a scale of 1 to 5. A rating of 0 is used to indicated no
review for a specific DVD by a specific viewer.

The resulting visualization is depicted in Figure 2 and is pre-
sented in full (as do the other visualizations) in the accompanying
supplementary material available at http://www.cs.tau.ac.
il/~wolf/demos/commonfate.zip. As can be seen, it clearly
displays proximities between related DVDs, and by watching and
interacting with the visualization the perception of genres and sub-
genres emerges. In contrast, MDS, due to its low capacity, places
very distinct genres nearby. As a result, one cannot judge reliably
whether two DVDs are similar by observing their spatial proximity.

Movie Stars We selected 50 actors and actresses and represented
each one by a binary vector which depicts the movies he/she partic-
ipated in according to The Internet Movie Database (IMDb). Each
movie was represented by one coordinate in this representation.
The dot product (sans-normalization) between every two such vec-
tors counts the number of movies both actors participated in to-
gether. The result, captured in Figure 3, provides a clear view of
which actors and actresses played side by side.

While in the MDS-based plots actors that are well separated spa-
tially may have played in the same movie and vise versa, the high
capacity of our visualization depicts the relations between the ac-
tors reliably.

NASDAQ The stocks in the January 2008 NASDAQ-100 list were
selected. Each stock was represented by a piece-wise normalized
vector of its price changes during 2007 as described in [Gavrilov
et al. 2000]. Note that the resulting linear kernel has negative val-
ues. We replaced these values by zeros. A number of frames are
shown in Figure 1. The visualizaton reveals expected relations,
such as the ones between Google and Yahoo, and Sandisk and
Intel, as well as some less expected correlations such as the ones
between the stocks of Apple and Google, and Autodesk and Star-
bucks. These correlations exist in the original data and arise from
similar price patterns throughout 2007.

Facebook We have created a facebook application that allows
users of the social networking website to visualize the connections
between their friends. The service was tested by Computer Science
students, their friends and a few random facebook users who stum-
bled across it, a total of 100 users. The service is currently down
for the duration of the review period. The loading time of the appli-
cation is dominated by the retrieval of the photographs of the face-
book contacts, which is done in parallel to the computation of the
smooth functions and the spatial embedding. Once the computation
is done, the remaining images are loaded in the order in which they
appear on screen, to allow for the quickest startup possible. The
analysis takes a few seconds for users having 50 friends, and less
than 2 minutes for users with 500−800 friends. Due to the dictated
structure of facebook applications, this computation is not done be-
forehand. However, in other (non-facebook) applications this may
be possible. Also note that since solutions for nearby networks are
expected to be similar, caching the results of previous sessions of
the same user can reduce the computation time considerably assum-
ing that the network of friends did not change drastically (this is not
implemented yet).

In the facebook application, all the contacts of the user are rep-
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Figure 2: A comparison between two visualizations of the netflix challenge 2005 DVDs. Proximities are based on the individual users’ ratings
only. The 2D embedding puts Disney’s “Princess Stories”, “Ultimate Fighting Championship”, “Dora the explorer”, and “Saturday Night
Live” nearby. The capacity of our visualization (only crops are shown), enables full separation.
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Figure 3: A dataset containing 50 actors and actresses, each associated with the list of movies he played in. Did Edward Norton and Woody
Allen play in the same movie? Norton is in the middle of the MDS display. Allen is at the very bottom near Diane Keaton. The displayed
animation frames were sampled when Allen’s icon was selected.

resented as graph vertices. If person i and person j appear in the
contact list of each other we create an edge between graph nodes i
and j. As mentioned above, in this application, the resulting binary
adjacency matrix is used as the affinity matrix. The resulting visu-
alization for one person with 160 friends is a part of the attached
flash-animation, and is captured in Figure 4.

We have received a considerable amount of feedback from the
application users. It became evident that without preparation the
purpose of the visualization is not clear to most viewers. We had
to update the welcome splash screen and make it more appeal-
ing by adding an explanatory toy animation based on well known
characters from “The Simpsons” television show (please refer to
the supplementary material available at http://www.cs.tau.ac.
il/~wolf/demos/commonfate.zip). The animation was accom-
panied with one line of text: “Cliques (groups of friends) appear lit
together”. All users we asked agreed that the structure of cliques
among their friends is depicted correctly.

In the initial implementation, the selection could have led to a
screen where all icons are unlit. Several users asked why some
friends are never lit up. Similarly, two users reported dissatisfaction
with the all unlit screen one would get in the initial implementa-
tion when selecting multiple people that do not share lit-up frames.
To answer these concerns we added a better treatment of isolated
graph nodes and the empty intersection problem as explained in
Section 3.3 above.

Some users complained that the visualization is too slow, and
some that it is slightly too fast (the facebook application did not
contain the speed control at first). One user expressed the wish to

have the ability to scroll by himself to other parts of the visualiza-
tion. This feedback was made before the time slider and the data
point selection box were added to the application.

4.1 Evaluation of the spatial embedding method

In the four visualizations described above there are two display
modes: a windowed display mode of 800× 600 pixels and a full
screen one (1280×1024 pixels). The sizes of the icons range from
100× 40 to 100× 140, allowing visible grids of various sizes in
each mode. Table 2 depicts the percentage of displayed lit items
out of the total number of lit items. For example, in the NASDAQ
visualization, there are 3,000 frames, and a total of 41,161 icons
(counted again each frame) that are lit above a threshold of 0.1.
Out of these lit events 39,341 are displayed on screen during the
visualization loop, producing a hit rate of 96 percents. In the full
screen mode of the same visualization all icons appear on screen,
and the hit rate is 100%. As can be seen from the table, the hit rate
is quite high.

5 Alternative Visualizations
Our framework of transforming proximities into smooth functions
and displaying those through animation can be extended to other
methods and some of the design choices we make can be replaced.

5.1 Alternative embedding methods

The proposed embedding, which associates a smooth positive func-
tion with each data point obtained through the method proposed in
Section 3.1, can be replaced with other methods. We have con-
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Figure 4: A comparison between MDS and our approach for visualizing the social network of one facebook user who has 160 contacts. Many
other users have experimented with the application themselves. The number of friends per user in our experiments was as high as 800, and
typically between 50 and 150.

Dataset n Windowed mode Full screen mode
Grid size Hit rate Grid size Hit rate

Netflix 512 11×6 77% 18×10 91%
Movie Stars 50 8×4 95% 10×5 100%
NASDAQ 100 9×10 96% 10×10 100%
Facebook 160 10×7 88% 16×10 100%

Table 2: The ratio of lit items displayed on screen out of all lit items
in each visualization. The grid size columns depict the size of the
visible area of the grid in each dataset for the windowed and the
full-screen modes.

ducted experiments with several of these, and attach the results as
part of our Multimedia Attachment. To access the visualizations
that are based on alternative methods, please scroll on the dataset
choice drop-down menu below the first four datasets.

The first such alternative is traversing through the data points,
one at a time, and assigning a luminance value to all icons accord-
ing to the proximities between the underlying data points. We have
tried several methods to determine the traversing order, such as em-
ploying 1D MDS, and performing hierarchical clustering followed
by Optimal Leaf Ordering [Bar-Yoseph et al. 2001]. In all cases the
results seem to be too raw to be apprehended by the viewer. The
structure of the data is not easy to understand without any auto-
matic consolidation of the data taking place before it is displayed.

On the other hand of the spectrum, one can first cluster the data
and then display the clusters one after the other. The order of the
display can be determined by employing a 1D embedding method
based on the proximities between the clusters. To create a smooth
display, the clusters morph from one cluster to the next. This dis-
play is easy to grasp, however, it is limited by associating each data
point to just one cluster, and has a very limited capacity.

To overcome this, one can attempt to employ a fuzzy cluster-
ing algorithm such as the fuzzy c-means algorithm [Bezdek 1981].
The clusters can then be sorted by their similarity and displayed se-
quentially, changing smoothly from one cluster to the next. The
weighted cluster membership value is mapped to the luminance
value of each icon.

The experiments conducted exposed several limitations of the
fuzzy clustering based method. First, while the smoothness-based
functional-embedding method of Section 3.1 is able to assign to
each data point a varying amount of total luminance, fuzzy clus-
tering methods assign a normalized value. Trying to relieve the
normalization constraint seems to somewhat help. Second, the lo-
cal nature of the fuzzy c-means algorithm seems to neglect some of
the correlations between the data points.

Since the smooth functional embedding method is related to
Non-negative Matrix Factorization (NMF), we also try to factorize
the proximity matrix using a symmetric NMF algorithm [Li et al.

2007], and to sort the rows of the resulting factor matrix in order to
produce a smooth animation. Three ordering methods were tried: a
greedy method that starts with the first column, finds the most sim-
ilar columns and continues iteratively, a 1D MDS method based on
the similarities between the rows of the resulting factor matrix, and
hierarchical clustering followed by optimal leaf ordering. Despite
our efforts, the NMF based methods result in jittery animations,
emphasizing the need to combine the smoothness requirement into
the initial optimization stage.

As mentioned above, the resulting visualizations for all alterna-
tive methods are accessible in the Multimedia Attachment. Figure 5
provides a static view of the various alternatives. Each figure color
codes (heatmap) the luminance for every datapoint (rows) for ev-
ery frame (columns). It can be observed that the results obtained
through the method proposed in Section 3.1 are not as cluttered as
the Sequential display, are more continuous in time compared to
the Symmetric NMF based method and the fuzzy c-means method,
and unlike the k-means based method allow each data point to be
highlighted more than once.

5.2 Alternative design choices

In the current implementation of the proposed visualization we
choose to fix the grid locations of the icons associated with the indi-
vidual data points. We believe that maintaining the spatial location
is important when trying to relocate an icon we have seen previ-
ously. However, by relaxing this demand and only fixing the loca-
tions of icons that are displayed on screen at a given time we may be
able to get better screen utilization, and deal with extremely large
datasets. These adaptations are left for future implementations.

Throughout the paper we have focused on luminance based com-
mon fate. We have also experimented with other variables such
as the color saturation (colorfulness), image blurriness or sharp-
ness, and the perceived depth (see Figure 6). We found luminance
changes to be much more appealing visually. Saturation and sharp-
ness changes are hard to apprehend, and changes to the perceived
depth create cluttered visualizations.

The common fate based luminance changes can be utilized in
concert with other visualization methods. For example, it can be
used to turn Parallel Coordinate plots into animated plots. On
the other hand, other visualization techniques can be incorporated
into the proposed grid visualization, for example, in order to dis-
play the source of proximity between data points that are selected.
Note, however, that such modifications require information that is
not contained in the affinity matrix, and may require adaptation
for each type of data (graph/tabular based, dense/sparse, few/many
variables).

6 Conclusions
The mapping of one variable to an image axis is a common vi-
sualization metaphor. Objects are often sorted, e.g., by size, and
portrayed in order. When there are several classes of objects, it is
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Figure 5: A comparison between various methods of embedding the data points in time on the NASDAQ dataset. The datapoints (rows of the
images) are ordered, for display purposes, according to the 1D MDS projection. The method of Section 3.1 is the Smooth Non-negative Matrix
Factorization method introduced in this paper. Sequencial display is a stretching in time of the original affinity matrix, where non-diagonal
elements are further emphasized. The k-means method displays one cluster at a time, and fuzzy c-means works similarly. In Symmetic NMF,
the matrix is factored and the rows of the factor matrix are rearranged to create an animation which is as smooth as possible.

Figure 6: A screen capture of an alternative visualization in which
the values associated with each data point at each frames were
mapped to location in depth rather than to luminance. In this image
a small subset containing 12 data points from the NASDAQ dataset
is shown. Mapping values to depth information results in cluttered
unattractive displays.

also common to group their iconic representation. It is therefore
surprising that the graphical depiction of proximity in non-spatial
multi-dimensional properties as positioning proximity is mostly a
modern Western invention, that played little or no part of the rich

visual languages developed since ancient times [Beniger and Robyn
1978]. Moreover, it seems that illustrating correlations as proxim-
ity in space is intuitively obvious only to certain educated sections
of the population.

Looking for other alternatives for visualization, there is a clear
psychophysical evidence, based on the Gestalt principle of Com-
mon Fate, that synchronized luminance modulation is a very effec-
tive perceptual tool [Sekuler and Bennett 2001]. This is best ex-
emplified by our animation that shows the superiority of luminance
common fate over spatial proximity in linking objects.
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