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[Lucie Masson and Jurie 2004] also uses edges and textures fo
tracking. They extract point features from the texture aselthem

This paper proposes a new approach of model-based 3D Objecttogether with the edges to calculate the pose. This turngoout

tracking in real-time. The developed algorithm uses edgdea
tures to track, which are easy and robust to detect. It etgptbe
functionality of modern highly parallel graphics boardsigyform-

ing hidden face removal, image processing, texturing amticea
filtering. Using a standard 3D -model the tracker requirathee
memory and time -consuming training nor other pre-calonmat

In contrast to other approaches this tracker also works gectsh
where geometry edges are barely visible because of lowasintr
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1 Introduction

Tracking the pose of a three dimensional object from a sicate-

era is a well known task in computer vision. What seems to be
simple for humans turns out to be significantly more compdida
for computers. While humans are able to perform highly peairal
image processing, even moderentral processing units (CPUs)
have problems calculating the pose of an object with sufftce-
curacy, robustness and speed. This leads to the idea ofrasidern
graphics cards, which also work in parallel, to solve thisbbem.
This approach exploits the parallel powergriphics processing
units (GPUs)by comparing edge features of camera images and a
3D -model.

Graphics boards are designed to render virtual scenes lagtirea
cally as possible. The main idea is to compare those virteres
with an image captured from reality. Texturing is a commothoée
of simulating realistic surfaces. In this paper, the eddéisase tex-
tures are used for comparison. Fast progress in compuesncELi
will soon allow the inclusion of more and more optical efietike
shadows, reflections, shading, occlusions or even smo&ewater
or fog.

1.1 Related work

One of the first successful approaches of tracking objecthéiy
edges was RAPID [Harris 1992]. It uses points on edges and
searches for correspondence to its surroundings alonglteegra-
dient. However this method lacks robustness and severabirap
ments were applied to overcome this problem as in [Drummaondd a
Cipolla 1999; Philipp Michel 2008; Luca Vacchetti and Fu®20
Klein and Drummond 2003].

Another approach is to globally match model primitives witbse
from the camera image [Lowe 1992; Gennery 1992; D. Koller and
Nagel 1993; Kosaka and Nakazawa 1995; A. Ruf and Nagel 1997].
This method has been used for robot and car tracking appinsat
but was later replaced by improved versions based on RAPID.
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perform very fast and robust against occlusion. Our apjbroet
only uses patches but the whole texture, which usually hetpbse
converge very quickly to the accurate pose. Since the dkgori
runs on the GPU, it is as fast as the method in [Lucie Masson and
Jurie 2004].

The work presented in [M. Vincze and Zillich 2001] uses edzge f
tures to track but does not take into account texture inftiona

This makes it less robust against occlusion. Since thelseaea in

that approach is very small, it is also less robust agaissinfiave-

ment and getting caught in local minima.

The work presented in this paper is based on [Klein and Murray
2006] where they take advantage of graphics processingdpgar

ing a wireframe model into the camera image. Then a partioée fi
with a Gaussian noise model is used to evaluate the confidievele
with respect to the pose.

Figure 1: Edges from geometry vs. edges from texture

Our approach not only uses geometry edges but also edgedeatu
from textures which extends the class of trackable modetbdse

that have curved surfaces as illustrated on the right of reidu
This is because in a standard 3D -model curvature is appeigin

by triangles and quadrangles which would produce virtugjesd
which do not correspond to the actual edges as shown on the lef
of Figure 1. The particle filter is extended by using it in anesive
design that evaluates a single pose estimate given by theikedg
particles.

1.2 Overview

The idea of this approach is to

e extract the edges from the incoming camera image,

e extract the edges from the textured 3D -model,

e generate hundreds of slightly different views of the model r

ative to a pose estimate,

e calculate the most likely pose of the model by matching the
edges of the camera image and the 3D -model.

The algorithm developed is separated into two parts. fdreero-
cessingn Section 2, where all possible pre-calculations are made



and therecursive particle filteringin Section 3, which generates 2.2 Forward projection
several hundred poses and for each of them evaluates the confi

dence level. Therefore the second part is very time -cruchal The 3D -model is projected into the camera imdgeas defined
linear Kalman filterdescribed in Section 4 is applied for smooth- by Equation (2). Using the camera image takes into account
ing the resulting trajectory. Section 5 gives some hints on to that edges are not visible when there are similar light aridrco

implement the proposed methods. Tkeultsin Section 6 and the conditions in the background. Then the edges of the image are
conclusionin Section 7 summarize the advantages and strengths of extracted using Equation (1).

the presented tracker. ) )
P The transformation of the model from world space to imagespa

. is performed by the following matrix operations:
2 Preprocessing

us = T,Xvg 2)
In the preprocessing stage of the algorithm the edge inhagd the S(vs) it (uv)elU
incoming camera imagé&- is extracted and stored for comparison Is(u,v) = { Ic(u,v) else ’

later. The color surfac8 of the object to track iprojectedinto the

incoming imagel/c and the edges are calculated again. This edge wherels is the camera image with the projected modéldefines
image of the objecf¢ is then used twe-projectto the geometry the geometry of the object in image space with

in world space which results in the corresponding edge mapeof

original surfacesS®. us = [us,vs] €U

T, denotes the projection- ard the model view or world trans-
formation matrix which defines the pose of an object to traith w
a rotational and translational ter® andt.

R t
Jx =[5
forward The geometry of the object in world spak&is represented by its
projection ; vectors
¢Is c vs = [z5,ys,25] €V
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Figure 2: Flow chart of preprocessing ~
2.1 Edge detection
~— 7
The edged® are found by convolving the original imadewith a re-projection
Gaussian smoothingx and the two Sobel kerneH; , andH, u
as described in [Burger and Burge 2008].
Figure 4. Forward projection and re-projection
I — I\ [ HoxGxI 1)
"\ I; )T\ HyxGxI
2.3 Re-projection
Furthermore, the result is improved by applying thinningd an
spreading algorithms. Note that for the gradient calcorfaiin Sec- The idea of re-projection is to replace the color surfacénef3D -
tion 3.2 thex andy values are stored separately. model with the corresponding edge map. Note that it is nasiptes
. . . to do the image processing on the color surfécef the object
Figure 3 shows the different results of edge detection wiere- directly, as the edge features get distorted and thinnecvben

and y-components of the gradient are stored in the red arhgre 0 are projected to image space and therefore wronglyttail
color channel. The detection tolerance can be influencegplya  yge matching test. Comparing the edges of the model with the
ing spreading, which broadens the edges by a specific nunfber 0 .5 era image requires the same methods applied to the sambe po
pixels according to the tolerance level. This means thaeausof of view and also the same scaling of the edge width.

searching for edge pixels close to each other, the line vafithe

edge is raised as shown in Figure 3, which broadens the mgtchi  Using a particle filter requires drawing the model severaidned
area. times at different poseX; with i = 1...N. Replacing the surface



and running the edge detection algorithm for each partidalav
cause the tracker to be far away from real-time capability. this
reason, the surface of all particles is replaced by only oige enap
I¢, calculated by using the prior tracking resKlt". This, in prin-
ciple causes the same problems as mentioned above, butingsum
that the motion of the particleéX; remains small within one track-
ing pass, the distortions and thinning out can be disregarde

3 Recursive particle filtering

For each tracking pass the recursive particle filtering etexcthe
methods shown in Figure 5. First the particles [1... N], repre-
senting the pose of the object, are generated using Gaussiss
Then the confidence level of each partitlis evaluated by match-
ing it against the edge image of the caméfa If there is still
processing time; remaining, then a further recursion step of parti-
cle generation and evaluation of the confidence levels fopeed
with different parameters as described in Section 3.4. @tise
the maximum likely particle is passed to the next step. Tiheal
Kalman filter, including a physical motion model, is attadhe the
outcome of the recursive particle filter to fine tune the reant
remove remaining jitter. As this additional filter is not pef the
recursion it is explained in Section 4.

The reason for this setup is to benefit from the robustnessgeet
of a particle filter. For higher accuracy, the standard d@iiaof
the noise is reduced in each recursion. The linear Kalmaer fdt
attached just for fine tuning as mentioned above.

3.1 Particle generation

The prior poseX; of each particle is calculated by perturbing the
posteriorX ™ with Gaussian noisa(o?) with a standard deviation
scaled by the prior confidence level of the pasg, a scaling factor
for mation effectf,, and a scaling factof. set by each recursion
step:

X = X' +n(o®(wn,fn, fo) (3)
i = [1...N]
The standard deviation is evaluated by
o =orfpfe. (1 — wn) 4

where the confidence level of the prior pasg is multiplied to the
initial standard deviatiosr ; so that the particle distribution narrows
with higher confidence. The motion effeit, takes into account
that motion in world space along the camera viewing axis €aus
less change in image space then the same motion orthogaoally
the viewing axis.f. becomes smaller with each recursion step in
the patrticle filter.o ; is implemented as a parameter to be set by the
user, but should be evaluated automatically in the futuganding

the tracking conditions.

particle F—
generation
I, I
confidence
evaluation

X+~,f¢awm

X

if(t; < taomz)

VX

Kalman
filter

X
best match

Figure5: Block scheme of motion with recursive particle filter and
Kalman filter

3.2 Confidence level

Each particle is tested against the camera image and a cocdide
level is calculated. Therefore the correlation betweergtheients
of the edgegs, (u,v) andgc (u, v) is evaluated by comparing the
direction of the edges at each image pdintv).

gs, (u,v) = (ﬁ;gzz;)
go(uv) = (ﬁgug)

The angles between those vectors are calculated, proddcig
edge correlation imagé;:

¢ = arccos(gs;.8C)
-2  if  ¢<m/2
®;(u,v) = 1- 2=l g > /2 (5)
0 if  (u,v) & v

Note that it is assumed that the result of tecos() function lies
within 0 and=. The image®; now contains the degree of corre-
lation between the pose suggested by the partialed the camera



image. The angular deviation of the edge angless scaled to the
range of 0 to 1.

The confidence levab; is evaluated as follows:

my; ms 1
i = — — 6
v ( n; + Nmax ) w ( )

with
m; = //@i(u,v)dvdu
n, = //|I§i(u,v)|dvdu

N
W = Zwl

i=1
Nmaz & max(n;)

The first term within the brackets is the percentage of matrhi
edge pixelsn; with respect to the total visible edge pixels Cal-
culating the confidence level only with this term would catlse
tracker to lock when only one side of the 3D object is visii¢hen
at this special pose the object is rotated slightely, amctide of the
object becomes visible. The particle matching this rotatimuld
be equal or most often less then the prior front facing partithe
reason for this is that the number of matching pixelsgrow less
than the total visible pixels; when rotating the object out of the
front side view. This effect amplifies when taking into acebthat
edge detection for strongly tilted faces is very faulty.

The second term allocates more weight to the total number of
matching pixelsn; which is intrinsically higher for the rotated par-
ticle. nmaq. Which are the maximum visible edge pixels in the actual
area scales the pixels to the proper range. As this summatald

lead to confidence levels higher than 1, it is divided by tha s
confidence level§l.

This differs from the function used in [Klein and Murray 2006

Likelihood (X;") o< exp (kz%)
which we experienced to lock very fast at the local minima men
tioned above. Herd, denotes the number of matching edge pixel,
v; the total edge pixels of the wireframe model, where the mdde
edges are removed arkdis a constant for distributing the likeli-
hood.

3.3 Determining the pose

As explained in the sections 2.2 and 2.3 for projection and re
projection of the model, a single po3&" has to be defined. This
is where the approach suggested in this paper differs framlus
straight forward particle filters, where the whole prop#pitien-
sity function

w = P(X])
i = [1...N]

of the previous timestep, is carried over into the next esiiom
step.

The poseX™ is evaluated using the mean of the top most likely
particles)M . X in Equation (7) denotes the particles sorted by the
confidence levelv, in descending order.

N 1 M B
X :w—Zxk.wk 7
k=1

with

Experiments have shown that increasing the number of madyli
particles)M to consider in the mean confidence, while lowering the
standard deviation in Equation (4) by and the edge width (see
Figure 3) for each further recursion obtains good results.

3.4 Recursion

The methods described in Section 3.1 and 3.2 are perfornred fo
each of the hundreds of particles. The idea of recursion fake
advantage of the information gain when calculating. Thisnse
that theN particles are divided into subrang&s, R2, Rs, ... and

so forth. For every rangRy, the pose estimaf€ ™ and confidence
level w,, of the previous particle filtering?;—1 is used. The stan-
dard deviation for the particle generation is reduced bysttading
factor f., which narrows thesearch areaof the filter. Therefore
Equation (3) becomes

X7 (R) = X'(Ri-1)+n(c?)
i = [1...N]

with
o =01fnfe(Re-1).(1 —wm(Rr-1))
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Figure 6: Recursive particle filter

Figure 6 shows the principal idea of recursive particle riftg in

2D. In the lower left graph the particles are perturbed usimigh
standard deviation of the Gaussian noise of the particmsring

a large area around the prior pose estimate. The mean of the to
most likely particles is used to evaluate the rough pose eféal
object. The upper left graph shows particles with lower déad
deviation, where this time the most likely particles meadhe real
pose much more accurately.

The example in Figure 6 is drawn with 1500 particles with ragh
500 with low standard deviation. This method allows thekeado
respond both quickly and accurately without increasingrieking
time, because it does not require any more particles thamédaef

4 Linear Kalman filtering

The discrete Kalman filter implemented for this approachsuse
motion model for all six degrees of freedom of the object. The



reason why the motion model is not applied in the particlerfis
because this would reduce the speed and accuracy of theitrack
as modelling the velocity of the object would rise the degoée
freedom from 6 to 12. This would mean that the particles have t
cover 6 more dimensions. Therefore the Kalman filter is httdc
only to smooth the resulting trajectory and remove remgiiitter.

Time Update - "Predict”

Axj,_1 +Buy
AP, AT +Q

Xk =

P, =

Measurement Update - "Correct”

-1
K, = P H" (HP,;HT + R(wm)) ®)
x, = X, +Kg (z;c — Hx;)

P, = (I-K.H)P;

where
Xy = [-’Emymzk,ak:ﬂm%,fmyk,»’i‘k,dk,ﬁk:%}

denotes the state of the Kalman filter containing the posevand
locity of the six degrees of freedom.

_ | T diag/At)
A=lo 9]
is thestate matrix
B = [diag(0)]
theinput matrix
H = [I, diag(0)]

theoutput matrix P, theestimate error covariance) the process
noise covarianceR themeasurement noise covariandehe unity
matrix andK;, theKalman gain Please refer to [Welch and Bishop
2004] for more details on Kalman filtering.

The process covariance matix defines the noise of the physical
model, where no information is available. However, in castito
R, this matrix is set to a fixed value.

The measurement covariance mafiRxdepends on the confidence
level of the pose as follows:

diag((wi—3)*) 0
0 diag((we—3)*)

As shown in Equation (8), this means titrises proportionally
to the delayed confidence level of the measurement from ttie pa
cle filter. Therefore, the Kalman gain drops, giving lessghieito
the measurememnt,, and more weight to the motion model, which
smooths the result. This means that jitter is removed wheicdn-
fidence is high, for example when the object to track does moem

R(wm) =

On the other hand, the lag behind the real object, causedcchyoh
tion model during acceleration, is decreased when the camfiel
falls, which usually happens when the object to track moass f
In this case, the Kalman gain increases the weight of the uneas
ment, increasing the speed but also allowing jitter whichaeely
visible when the object is moving anyway.

Experimants have shown that a cubic function yields to a $imoo
tracking behaviour. The delay of the confidence lengls re-
moves overshooting of the motion model when the object sulgide
stops moving.

5 Implementation notes

The implementation of the algorithm requires discret@ativhich
is denoted by bold letters for images in this section.

5.1 Notes for preprocessing

The preprocessing is done once per tracking pass and is tioteas
critical as the recursive particle filtering in the followirsection.
However, the overall performance of the tracker needs tehast
as possible, so this part is also implemented using the grspho-
cessing unit. Therefore, the image received by the cameyanis
to the graphics board where it is stored as texture. The ¢onvo
tion with the Gaussian and Sobel kernels are applied by shade
well as thinning and spreading. The edge image is againdstse
RGBtexture where th&- and G-channels are used for the and
y-components of the image gradient.

As the channels only allow values between 0 and 1, the nazethli
gradients ranging from -1 to 1 need to be adjusted.

The surface of the object to track is made up of vertices wfuai
triangles and quadrangles, also called primitives. Thégeptions
described in Equation (2) and (9) are performed for thesgcesr
only, because the surface points within a primitive can berde
mined by linear interpolation, which is optimized by the gis
adapter.

T, andX denote the projection and model view matrix, which can
be queried from OpenGL. The six degrees of freedom are siored
the vector

Xi = @i, yi, Zi, i, Bi, Vi)

Instead of transforming the edge map back to world space by
solving Equation (2) with respect 19, the coordinates for the edge
map in image space are evaluated. This has to be done only once
since those coordinates do not change for the other particle

9)

+ +
ug = TPX Vs

Ig, (u,v) = Ig(ug)

The particleg are represented by the pose matri®gs. The vec-
torsug, that are used to find the corresponding point in the camera
imagel¢ are calculated with

us.

i

Ig,(u,v)

T,X; vs

Ié(uSi)

At this point for each particlé the modells, and camera image
I¢, are ready for comparison which is described in Section 3.2.

5.2 Notes for recursive particle filtering

The calculations described in this section are very ctitidth re-
spect to optimized programming, since every single line aafec
is called several hundreds of times. In particular evahgathe
confidence level using thdVIDIA Occlusion Querys definitely

a bottle-neck in the algorithm. This OpenGL extension ipoes
sible for counting the pixels of the whole edge map. The match
pixelsm; and total edge pixels; are evaluated by summing up the
correlation imagep; and the edge malg; :

Z P;(u,v)

u,v

Zlesi(u, v)

u,v

my =



As this extension only supports counting pixels disregaydhe model shown in Figure 1 with 16 faces and a 900x400 pixel textu
value, they only can be marked to be rendered or not. Thexefor image, the tracker achieves 580 particles within the same &nd

the displacement image is thresholded by the asagle 100 particles with the cylinder with 64 faces.
¢ = arccos(gs,(u,v).gc(u,v)) Figure 8 shows some results of a video sequence. The first row
it ) demonstrates the robustness of the tracker. The whole tégceu
H, = { 0 !f p<e (10) and the edges of the geometry are covered by the hand and there
1 p=e are reflections of the checkerboard pattern on the front dacka

cluttered background, but the pose of the box still can Henastd.
Of course at some degree of occlusion, the accuracy of the pos
drops until it cannot be determined at all.

wheree denotes the angular threshold. For the match evaluation
shadel) means that the pixel is discarded when rendering and does
not increase the counter, whereasmeans the pixel is drawn and
therefore increases.;. The second row shows the fast and reliable convergenceoudtih
the deviation of the estimated from the actual pose is vegi,hi
the tracker finds the correct alignment within a second. Tivel t
row illustrates the concept of recursive particle filteriigpecially

in the second image from the left, where the speed of the rgovin
object is high, the benefit is clearly visible (compare witjure 6).

Figure 7b) shows the pixels; successfully passing the match eval-
uation. 7c) are the pixels which fail the match test of Equrafil0)
and 7d) is the total number of pixels of the edge image of the
object. Note the missing pixels on the very upper edge, asudtre
of the background having the same colgel{ow) as the object. The
mismatch of the edges on the front side of the box is causeleby t )
inaccuracy of the placement of the texture on the geometthef 7 Conclusion

model which is produced manually by a 3D modeling tool.

We presented a method for fast and robust object trackingprit
verges fast to the correct pose and is able to handle relatige
deviations, for example when initializing. Partial océbrs re-
flections, light changes, shadows and cluttered backgraoecho
problem for the tracker, as long as enough features arelevigib
determine the pose. Exploiting the power of a graphics @siog
unit with a particle filter in a recursive design allows higadking
speed with sufficient accuracy.

However, there are several improvements possible. Fitstiynis-
match of the 3D -model to the real object, as described in Sec-
tion 5.2, can be learned and corrected with constraintspifesent

the model from strong distortion. Secondly corner detectomlor
matching and so forth can be implemented which would moshylik
further improve the accuracy and robustness of the tracker.

The correlation mapP; in Equation (5) is simplified to Equa-
tion (10), because th€VIDIA Occlusion Quergnly counts visible
Ty pixels disregarding the information about the angularldisgment
stored within. A future work would be to implement precisalev
ation of the confidence level as described in Equations (&)&n

The bottle-neck, with respect to the frame time of this appm
is definitely the particle filter with its evaluation of therd@ence
level using the OpenGL extension. The tracking ematirectly
correlates with the standard deviatierand number of particled’
as follows:

o
exX —
N

P with
=T N oct = tszms

d) Total edges of model;
This means that the tracking err@can be significantly reduced by
Figure 7: Edge matching lowering the standard deviatienfor each degree of freedom inde-
pendently. When for example the z position of an object toktia
known, because it lies on a table the accuracy can be incrégse
6 Resulis lowering the standard deviation for this degree of freedom.

. ) There are several points of the algorithm where furtherdtiga-
As the tracker requires fast parallel calculations, theu$oof the tion needs to be done, like finding the optimal boundary dior
system is on the graphics board where it is implemented. St ha anq functions for the recursive particle filter and desigrinbet-
been tested on an NVIDIA GeForce GTX 285 with a fill rate of ey fynction for particle generation. Or more specificallsigning

50 billion pixels per second, and an Intel Core2 Quad CPU Q660  petier functions for calculating the standard deviatiothef Gaus-
with 2.4 GHz. To fulfill a minimum frame rate of 30 FPS (frames  gjzn noise in Equation (4).

per second), the time for one tracking pass is 33 ms. With# th
limits it is possible to draw 1500 particles for a box (6 fategured A further problem that needs to be solved is, that the trac&enot
with a 900x730 pixel image) like in Figure 7a). With the cyler supply information if tracking fails when it locks into a kalcmin-



Figure 8: First row: robustness against occlusion, reflections andkggound clutter; Second row: fast and robust convergeiterd row:
particle distribution with three recursions
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KLEIN, G.,AND MURRAY, D. 2006. Full-3d edge tracking with a
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