

AN EFFICIENT COLLISION DETECTION ALGORITHM FOR
POINT CLOUD MODELS

Mauro Figueiredo1, João Oliveira2, Bruno Araújo2, João Pereira2

1 Instituto Superior de Engenharia, Universidade do Algarve, Faro, Portugal
mfiguei@ualg.pt

2 IST/INESC-ID, Rua Alves Redol, 9, 1000-029 Lisboa
{joao.oliveira, bruno.araujo, jap}@inesc-id.pt

Abstract
Point clouds models are a common shape representation for
several reasons. Three-dimensional scanning devices are widely
used nowadays and points are an attractive primitive for rendering
complex geometry. Nevertheless, there is not much literature on
collision detection for point cloud models.
This paper presents a novel collision detection algorithm for point
cloud models. The scene graph is divided in voxels. The objects of
each voxel are organized in R-trees hierarchies of Axis-Aligned
Bounding Boxes to group neighboring points and filter out very
quickly parts of objects that do not interact with other models. The
proposed algorithm also uses Overlapping Axis-Aligned
Bounding Boxes to improve the performance of the collision
detection process. Points derived from laser scanned data typically
are not segmented and can have arbitrary spatial resolution thus
introducing computational and modeling issues. We address these
issues and results show that the proposed collision detection
algorithm effectively finds intersections between point cloud
models since it is able to reduce the number of bounding volume
checks and updates.
Keywords: Collision detection, virtual environments, surface
segmentation, point cloud processing.

1. INTRODUCTION
Point cloud models are an increasingly attractive representation
used as the basis to capture and measure reality rapidly in an
increasing number of applications such as environmental
surveying, structure analysis and archaeology [1]. Point cloud
models also share a remarkable similarity with a very popular
computer game representation of the 80s, numerous Sinclair
Spectrum games used axonometric projection of point models to
convey details of buildings, interiors and avatars. A crucial
element to enable laser scanned point models to be used in a
similar scenario is collision detection of point clouds. In general
interactive virtual environments often need very fast collision
detection queries to simulate physical behaviour and to allow the
user to interact. However, there is practically no literature on
determining collisions between two sets of points.
This paper describes a novel collision detection algorithm for
point cloud models.
The scene graph is organized in voxels. To speed up the process
of finding collisions, for each voxel, each object is represented by
an R-tree data structure of Axis-Aligned Bounding Boxes
(AABB) defined in its own local coordinate system. The R-tree
organizes spatially its geometry, grouping neighbouring points.
The proposed algorithm is also based in the use of the
Overlapping Axis-Aligned Bounding Box (OAABB) to improve

the performance of the collision detection process. In addition a
traversal algorithm for collision detection for point clouds that
takes advantage of the OAABB is also presented, improving
performance by reducing the number of bounding volume checks
and updates.
Results show that the proposed approach uses effectively the R-
tree structure and the OAABB concept to find intersections
between point cloud models at interactive rates. In addition, unlike
CAD objects which typically contain object hierarchies and the
data is already segmented into surface groups, point data sets
derived from laser scanned data do not have such information thus
presenting computational issues. We address these issues and
present a solution that adapts to point sets derived from different
laser scanners and spatial settings.
The paper is organized as follows. Section 2 presents collision
detection approaches for the determination of intersections
between polygonal and point cloud models. Section 3 describes
the VIZIR project that highlighted the need to develop an efficient
collision detection algorithm for point cloud models. Section 4
describes the data structures for the representation of the scene
graph that are used to improve the performance of the novel
collision detection algorithm, which is presented in Section 5.
Section 6 presents the evaluation results using CAD models and
addresses laser scanned point sets. Conclusions and future work
are presented in Section 7.

2. RELATED WORK
Currently, there are many implementations of collision detection
schemes for interactive system, most of them only support
polygonal models. Frequently, they use bounding volume
hierarchies (BVH), spatial subdivision methods and more recently
use graphics hardware to accelerate collision detection by
hardware. There is a lack of collision detection systems for point
cloud models.
Bounding volume hierarchies are frequently used to organize the
triangles of an object to improve the performance of the collision
detection process, by reducing the number of pairs of bounding
volume tests. The classic scheme for hierarchical collision
detection is a simultaneous recursive traversal of two bounding
volumes trees A and B.
Several types of bounding volumes are available. Bounding
spheres can be used [2]. SOLID [3] and OPCODE [4] use axis-
aligned bounding boxes (AABB). RAPID [5], V-COLLIDE [6],
PQP [7], H-COLLIDE [8], use oriented bounding boxes (OBB).
QuickCD [9] and Dop-Tree [10] uses k-dops; and Swift++ [11]
uses convex hulls (CH). There are also hybrid approaches like
QuOSPOs [12] that use a combination of OBBs and k-dops.

The main advantage of SOLID, OPCODE and Box-Tree is that
AABBs are faster to intersect.
RAPID approximates 3D objects with hierarchies of oriented
bounding boxes (OBBs). The main advantage of RAPID is that
OBBs are better approximations to triangles reducing effectively
the number of intersecting operations.
V-COLLIDE solves the broad-phase of the collision detection
using a sweep-and-prune operation to find pairs of objects
potentially in contact. It uses RAPID to find in the narrow phase
which pairs of objects intersect.
H-COLLIDE is a framework to find collisions for haptic
interactions. It uses a hybrid hierarchy of uniform grids and trees
of OBBs to exploit frame-to-frame coherence. It was specialized
to find collisions between a point probe against 3D objects.
The QuickCD and Dop-Tree implementations build a hierarchy
tree of discrete orientation polytopes (k-dops). The main
advantage of using discrete orientation polytopes is that k-dops
are better approximations to the underlying geometry than
AABBs with the advantage of its low cost compared to OBBs.
Swift++ builds a hierarchy of convex hulls and intersection is
tested using a modified Lin-Canny closest feature algorithm.
He [12] uses a hybrid approach that combines OBBs and k-dops
called QuOSPOs. This approach provides a tight approximation of
the original model at each level.
Another class of hierarchical data structures used for collision
detection are spatial partitioning representations: regular grids [13,
14, 15, 16], octrees [17, 18], BSP-trees [19] and R-trees [20].
Spatial subdivisions are a recursive partitioning of the embedding
space occupied by objects. In general, spatial partitioning
structures are used as a secondary representation for the collision
detection process.
The main idea behind all space partitioning methods is to exploit
spatial coherency. For each object, we check for collision only
objects of the neighborhood, eliminating comparisons with those
objects that are far away and therefore cannot be colliding.
Zyda [13] uses grids to find overlapping objects in the broad
phase. García-Alonso [14] also uses uniform grids to find exact
collisions between 3D objects for the narrow phase. Teschner [21]
use uniform grid subdivision combined with hashing to reduce
storage requirements for collision and self-collision detection of
deforming objects that consist of tetrahedrons. Eits [22] also uses
a spatial grid inspired by the work of Teschener together with 1D
hash table to find collisions between deformable tetrahedral
models. A hybrid approach is presented by Gregory [8] using
regular grids, where each occupied grid cell stores an OBBs tree
of those triangles on that cell.
Hubbard [17] approach for finding collisions in real time is based
on a time-critical computing algorithm and on octrees of spheres.
Kitamura [18] algorithm for collision detection uses an octree for
each object. Ganovelli [16] also associate an octree of axis aligned
bounding boxes with each object, and keeps this hierarchy
efficiently and dynamically updated for deformable objects.
Luque [19] uses semi-adjusting BSP-trees for representing scenes
composed of thousands of moving objects.
Figueiredo [20] combines AABBs with R-trees to implement an
efficient collision detection algorithm that determines intersecting
surfaces.
Various approaches have been recently introduced using existing
graphics accelerated boards (GPU) [23, 24, 25, 26] or dedicated
hardware [27] to accelerate collision detection by hardware.

Algorithms using graphics hardware use depth and stencil buffer
techniques to determine collisions between convex [23] and non-
convex [24] objects. CULLIDE [25] is also a GPU based
algorithm that uses image-space occlusion queries and OBBs in a
hybrid approach to determine intersections between general
models with thousands of polygons. MRC [26] deals with large
models composed of dozens of millions of polygons by using the
representation of a clustered hierarchy of progressive meshes
(CHPM) as a LOD hierarchy for a conservative errorbound
collision and as a BVH for a GPU-based collision culling
algorithm.
These GPU-based algorithms are applicable to both rigid and
deformable models since all the computations are made in the
image-space. Collision detection methods using GPUs have the
disadvantage that they compete with the rendering process,
slowing down the overall frame rate. Furthermore, some of these
approaches are pure image based reducing their accuracy due to
the discrete geometry representation.
All these collision methods have been applied only to polygonal
objects. Recently Klein [28] presented a novel approach for
collision detection of point clouds. They construct a point
hierarchy of bounding volumes to enclose the points at different
levels of the hierarchy. Points are stored in the hierarchy leaves.
Each node stores a sufficient sample of the points plus a sphere
covering of a part of the surface. Given two point cloud
hierarchies, two objects are tested for collision by simultaneous
traversal. At the leaves, an intersection is determined by
estimating the smallest distance.
Recently, Kim [31] et. al show the performance benefits of using
compression of out-of-core AABBs for collision detection of
polygon models that do not fit in main memory, namely they
show that the resources of the CPU can be used to compensate the
I/O lag of reading uncompressed data structures.

3. VIZIR
The VIZIR project sets out to develop new visualization and
interaction algorithms of massive out-of-core data. The 3D model
of study consists of approximately 700 laser scans of the Batalha
monastery, ~2 billion points, exceeding 100 GBytes.
Collision detection is an important interaction cue to help user
navigation in the virtual world. Unfortunately not much work
exists with solutions for collision detection with point clouds.
Before the full complexity of the model can be addressed, an
efficient and reliable collision detection solution is needed for
point clouds.
For this purpose a simple scenario was designed to evaluate
different user collisions that can occur whilst navigating and
exploring a 3D point cloud model.
In this scenario a subset of the model was chosen that enabled the
user’s polygonal avatar, which is represented as a point cloud for
collision detection purposes, to pass through open doors, walk
alongside walls, but is stopped when colliding with the point
cloud (Figure 1, 2).
In addition standard collision detection tests were carried out, and
collisions with points obtained from CAD models were also
tested.
In the next section we present our solution for efficiently detecting
collisions with point clouds.

Figure 1: First person view of the user in the scenario of

interaction whilst navigating the scanned Batalha monastery
model.

4. POINT CLOUD HIERARCHY
This section presents the data structures that the proposed
algorithm uses to find collisions in a large environment where 3D
models are described as point clouds.
First a uniform grid that divides the scene graph into N N N× ×
cubic cells of equal volume is used, thus building a grid of voxels.
Each voxel has a list of the objects and the points occupying that
region. To study the various user scenarios described in the
previous section the voxel containing the entrance to the
monastery was used (Figure 2). In a future scenario, each data
structure associated with a voxel could be compressed and
neighbour voxels to a user’s position loaded and uncompressed
into a LRU queue [32].

Figure 2: Walkthrough collision test scenarios between the Al

avatar model comprised of 3617 points (lower left) and the
587923 point cloud belonging to a single voxel.

To determine colliding objects at each voxel, the approach
presented in this paper use R-tree hierarchies of Axis-Aligned
Bounding Boxes, to find collisions between pairs of 3D objects
defined as clouds of points. Each object is represented by a R-tree
data structure in its own local coordinate system. The R-tree
hierarchy structure is used to filter out portions of the object that
cannot intersect.
The choice of bounding volume type influences performance of
the collision detection process. The implementation of the
collision detection algorithm presented in this paper uses axis
aligned bounding boxes because they are faster to intersect.
It was decided to use R-trees [30] to build bounding volume
hierarchies and organize 3D geometry of objects to improving the
performance of the collision detection process. R-trees are a good
choice for collision detection because first, at any level of the tree,
each primitive is associated with only a single node. Secondly, in
an R-tree all leaf nodes appear on the same level. Third, because
the depth of a R-tree storing n primitives is logm n , m is the
minimum number of children of a node.
The objects of each voxel are represented by an R-tree data
structure in its own local coordinate system (Figure 3) to speed up
the process of finding collisions. The R-tree is built, grouping
neighbouring points. The leaf nodes represent the points that
define the object. For two objects, it checks for collisions between
points which are in the neighbourhood, eliminating comparisons
with those that are far away.

Figure 3: Every object of each voxel is an R-tree of points.

5. COLLISION DETECTION ALGORITHM
This section presents a novel algorithm for determining
intersections between pairs of 3D objects defined as point clouds.
The approach presented is supported by an R-tree hierarchy of
axis-aligned bounding boxes and the Overlapping Axis-Aligned
Bounding Box to improve performance by reducing the number of
bounding volume intersections.
The collision detection approach uses axis-aligned bounding
boxes for four reasons: i) they are fast to intersect; ii) use less
memory; iii) hierarchies of AABBs are faster to build; and iv)
faster to update.
The points of an object are organized in a hierarchical tree of
bounding volumes (BV). To find if two objects are intersecting,
the collision detection manager makes a a recursive traversal of

two R-tree bounding volumes trees A and B. The approach
presented takes advantage of the OAABB and is implemented to
avoid visiting the same node several times to improve
performance. It visits the nodes of object A once. The OAABB is
an approach introduced by [29] to improve collision
detection performance. Consider two objects, A and B,
whose corresponding axis-aligned bounding boxes are
overlapping and therefore are candidates for collision. The
OAABB is defined as the volume that is common to two
axis-aligned bounding boxes (Figure 4).

Figure 4: The OAABB is shown for two point cloud models

intersecting.

Figure 5 presents the pseudo code of the novel approach.

Collide (A, B)
1:AABBB(A)=MB A AABBA(A)//update BV
2:if (AABBB(A) do not intersect AABBB(B))
 return
3:Determine OAABBB(A, B)
4:DescendRtree(B, OAABBB(A,B))
5:for each point P(B) finside OAABBB(A,B)
6: Update point P(B) into coord. system of A PA(B)
7: DescendRtree(A, OAABBA(A,B), PA(B))

Figure 5: Pseudo-code for finding two intersecting objects.

The collision detection algorithm first checks if objects A and B
are disjoint (line 1-2 in Figure 5). The bounding volumes of each
object are originally computed in the object’s local coordinate
system, AABBA(A) and AABBB(B), respectively. The
transformation matrix that converts the local representation of
object A into the local coordinate system of object B is defined as
MB A. The bounding volume of object A is updated to the
coordinate system of object B, by computing the cover axis-
aligned bounding box, AABBB(A). Once the bounding volumes of
each object are in the same coordinate system they can be checked
for overlap. If this pair of AABBs does not overlap, then the
corresponding two objects are not intersecting and the process
ends. If they overlap, then the system determines the Overlapping
Axis-Aligned Bounding Box, OAABBB(A,B) of the two objects
(line 3 in Figure 5), which is defined in the local coordinate
system of object B.
The next step of the collision detection process determines the
points from object B inside the OAABB (line 4 of Figure 5). As
mentioned before, the points of object B are organized in a
bounding volume R-tree. The points of B are stored at the leaf
nodes of the R-tree. By descending this R-tree, the points of object
B outside the OAABBB(A,B) are filtered out. Only points at the
leaf nodes inside the OAABBB(A,B) are candidate for collision.

The objects of object B inside the OAABB are transformed into
the coordinate system of object A, PA(B) (line 6).
Then, the collision detection algorithm descends the bounding
volume R-tree for object A (line 7 of Figure 5). In this step it finds
points of object A inside both the OAABB and points in close
proximity of object B.

6. EXPERIMENTAL RESULTS
This section presents the performance evaluation results of the
novel collision detection algorithm for point cloud models
described in this paper.

6.1. Using Points from CAD Models
This section shows that the proposed collision detection for point
cloud models is effective in determining collisions in real time. It
is also shown that it compares favorably with other approaches
that determine collisions with a model´s polygons instead of with
a model´s vertices.
To evaluate this, two case studies were designed. The first case
study, evaluates the performance of the system with a real
maintenance application, with interpenetrations between 3D
models. The second case study, tests the performance of the
collision detection algorithm for very close proximity when there
are no intersections.
The first case study represents user operations to assembly the
components to build a digger mechanism (Figure 6, left). For this
application, it is necessary to allow the user to interactively carry
out assembly and disassembly operations on the virtual prototypes
in a realistic way. The three-dimensional virtual prototypes need
to simulate physical properties realistically and interactively.
The functional modules used by this application are collision
detection, constraint recognition, constraint satisfaction, constraint
management and constraint motion. The automatic constraint
recognition process uses collision detection services for various
purposes such as (a) to provide collision response to stop object
penetration, (b) to identify colliding parts to support the
recognition of assembly relationships between the assembly parts,
(c) to simulate constrained motion, (e) to simulate kinematics
motion and sliding, thus assisting users to carry out precise object
manipulations.

Figure 6: Test case scenario of: left) a Digger model; right) the

grid scene.

The second example is a scene with two grids from a collision
detection benchmark suite [31] (Figure 6, right). This
benchmarking system is used to to compare pairwise static
collision detection algorithms for rigid objects. This benchmark
generates a number of positions and orientations for a predefined
distance in close proximity and no interpenetration. It does not test

performance of collision detection approaches when intersections
occur.
Table 1 presents the complexity for the digger and grid case
studies.
The digger scenario has five parts that are assembled in a
sequence of five hundred and seven intersecting steps. At each
step it is found an intersection between parts of the scenario that
are recognized and assembled appropriately. This experiment was
conducted by the user executing the required assembly operations.
The executed path was recorded and it was repeated only the
intersecting steps to obtain the data values.
The second scenario has two equal grid objects defined each one
of them with forty thousand and eighty points. The benchmark
generated six thousand and thirty eight steps that positioned the
two objects very close to each other, but not touching each other.
With these two case studies, the performance of the novel
collision detection approach for cloud point models is evaluated.

Table 1: Complexity of the case studies.
 Digger Grid

Number of Objects 5 2
Number Points 7356 46080
Number of steps 507 6038

All the experiments run in an Intel Core 2 Duo T7300, 2GByte of
RAM memory at 2GHz.
The execution times, presented in this section, include only the
time to determine collisions and do not include time for rendering
or motion simulation.
Table 2 presents these times. The proposed collision detection
algorithm for point cloud models achieves interactive rates in real
industrial applications as desired.

Table 2: Collision detection time to find intersecting surfaces.

Time in milliseconds per
step to determine intersections

3D models of
Point Clouds

Digger 0.03
Grid 0.21

The time to determine the collisions between two objects depends
on: (1) the cost of intersecting and updating bounding volumes;
and (2) on the number of such operations. Table 3 shows the
number of operations executed to determine intersections. This
table shows that the number of bounding volume updates is
significantly lower than the number of bounding volume
intersections. The update of a bounding volume is a more
expensive operation than a bounding volume intersection.

Table 3: Operations per step to determine intersections.
Number of operations Digger Grid
AABBs tests 149 634
AABBs updates 26 131

Table 4 shows the time and the number of operations executed to
run the two test cases with the same collision detection algorithm,
but it does not use the OAABB concept. This table presents
results for the same traversal scheme to find collisions using only
R-Trees.

Table 4: Traversal scheme for collision detection using R-Trees
and not using the OAABB.
 Digger Grid

Time to find intersections (ms) 0.15 3.79
Number AABBs tests 230 4810
Number AABBs updates 174 4625

The performance of the collision detection approach proposed is
better when it uses the OAABBs.
From comparison of Tables 3 and 4, it is possible to see that the
number of bounding volume checks and updates is reduced
significantly by the use of the OAABB.
It is also important to compare the performance of this algorithm
with other collision detection systems, although public collision
detection toolkits are supported by polygonal models. Table 5
presents the times obtained for the two case studies with the S-
CD, PQP, RAPID, OPCODE and Dop Tree collision detection
toolkits. The times presented were obtained in the determination
of the first intersecting triangle.

Table 5: Time to find first triangle intersection.
Time to find first

triangle intersection
(milliseconds)

Digger Grid

PQP 0.94 8.99
RAPID 0.36 6.02
OPCODE 0.08 0.61
Dop Tree 1.26 7.09
S-CD 0.25 2.29

Tables 2 and 5 shows there is an improvement in performance for
the collision detection approach supported by point cloud models.
This improvement can be explained by the fact that the novel
approach presented in this paper is being supported by point cloud
models and, in this way, it does not make triangle checks to find
intersections, which is an expensive operation. For this reason,
there is a difference on the number of intersections determined
with a collision detection using polygonal models and the
approach described in this paper. However, for the digger case
study there was only 1,1% different answers reported, which is a
low error probability for the new collision detection algorithm for
point cloud models.

6.2. Using Points from Scanned DataSets
Collision detection algorithms designed for polygonal and CAD
models can rely on the concept of collision between subset
surfaces. This has the advantage that searches for instance can be
faster as we are dealing with only subsets rather than the entire
model. In addition since we are typically only interested in
detecting the collision between surfaces, a small standard
tolerance constant is used in the literature. However point clouds
derived from laser scans present two main differences: they are
not segmented, and points are only samples of the surface, making
an actual collision between points a less likely event. Point based
rendering algorithms such as QSplat [33] change the thickness and
shape of a point splat to better convey visually the underlying
surface while viewing in close range. Similarly we use the average
closest point distance of a point divided by two to create bounding
boxes at point level that ensure collision detection of the surface
they represent. In addition for each voxel we use an octree to
segment points into smaller working sets.

As mentioned in section 3, we created an interactive system to
study various collision scenarios using the Batalha Façade Model.
This model was obtained using a laser scan and contains 587923
points. The avatar is the Al model using 3617 points and walks
along a predefined path of 40 seconds used to benchmark our
collision algorithm and depicted with a white dashed line in Fig.
2.
We performed several partitions of the model into surfaces using
an octree data-structure with different levels (4 joining cells of the
first level, 8, 64, 512, 4096 cells). The resulting non-empty cells
of the octree were used to create an R-tree collision structure of
degree 4 per each cell. We run our experiment on a laptop
equipped with a Core 2 Duo T9300 2.50 GHz Cpu, 4 Gb of RAM
memory, a NVIDIA 8800M GTX graphic card with 512 Mb and
running Windows 7 64 bits. Our walkthrough application was
implemented in C++ using GLUT and OpenGL libraries.
Table 6, presents the results of our algorithm during the
navigation of the avatar model along the predefined path.
The first column defines which partition was used for the model
resulting into several surfaces (i.e. set of points organized in a R-
tree) presented in the second column. We also present the memory
used by the application during the path traversal and the memory
size of the R-tree data structure. Finally, the average framerate of
the walkthrough as well as the pre-processing time needed to
create the collision structure are shown. We note that to run the
application for an interactive exploration, we only need a few
seconds to load the R-tree as shown in the last column of Table 6.

Table 6: Memory and Timing for several subdivision of the
Batalha Model.

Model

#RTrees
or

Surfaces

App Mem
(Mb)

Rtree
Mem.
(Mb)

Avg.
Fps

Pre
Processing

Time (h:mm)

Load
RTree

Time(s)
Sub 4 4 170.10 49.03 18.36 4h00 4.67
Oct 8 8 175.93 59.02 19.60 2h00 6.39
Oct 64 12 175.67 56.81 19.86 1h58 6.09

Oct 512 31 173.37 52.08 19.57 1h15 5.62
Oct 4096 95 172.78 52.66 23.78 0h25 5.34

Our application was designed to run a synchronized rendering
loop of 30 fps which is sufficient for desktop based real-time
visualization. We can notice that our approach provides an
average frame rate from 16 up to 24 fps with collision detection
(Figure 7). The penalty of the collision test is strongly related with
the partition of the model. We should notice that the collision test
is defined between the avatar and the scene points. Our
experiments have shown that creating more R-trees (one for each
non-empty subdivided octree leaf node), segments the object in
correspondingly more surfaces with less triangles (Table 6),
however as the octree subdivision is not deep (typically level 4),
very little extra memory is necessary than when using fewer R-
trees with less surfaces and more triangles. More R-Trees with
less triangles enable fewer run-time tests and faster average frame
rate (Figure 7). In addition, the preprocessing time when using
more R-Trees is significantly less as there are less triangles to
consider in the subdivision and grouping steps. This marginal
increase in memory makes us believe that the approach is suitable
and scalable to handle large point data-sets. Figure 7 depicts the
variation of the framerate along our 40 second path using the
different partitions. The black dashed line corresponds to the
framerate obtained with the walkthrough of the path without
collision detection. Figure 7 shows that even with collision

detection the navigation is still interactive and the cost of the R-
tree traversal is variable due to the spatial partition of the R-tree
structure. Depending of the octree level used for the model
subdivision into surfaces, the different R-tree do not have the
same depth. However the collision detection is faster using
smaller point sets, as each R-tree has less primitives to test (Figure
7). This is why we obtain the best results with the surface partition
based on 4096 cells of the octree (orange line) whith an average
framerate of 24 fps. These results shows that the partition of the
model improves the collision test performance providing
interactive collision detection with a model of 587923 points.

.
Figure 7: Application framerate when Al model is walking along

the path.

7. CONCLUSIONS AND FUTURE WORK
This paper presents a novel approach for collision detection of
point clouds. There are many approaches and algorithms to
determine collisions between 3D polygonal models. There is very
little in the literature about collision between 3D point clouds
models. However, point clouds have become a popular shape
representation. One of the reasons is due to the fact that 3D
scanning devices became affordable and widely used for projects
like VIZIR.
The proposed collision detection approach divides the scene graph
in voxels. There is a bounding volume R-Tree for each object in a
voxel that organizes spatially its point cloud.
To improve the sequential performance, the collision detection
manager also uses the overlapping axis-aligned bounding box
approach. The OAABB is used to filter out bounding volumes
from two R-trees that cannot intersect. It was shown that the use
of the OAABB reduces significantly the number of bounding
volume checks and updates.
Experimental results show that this implementation is effective in
determining interactively intersections between 3D models. In
particular we show the improvements that R-trees can offer over
just using AABB, we believe that these results can present
benefits in an out-of-core setting, since the solution for polygon
models developed by Kim et.al [31] al uses AABB.
This collision detection toolkit is publicly available for download
at http://w3.ualg.pt/~mfiguei/.
For future work we want to integrate the collision detection
manager presented in this paper in the VIZIR prototype that is

being developed and evaluate its applicability to very large
environments.
In the context of laser scan data, we found that using the average
closest point distance of a point divided by two to create the
bounding box around each point works well in general. However
the sampling density of such models is not the same everywhere
thus making the underlining surface more porous for collision. We
tested a more conservative approach that used the average closest
point distance to ensure overlap between point boxes. This test did
not interfere with the framerate. However, traversing tighter areas
such as the door of the Monastery became more difficult without
colliding. In the future we would like to design an adaptive
bounding box size to better handle point sets with heterogeneous
sampling density.
We would also like to test the performance of the collision
detection algorithm using manually defined point subsets that
spatially approximate more closely the underlying real world
surfaces.

8. ACKNOWLEDGMENTS
The authors would like to thank Instituto de Gestão do Património
Arquitectónico e Arqueológico (IGESPAR) and "Artescan,
Tridimensional Digitization" for the model of the Batalha
cathedral.The work presented in this paper was funded by the
Portuguese Foundation for Science and Technology (FCT), VIZIR
project grant (PTDC/EIA/66655/2006). In addition, Bruno Araújo
would like to thank FCT for doctoral grant reference SFRH/ BD/
31020/ 2006.

REFERENCES
[1] Oliveira, J., Oliveira A., Boavida, J. Catarino, L., Araújo, B.,
Pereira, J and Jorge J, 2009. “Value added 3D modelling of Laser
scanned and photogrammetric data”, Proc. of 17º Encontro
Português de Computação Gráfica.
[2] Bradshaw, G. and O’Sullivan, C., 2004. “Adaptive medial-axis
aproximation for sphere-tree construction”, ACM Transactions on
Graphics, 23, 1–26.
[3] Van Der Bergen, G., 1997. “Efficient Collision Detection of
Complex Deformable Models using AABB Trees”, Journal of
Graphics Tools, 2, 4, 1-13.
[4] Terdiman, P., 2001. “Memory-optimized bounding volume
hierarchies”, http://www.codecorner.com/Opcode.pdf.
[5] Gottschalk, S. , Lin, M. and Manocha, D., 1996. “Obb-tree: A
hierarchical structure for rapid interference detection”, Proc. of
ACM Siggraph'96, 171-180.
[6] Hudson, T., Lin, M., Cohen, J., Gottschalk, S. and Manocha,
D., 1997. “VCollide: Accelerated Collision Detection for VRML”,
Proc. of VRML.
[7] Larsen, E., Gottschalk, S., Lin, M. and Manocha, D. 1999.
“Fast Proximity Queries with Swept Sphere Volumes”, Technical
report TR99-018, UNC.
[8] Gregory, A., Lin, M.C., Gottschalk, S. and Taylor, R., 1999.
“A Framework for Fast and Accurate Collision Detection for
Haptic Interaction”, Proc. of the IEEE Virtual Reality, 38–45.
[9] Klosowski, J., Held, M., Mitchell, J., Sowizral, H. and Zika,
K., 1998. “Efficient Collision Detection using Bounding Volume
Hierarchies of k-DOPs”, IEEE Trans. On Visualization and
Computer Graphics 4, 1, 21-36.

[10] Zachmann, G., 1998. “Rapid Collision Detection by
Dynamically Aligned DOP-Trees”, Proc. of IEEE Virtual Reality
Annual International Symposium; VRAIS, 90–97.
[11]Ehmann, S. and Lin, M., 2001. Accurate and fast proximity
queries between polyhedra using convex surface decomposition.
Computer Graphics Forum. 20,500–10.
[12] He, T., 1999. “Fast collision detection using QuOSPO trees”,
Proc. of the Symposium on Interactive 3D graphics, 55–62.
[13] Zyda, M., Osborne, W., Monahan, J. and Pratt, D., 1993.
“NPSNET: Real time vehicle collisions, explosions and terrain
modifications”, The Journal of Visualization and Computer
Animation, Vol. 4, No. 1, 13-24.
[14] García-Alonso, A., Serrano, N. and Flaquer, J., 1994.
“Solving the collision detection problem”, IEEE Computer
Graphics and Applications,V14,No.3, 36-43.
[15] Zhang, D., Yuen, M., 2000. “Collision detection for clothed
human animation”, Proceedings of Pacific Graphics ’00, 328–
337.
[16] Ganovelli, F., Dingliana, J., O’Sullivan, C., 2000.
“BucketTree:Improving collision detection between
deformableobjects”, Proceedings Spring Conference on Computer
Graphics SCCG ’00.
[17] Hubbard, P. M., 1996. “Approximating polyhedra with
spheres for time-critical collision detection”, ACM Trans.
Graphics, Vol. 15, No. 3, 179-210.
[18] Kitamura, Y., Ahuja, H. and Kishino, F, 1994. “Coarse to
fine collision detection for real time applications in virtual
workspace”,Intern. Conference on Artificial Reality and Tele-
Existence,147-157.
[19] Luque, R.G., Comba, J.L.D. and Freitas, C.M.D.S., 2005.
“Broad-Phase Collision Detection Using Semi-Adjusting BSP-
trees”, Proc.s of the 2005 symposium on Interactive 3D graphics
and games,179–186.
[20] Figueiredo, M., 2009. “Surface Collision Detection for
Virtual Prototyping”, Proc. of the IADIS International Conference
Computer Graphics, Visualization, Computer Vision and Image
Processing 2009, 65-72.
[21] Teschner, M., Heidelberger, B., Mueller, M., Pomeranets, D.
and Gross, M., 2003. “Optimized Spatial Hashing for Collision
Detection of Deformable Objects”, Proceedings of Vision,
Modeling, Visualization, 47–54.
[22] Eitz, M., and Lixu, G., 2007. “Hierarchical Spatial Hashing
for Real-time Collision Detection”, International Conference on
Shape Modeling and Applications.
[23] Baciu, G. and Wong, S., 2003. “Image-based Techniques in a
Hybrid Collision Detector”, IEEE Trans. On Visualization and
Computer Graphic, 9, 2, 254-271.
[24] Knott, D. and Pai, D., 2003. “ClnDeR: Collision and
Interference Detection in Real-time using Graphics Hardware”,
Proc. of Graphics Interface 2003, 73-80.
[25] Govindaraju, N., Redon, S., Lin, M. and Manocha, D., 2003.
“CULLIDE: Interactive collision detection between complex
models in large environments using graphics hardware”. Graphics
Hardware 2003, 25–32.
[26] Yoon, S., Salomon, B., Lin, M. and Manocha, D., 2004. “Fast
Collision Detection between Massive Models using Dynamic
Simplification”, Eurographics Symposium on Geometry
Processing, 136-146.
[27] Raabe, A., Hochgurtel, S., Anlauf J. and Zachmann, G.,
2006. “Space-efficient FPGA-accelerated collision detection for

virtual prototyping”, Proc. of Design, Automation and Test in
Europe, 206-211.
[28] Klein, J., Zachmann, G., 2004. “Point cloud collision
detection”, Computer Graphics Forum (EUROGRAPHICS), 567–
576.
[29] Figueiredo, M., Boehm, K. and Teixeira, J., 1993. “Precise
Object Interactions using Solid Modeling Techniques”, Proc. of
IFIP TC 5/WG 5.10 Conference on Modeling in Computer
Graphics, 157-176.
[30] Guttman A., 1984. “R-trees: A dynamic index structure for
spatial searching”, Proc. of the ACM SIGMOD International
Conference On Management of Data, 47-57.
[31] Trenkel, S., Weller, R. and Zachmann, G., 2007. “A
Benchmarking Suite for Static Collision Detection Algorithms”,
International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision (WSCG), Czech
Republic.
[32] Kim, T., Byun, Y., Kim, Y., Moon, B., Lee, S. and Yoon, S.,
2010. “HCCMeshes: Hierarchical-Culling oriented Compact
Meshes”, Proc. of EUROGRAPHICS.
[33] Rusinkiewicz, S. and Levoy, M., 2000. “QSplat: A
Multiresolution Point Rendering System for Large Meshes”, Proc.
of SIGGRAPH,343-352.

About the author
Mauro Figueiredo is Professor at the Universidade do Algarve,
Instituto Superior de Engenharia, Faro. His contact email is
mfiguei@ualg.pt.

João Oliveira is completing his post-doc at the INESC-ID research
institute in Lisbon. His contact email is joao.oliveira@inesc-id.pt

Bruno Araújo is a PhD Student at the Instituto Superior Tecnico
from Technical University of Lisbon and he is a researcher at
INESC-ID in the Visualization and Intelligent Multimodal
Interfaces Group. His contact email is bruno.araujo@inesc-id.pt.

João Madeiras Pereira is Associate Professor at Technical
University of Lisbon (IST), Department of Computer Science. He
is also the Head of Visualization and Simulation Group at the
research institute INESC-ID. His contact email is jap@inesc.pt .

