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Figure 1. The presented hybrid approach uses irradiance caching to approximate smooth indirect lighting and path tracing for 

fuzzy effects such as soft shadows or glossy reflections. All screenshots where rendered at 1920x1200 resolution on a GTX 260 

under 3 minutes. 

1. ABSTRACT 

This work presents an approach for biased photorealistic 

rendering on GPUs. The key idea is to combine irradiance caching 

with coherent adaptive path-tracing to maximize performance of 
the SIMD style execution. 

Key words:  Global illumination, photorealistic rendering, GPU 

computing. 

2. INTRODUCTION 

For the last decade Graphics Processor Units (GPUs) have made a 

great advance and became fully programmable processors. Since 

pixel shader 2.0 appeared, ray-tracing community has seen several 

successful implementations that used GPUs to perform ray-

tracing. With the introduction of CUDA programming model this 

area of research experiences further growth. As more APIs are 

becoming available one can expect to see an increasing interest in 

this area. We have started our research at the point when CUDA C 

was the only option, however since programming model is shared 

between CUDA C / OpenCL and DirectX Compute APIs, we can 

generalize our results, and make some HW independent 
conclusions.  

Several unbiased GPU photorealistic renderers are available now 

(IRay, Octane, Arion). However, we find that unbiased solutions 

have two significant drawbacks. Unbiased approaches usually 

perform computations in a brute-force manner. This means, that 

algorithmic complexity is higher, and in practice, unbiased 

approaches may use up to an order of magnitude more rays than 

alternative algorithms (such as irradiance cache). The second 

problem comes from a highly irregular nature of ray-tracing itself. 

Although each ray can be processed in parallel, the workload and 

data access pattern per each ray can be very different. This can 

lead to inefficient resource utilization. Although algorithmically 

more efficient biased approaches are more difficult to implement 

on GPU because of their complex nature and unbalanced work 

distribution. Our paper presents the research that we have 

performed on GPU efficiency for ray-tracing. We present a global 

illumination pipeline that uses irradiance cache with path tracing 

to quickly compute smooth indirect illumination, and soft 

shadows / glossy reflections.   

3. RELATED WORK 

3.1 GPU ray-tracing 

Purcell et al. in [1] proposed to implement ray tracing pipeline in 

a set of fragment programs. Uniform grid has been used as an 

acceleration data structure due to simplicity. Data streaming was 

arranged so that a ray was generated within one kernel (this was 

implemented using a fragment program executed over a full 

screen quad), second kernel would perform grid traversal. If the 

ray hits a voxel with triangles, it is passed to a ray-triangle 

intersection kernel. If the intersection is not found, it is passed 

back to the grid traversal kernel. To manage the state of a ray 

(traversal, intersection, and shading) stencil test was set up 

respectively. The simplicity of this approach is appealing even 

today. It allows easier debugging, along with a more focused 

performance bottleneck analysis.  

 Foley et al. in [2] suggest two alternative approaches ray tracing 

kd trees. Since GPUs don‟t natively support stack, the authors 
suggest implementing one of the following techniques: 

1) Modify kd tree nodes to support a reference to the parent 

node. This reference is used whenever a ray needs to 

backtrack to the parent node and to process a different sub-

tree. 

2) Traverse a kd tree until a non empty leaf is found. However 

if a ray doesn‟t intersect any triangles within this leaf, ray‟s 

origin is modified to skip the same leaf. The kd tree traversal 

is restarted and the whole process is repeated until 

intersection is found or the ray exits the scene. 

Horn et al. in [3] suggest a modification of the restart algorithm. 

The idea is to keep a short stack in registers and resorting to 

restarts in fewer cases.   

For bounding volume hierarchies Thrane et al. in [4] have shown 

the stackless traversal for efficient GPU implementations. Each 

leaf stores an escape index to the corresponding node as shown in 
Figure 2.  



 

Figure 2 BVH structure for stackless traversal. 

3.2 GPU Global Illumination 

Wang in [5] presents an efficient approach for the global 

illumination using photon mapping on GPU. The key aspect of 

this work is to use irradiance cache with photon mapping and final 

gathering to quickly compute smooth indirect illumination. Direct 

lighting is computed using simple ray tracing and supports hard 

shadows from point light sources. 

In [5] irradiance cache points positions were determined from the 

geometry discontinuities. Quad tree was used for adaptive 

subdivision to determine irradiance cache points positions. To 

evaluate the discontinuities, geometry metrics (screen space 

discontinuity in normals or positions) have been introduced. If the 

Quad tree corner point's difference exceeds certain threshold, then 

the subdivision of this node is required, otherwise no further 

subdivision is required. The similar approach was used in [6], but 

without final gathering. Direct illumination was computed with 

ray tracing and indirect - with photon mapping. This algorithm 

works well for caustics but produces noisy results for indirect 
lighting. 

In [7] photon mapping was used to compute the full light 

equation. The drawback of this approach is strong low-frequency 

noise and dark edges. The low-frequency noise is a general 

problem of photon mapping. It can be removed with a final 

gathering step or filtering in object space. Dark edges appear on 

the borders of geometry because light is gathered only from the 

half of the disc but the result value divides on the area of the full 

disc.  

Both filtering and final gathering introduce additional bias. Also 

we consider that final gathering has difficulties when two surfaces 

lie close to each other and there is a lack of photons in the scene. 

To eliminate the coming artifacts, the more complex and slow 

secondary final gathering should be used (as described in [8]).  

So, approaches from [5] and [6] may be a good choice for an 
interactive rendering but not for a photo realistic image synthesis.  

McGuire and Luebke used in [9] the combination of the 

rasterization for direct lighting and CPU-based photon tracing 
with GPU-based photon splatting for indirect illumination. 

4. RAY TRACING BOTTLENECK ANALYSIS 

A naïve implementation of a ray tracer kernel will most likely 

yield poor results. To get the maximum out of any architecture a 

deep analysis of underlying HW is required. A good starting point 
with a focus on ray-tracing would be [10].  

The naïve kernel that traverses spatial subdivision structure, does 

ray-primitive intersection and shading, shows the following signs 

of illness: 

1) High register count.  

2) Visual profiler shows 90% bottleneck in “instruction” unit. 

3) Extreme amounts of local memory spilling 

4) Divergent branching counter spikes. 

These four issues in fact are tightly interleaved. They are causing 

a shifting bottleneck from instruction throughput to being memory 

bound.  

1) Register count directly affects HW occupancy. Occupancy is 

the ratio between threads running on hardware to maximum 

possible threads amount. Occupancy can serve as a 

performance metric as well as a bottleneck indicator. 

2) HW resources such as registers or shared memory are 

limited. Since all threads run in parallel, HW scheduler has to 

make sure there are enough resources for the launched 

threads.  

3) Register count indicates the amount of registers that compiler 

allocates per thread. 

4) Given an X registers per streaming multiprocessor and Y 

registers allocated by the compiler, the total amount of 

threads that can coexist on the streaming multiprocessor is X 

/ Y. In particular NVIDIA Tesla 10 architecture has 16 * 

1024 32bit registers per Streaming Multiprocessor. Thus a 

register count of 32 will leave room for no more than 512 

threads. 

With high register count exploding it is expected to observe poor 

HW utilization but this is not the final problem. GPUs rely on 

large scale threads parallelism to cover memory access latency. 

Poor occupancy can turn around and become a memory 

bottleneck. 

Compiler will try and lower the register count by pushing and 

popping data into local memory. However local memory has the 

same latency as global memory. Analyzing CUDA PTX code one 

would local store and local load instructions happening repeatedly 

within a loop. This increases bandwidth pressure, and in addition 

to poor latency hiding can make application memory bound.  

And finally divergent branching spikes are a sign of... divergent 

branches. When a block of threads executes  it can diverge in two 
ways: 

1) Different warps follow different code paths. This is perfectly 

fine, because it means no additional overhead except for 

condition evaluation.  

2) Different threads within a warp follow different code paths. 

This for example can happen as soon as a single ray from a 

warp finds a non empty leaf and starts ray-triangle 

intersection. In this case HW will generate additional warp 

that will execute the code path. Partly threads will be masked 

out. The warps will be merged together as soon as the code 

paths merge back together. 

4.1 Proposed ray tracing pipeline 

Removing the bottlenecks can be tricky so we decided to 

implement a simple divide and conquer strategy. We split the ray 
tracing pipeline into the following stages (as shown in Figure 3): 

1) Ray generation kernel. This can be a kernel that generates 

eye rays or secondary rays. Rays are packed into a linear list; 

direction and origin are stored in a structure of arrays 
fashion. 

2) Tree traversal kernel. At this stage all rays are traced 

through a kd tree using stack in local memory. The idea is 

that the tree depth is usually defined beforehand during tree 

construction. This allows us to conservatively estimate stack 

size to be no more than tree depth. That stack stores an index 



and tfar for kd tree. The output of this kernel is a list of non-

empty leafs indices. This list serves as input to the next stage. 

To avoid constant switches between kernels and extra 

overhead, we traverse the tree until a number of suitable leafs 

is found. They are all written to a pre-allocated buffer. The 

stack in local memory is lost after traversal kernel completes, 

so in case we can‟t afford to allocate enough memory to keep 

enough leaf nodes in it, we can resume tree traversal using 

“restart” logic.  

3) Ray-primitive intersection kernel accepts a list of rays as 

input along with a list of leaf candidates per each ray. If 

intersection was not found within leaf boundaries, then it 

sends the modified ray back to tree traversal stage. If the 

intersection point was found, then the ray is passed along. 

4) Shadow kernel generates shadow rays and checks light 

visibility. 

5) At shading stage we compute direct illumination with 

shadows. 

6) The goal of the material kernel is to generate secondary rays. 

Typically it would generate reflection and refraction rays. 

These rays are sent to traversal stage.  

7) Store result stage performs final light equation integration. 

 

Figure 3 Ray tracing pipeline 

This separation provides the following advantages: 

1) Complete register usage comprehension. While kd tree 

traversal can fit into 16 registers and achieve perfect 

occupancy, ray-primitive intersection consumes 32 registers 

per thread. On Tesla 10 architecture we can‟t do better than 

with ½ occupancy. Shading turned out to be the most register 

hungry kernel due to the shading model peculiarities. 

2) By reducing register pressure we have removed a significant 

portion of local stores and loads. 

3) We have removed a significant portion of divergent threads. 

In fact since traversal / intersection and shading are all 

different kernels, the only divergence on a warp level is due 

to different time spent within the kernel loops. 

There is still one remaining problem: varying workload per 

thread. Now, since we have different kernels, they serialize and 

intersection will not start until traversal is fully complete. This 

may well turn into waiting for a single thread that has the longest 

route through the tree. To reduce that further we implement a 

technique called persistent threads: each thread processes several 

rays instead of one. We divide the screen into blocks as shown in 

Figure 4 yet we launch a number of thread blocks that GPU can 

process in parallel. In this case each thread block has a fixed 

number of blocks to process. This is similar to ray pool described 

by Aila in [10], however the number of rays per each thread is 

fixed and we avoid using atomics. 

 

Figure 4. Screen divided into blocks. Blocks of the same color 

are processed by the same thread block 

Finally, after achieving a good performance of 50 Ms rays/sec on 

average we have combined the existing traversal – intersection 
kernels back, leaving just the shading outside. 

We can now pass leaf nodes between two stages through a short 

list in shared memory. Each thread has a few private leaf IDs 

stored in shared memory (it‟s indexable and essentially free to use 

instead of registers).  

Combining traversal and intersection into an uber-kernel with 

simple persistent threads management provides us with additional 

benefit of lesser kernel launch overhead, easier thread 

management. The uber-kernel is in general slightly (5-10%) faster 

than its separated analogue, and doesn‟t have any memory 

overhead. However both solutions are just variations of the same 
software load-balancing idea.  

5. SUGGESTED APPROACH 

For the fast global illumination solution a combination of 

distributed ray tracing and irradiance caching is commonly used. 

We suggest a similar idea: for fast and smooth indirect lighting we 

use irradiance caching technique as described in [11] and we use 

path tracing for other effects, such as soft shadows, glossy 

reflections and refractions, depth of field and motion blur [8]. The 

main motivation behind this step is to use simple iterative 

algorithm and avoid complex recursive nature of distributed ray 



tracing. On the other hand due to highly divergent nature of path 

tracing we avoid using it for full light equation evaluation and 
consider it only for special effects.  

 

However, this also increases the problem with the work 

distribution. The black circles in Figure 5 show simple regions 

that require several iterations for light integration to converge. 

The red squares show complex regions with soft shadows and 

reflections. While 10-20 iterations are enough for most pixels to 

converge to light equation solution, some areas of pixels require 

100-1000 iterations to eliminate noise. This problem is solved on 

the CPU by processing each pixel until sufficient quality is 

achieved. On the GPU, however, this presents a challenge due to 
of the unpredictable workload. 

 

Figure 5. Teapot inside the Cornell box, direct lighting only. 

  

5.1 Adaptive path tracing 

For adaptive path tracing we split our screen into tiles as shown in 

Figure 6. Within the tiles we use Z-curve indexing for all „per-ray‟ 

data (ray position, direction, and intersection info etc). This 

removes large address gaps for all pixels within a tile and enables 

an important bandwidth-saving optimization on NVIDIA 

hardware (coalesced memory reads and writes).  

We define TMAX to be a number of tiles that we can process in 

parallel. TMAX depends on the amount of memory that we are 

prepared to allocate. 

 

Figure 6. Z-Curve used to indexing pixels inside the tile. 

We mark all tiles as active in the beginning of the rendering and 

add all tiles to the “active-tiles” list. In the example pseudo code 

below we assume tile size is 16x16: 

var rays_per_pixel : integer; 

 

procedure Adaptive_Path_Tracing is 

  active_list: list of Tile; 

  active_array: array (0..TMAX-1) of Tile; 

  sz,i: inreger range 0..TMAX; 

  tile : Tile; 

begin 

 

  subdivide screen to tiles; 

  add all tiles to the active_list; 

  rays_per_pixel := 1; 

 

  while not active_list.empty(): 

     

    sz := min(active_list.size(), TMAX);    

    active_array[0..sz] := active_list[0..sz]; 

     

    Process_Tiles_On_GPU(active_array, \ 

                         sz, rays_per_pixel);     

     

    for i in 0..TMAX-1: 

      tile := active_array[i];  

      if not tile.finished(): 

        active_list.push_back(tile); 

    end for 

     

    if active_list.size() < TMAX * 0.5:     

      rays_per_pixel *= 2; 

 

  end while; 

 

end Adaptive_Path_Tracing; 

During the rendering process, some tiles finish earlier than the 

other. They are discarded from active_array and from 

active_list and replaced by new tiles from active_list 

if the last is not empty. When the number of active tiles is less 

than       , we double the number of rays per pixel.  

procedure Process_Tiles_On_GPU (  

  active_array array (0..TMAX-1) of Tile,  

  sz : Integer, 

  rays_per_pixel : Integer 

) is 

  tile_size : Integer; 

  rays_num  : Integer range 0..TMAX-1; 

begin 

 

  tile_size := 16*16; 

  rays_num  := tile_size*rays_per_pixel*sz; 

  assert (rays_num <= TMAX);   

 

  on the GPU: 

  generate initial rays from the eye \ 

                  according to the rays_per_pixel; 



  trace exactly rays_num rays (paths in fact); 

  sample result according to the rays_per_pixel; 

 

end Process_Tiles_On_GPU;      

 

For large resolutions, like 1920x1200 our approach allows a good 

balance between memory consumption, performance and GPU 

workload.  

Each tile is represented by a Tile structure. This structure is 

passed back and forth between CPU and GPU after each iteration. 

type Tile is record 

  index     : integer; 

  max_diff : float; 

  counter   : integer; 

end record; 

 

The „index‟ field is an offset to a group of 256 rays in a GPU 

memory. It is used when fetching rays and sampling the resulting 
color.  

To evaluate when a tile has converged we use the following 

approach: each ray accumulates partial sum of lighting integral 

into sumodd and sumeven for all odd and all even passes of the 

path tracing (normalized e.g. divided by total ray count). After 

each iteration we compute max_diff value – it represents the 

maximum difference (among all rays in a tile) between these 
partial sums as shown in pseudo code below: 

for i from 0 to 255 do: 

   diff(i) := ||summodd - summeven||c 

max_diff := max of all diff(i); 

Since we are using quasi Monte Carlo integration, we expect that 

integral should converge at some point. Though, there is no good 

estimate for the number of iterations, however, sumodd and 

sumeven should converge to the same value sum. This leads us to 

the conclusion that as soon as        –                where 

  is a certain threshold that represents error, than we can stop our 

integration process for this pixel. When the max_diff <   we can 

stop integration process for all pixels in the tile and discard that 

tile from the active_list.  

Finally counter represents the number of passes that have been 

completed already. 

5.2 Irradiance cache 

Our irradiance cache implementation is very similar to the Wang's 

implementation in [5].  For each pixel we compute a surface 

position and normal. We do that on the GPU. Next, we construct a 

quad tree in screen space as in [5]. We used an initial size of 32 

pixels both in horizontal and vertical directions. Each 32x32 quad 

is subdivided with a quad tree and geometry discontinuity is 

computed between quad tree nodes. When the discontinuity is less 

than a threshold, we do not perform further quad tree subdivision.  

The chosen pixels correspond to the irradiance cache points in 

object space. At each point we generate a set of rays to sample 

hemisphere and compute indirect illumination. To have more 

coherent groups of rays we subdivide hemisphere into sectors and 

generate       rays for each sector where    . We do that on 

CPU in tangent space. On GPU we transform directions from 

tangent to object space to get correct hemisphere sampling. Next, 

we construct a multiple-reference octree as described in [11]. 

We implement interpolation algorithm, quality metric and 

stackless octree look-up as described in [12]. It seems that 

stackless approach should be efficient on GPUs. However we find 

that multiple-reference octree is not the best solution.  

 

Figure 7. Multiple reference octree as described in [11]. 

 

The key advantage of the multiple reference octree is a stackless 

„root-to-leaf‟ look-up algorithm. To find all points in the given 

sphere we can traverse tree from the root to a leaf and there is no 

need in stack or recursion. But the price for such simplicity is 

multiple references: each point can be referenced from multiple 

octree nodes. During octree construction or point insertion, we 

need to add each irradiance cache point Pi to all octree nodes that 

intersect with sphere centered at Pi, with radius equal to the search 

radius. The number of references in this approach can be a 5x-10x 

times larger than the number of points. On GPU this leads to 

dependent texture fetches and cache trashing. In our 

implementation octree look-up costs as much as a ray-tracing part. 

We suppose that kd-tree Wang‟s approach from [5] will be more 

efficient than the multiple-reference octree from [11], this is one 

of the future research strategies. 



 

Figure 8. VRay; Core 2 Quad, 6600; 62 sec in 1024x768 

 

 

Figure 9. VRay; Core 2 Quad; 6600; 153 sec in 1024x768 

 

5.3 Complete solution 

We have experimented with separate kernel architecture. Our 

motivation not to use uber-kernels in this case was: 

1) Uber-kernels are bound by their most heavy part. For 

example, if we have a complex shading code, it can affect on 

the ray tracing performance and downgrade it; 

2) It is possible that several pixels require thousands of rays and 

all these rays for each pixel will be traced in series. We 

suggest a solution to trace them in parallel with different 

threads; 

3) Last but not least, for the complex code, like ray-tracing with 

different shading techniques and materials, separate kernel 

architecture is much more convenient than uber-kernel, 
especially for profiling and debugging reasons. 

At each bounce of path tracing we compute direct illumination by 

tracing shadow rays towards each light and look-up indirect 

illumination from the irradiance cache. To reduce octree look-up 

cost we trace several shadow rays for each shadow sample. This 

solution allows us to do less look-ups on the regions with complex 
soft shadows. 

 

 

 

Figure 10. Our Implementation; GTX260; 15 sec in 1024x768 

 

 

Figure 11. Our implementation; GTX260; 31 sec in 1024x768 

 

6. RESULTS  

Our ray tracing implementation runs with 30-50M rays per second 

on the „Conference Room‟ scene and GTX260 GPU. It 

corresponds to the other works related to GPU ray tracing: [10], 

[13]. We use a SAH kd tree to accelerate ray-triangle intersection. 

We compared our renderer with VRay on the simple scene both 

with direct and indirect illumination. Our implementation shows 

good performance scaling for large geometry and higher 

resolutions (Fig 8-11).  

VRay is a commercial renderer and we don‟t know exactly how it 

works, so it is hard to make a precise per-pixel image comparison. 

On the middle-level hardware our implementation performs up to 

4x times faster than VRay. As we did not pursue the aim to make 

a per-pixel comparison, Figures 9 and 11 are slightly different but 

our original image contains less visible noise. 

For the Dragon model irradiance cache construction takes 4 

seconds. For the simple scenes, like a teapot in Cornell Box, it 
takes less than 0.5 sec. 

All our Demos, videos, comparisons and screenshots can be found 

at http://ray-tracing.com (English) and http://ray-tracing.ru 

(Russian). 

http://ray-tracing.com/
http://ray-tracing.ru/


  

Figure 10.  

Figure 11.  

Figure 13. 1920x1200. GTX260; 181 sec 

Figure 14. 1920x1200. GTX260; 159 sec 

Figure 12. 1920x1200. GTX260; 144 sec. 
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