
An Efficient Slice-Based Water Simulation Approach for Breaking Waves

Chung-Nan Lee, Jyun-Ming Wu, Yan-Zheng Huang, Da-Jing Zhang-Jian

Department of Computer Science and Engineering National Sun Yat-sen University

ABSTRACT
The simulation of breaking wave has a computationally intensive

application. To reduce the computation this paper presents a slice-

based water simulation method for ocean breaking waves on

natural simulation by generating the 2D simulations and then

integrating these 2D simulation results into a 3D shape. We first

simulate a 2D wave by a 2D Navier-Stokes (NS) solver to obtain

the varying of ocean. Then, we propose a new reconstruction free

surface method via Volume of Fluid (VOF) to further reduce the

computation time and achieve better efficiency by using a linear

interpolation with noise function to construct a complete 3D

ocean simulation from these 2D simulations.

Keywords: Slice Method, Volume of Fluid, Breaking Wave

1. INTRODUCTION
Physics-based natural simulation of computer animation becomes

popular in recent years. The 3D graphics hardware has been

widely applied to various fields with the rapid progress of

multimedia system and virtual reality. In natural simulation, it was

difficult to render the ocean on the PC, due to the restriction of

computing power in the past. Fortunately, after the first graphics

processing unit introduced by NVIDIA in 1999 that integrating

transform, lighting, triangle setup/clipping, and rendering engines

is capable of processing a minimum of 10 million polygons per

second, as a result, the natural simulation and many other 3D

graphic applications become feasible. Speed and realism are two

mainly considerations in breaking wave simulation. For the game

purpose the speed is mainly concerned. For the physical research,

“realism” is very important due to users hope to get precise image

or results.

For ocean simulation one can use Navier-Stokes equations (NSE)

to describe the motion of incompressible fluid. NSE is viscous

Newtonian fluid, and can calculate the fluid motion accurately

and simulate the effect effectively. The breaking wave needs much

more calculation to simulate the fluid situation.

In addition, most of existing studies about real-time water

simulation cannot simulate breaking wave. The breaking wave

simulation spends a lot of time because it needs complex physical

calculation. In order to simulate the breaking waves in real time,

this paper proposes a slice-based fluid simulation, and combines

linear interpolation with noise function to construct a complete

3D fluid simulation. The goal of this paper is to get a fast

breaking wave simulation without loss of too much realism.

2. Related Work
Because the focus of computer animation is perceived by the

human eye that can be fooled the visual on clever in the movies or

games even if it is incorrect. Therefore, they often focus on real-

time simulation on current research. There are two types of fluid

frameworks Eulerian and Lagrangian for the ocean simulation. In

[2] a hybrid method, called particle level set method that

combines Eulerian with Lagrangian framework is proposed.

It is very important to get the free surface on the ocean simulation.

According to the definition of Kinetics, the stress of the tangent

direction sum is equal to zero. Assuming that the particle system

based on the Lagrangian framework has enough number of

particles, the particle will form automatically free surface. It needs

to obtain the free surface on Eulerian framework, with the

complicated calculation of boundary. Currently based on the grid

method, there are some methods such as MAC grid, level set,

particle level set, VOF, front tracking, ghost fluid, and height

field.

2.1 Height field

Ocean wave is a sine wave alike. Breaking waves are traditionally

modeled using sinusoidal and trochoidal functions [16]. It gets

height of the surface by the height field function. The height

function method doesn’t consider the eddy varying under the

water, and the simulation is fast and has good result in quality.

Height field has better effect when sea is calm, but the result is

worse for windy weather. There is one problem for height field

[8], when simulating the shallow water, due to it cannot generate

the breaking wave. Tessendorf [6] used statistical methods by the

oceanographer observation and fast Fourier Transform (FFT) to

obtain the results of breaking wave. Jensen and Golias [7]

introduced a new real-time level-of-detail deepwater animation

scheme, which uses many different proven water models.

Johanson [1] used Perlin nosie to simulate the details of ocean,

and presented an alternative technique called “projected grid”. For

the shallow water waves on a height-field, the wave equation in

[17] can be used to describe the fluid flow by the 2D NSE and

wave effects. In addition, a noise-based animation of detailed

fluid structures further improves the realistic appearance.

2.2 Breaking wave
When the weather is stormy or windy, the wave will overturn and

break. The breaking wave is very important for reality. The

breaking wave includes the spilling breaking, plunging breaking

and surging breaking.

If we can simulate the different kinds of breaking waves, the

simulation results will become more real. The height field can get

the real result and fast simulation, but the disadvantage is that it

cannot simulate breaking waves. Existing methods for breaking

wave use NSE to calculate accurately the varying of sea to

implement breaking waves. Unfortunately, the NSE is a set of

highly non-linear partial differential equations (PDE).

There are many methods for discrete the PDE in the literature (e.g.

finite difference [9], finite volume [18] and finite element [14]).

Stam [5] proposed the semi-Lagrangian approach to solve the

advection of NSE and simulate the varying of the 3D fluid. Foster

and Fedkiw [10] presented a general method for modeling and

animating liquids, and extended the object interaction mechanism

to provide control over the liquid’s 3D motion. Mihalef et al. [20]

developed a novel fluid animation control approach to control

breaking waves, and proposed the slice method to define the

shape of a breaking wave at a desired moment by the library

evolution of breaking waves. Irving et al. [4] proposed an

approach which optimizes the fluid simulations with tall and thin

cells, and also reduces the computational complexity for large

fluid volumes. Thürey et al. [12] presented a new method for

enhancing shallow water simulations by the effect of overturning

waves that make it possible to simulate scenes in real-time.

The wave simulation including the splashes and foam has an

important role in the visual representation of the breaking waves.

The particle system often specifies the splashes and foam

movement in 3D environment. Takahashi et al. [19] proposed the

control of the generation, vanishing and transition rule of splashes

and foam. Based on the particle model Thürey et al. [11]

presented a shallow water to achieve real-time by using a

smoothed particle hydrodynamics simulation. Wang et al. [13]

used moving particle semi-implicit (MPS) method, and using

fractional Brownian motion (fBm) 2D simulation to expand into

3D representation by giving motion variation.

Due to simulating the effect of breaking waves needs a large

amount of calculation and spends considerable time. Therefore,

this paper proposes a slice-based method to speed up the

simulation of breaking wave by using a new reconstructing

algorithm keeps the simulation of volume fraction of fluid in VOF

in 2D. Then it is expanded to 3D representation by combining

linear interpolation with noise function. The proposed algorithm

is effective in reducing the computation time.

3. THE PROPOSED METHOD
We proposed a slice-based method to get 2D simulation results

first and then combined them using a linear interpolation with

noise function to generate the new 2D simulation slices from

previous two 2D simulations. Because the linear interpolation will

cause unnatural result, the noise function is used to make the

motion and behavior look more natural. For the 2D simulation we

use NSE as the physical equation and solve free surface via VOF.

In addition, about the reconstruction of volume fraction in VOF

[15] one can improve by a moving interface reconstructing

algorithm, and use the project grid method in reducing

unnecessary computation in implementing the level of detail

(LOD).

The system architecture for the proposed ocean simulation is

given in Figure 1. It consists four parts including the grid

generation, wave simulation, particle simulation, and render

respectively. And the flowchart is given in Figure 2.

Grid
Generation

Ocean Wave

Wave
Simulation

Staggered
Grid

Particle
System

Render

NSE

Splash

Lighting
Bump

Mapping

2D
VOF

Expansion
to 3D

Reconstruction
of iso-surface

Figure 1：System architecture

Figure 2：The flowchart of the proposed method

3.1 Grid generation
We use finite difference schemes that can be described as non-

staggered or on staggered grids. In the same positions all the

scalar variables for the non-staggered grid are stored, and the

staggered grid the scalar variables (e.g. pressure and density) are

stored in the cell centers of the control volumes, whereas the

velocity or momentum variables are located at the cell faces.

Using a staggered grid is a feasible way to avoid odd-even

decoupling between the velocity and pressure. Odd-even

decoupling is a discretization error that can occur on collocated

grids and can lead to checkerboard patterns in the solutions.

3.2 Wave simulation
The main part we concern for the ocean simulation is the variation

of water wave. We can use 2D NSE to calculate the fluid varying,

and solve the problem of free surface using VOF. However, by

combining the linear interpolation with noise function one can

generate the new 2D simulation results between any two existing

2D simulations. Finally, we use an isosurface reconstruction

approach to obtain the 3D surface.

3.2.1 Fluid equation
The incompressible NS equation is used for the ocean simulation.

The NSE includes three types of forces, they are body forces (
g

F),

pressure forces (
p

F) and viscous forces (
v

F). The body forces act

on the entire water element. We assume only the gravity, GF
g

 ,

where  is density and G is the gravitational force (9.81m/s2).

The pressure forces act inwards and normal to the water surface,

so the pressure forces are defined as the negative (pF
p

).

The viscous forces are VF
v

2  according to the definition of

Newtonian fluid, where VL 1/ ,  is density, V is velocity

and L is dimension. Newton’s second law is used (mAF ) to

describe the motion. According to the AFFFF
vpg

 , we

can get the expansion as VpGA 2  . Assume that

density is uniform, the acceleration is  // 2VpGA  . The

varying velocity over time is      /2// 






  VpGVVtV .

This equation conserves the momentum. In addition, the equation

0 V describes a conservation of mass. The last two equations

together are referred to as the NSE. The NSE contains four terms:

force, advect, diffuse, and pressure. The steps of the NSE solver

are illustrated in Figure 3. We can solve the equation one by one.

Figure 3：The steps of the NSE solver

First, the simplest term is the external force f. These forces may be

either local forces (wind blow) or body forces (gravity). Here we

assume that the force does not vary considerably during the time

step. So, we can get the equation as     tftVttV  01 .The next

step is the diffuse term. It is for the effect of viscosity and is

equivalent to a diffusion equation. Viscosity is measure of how

resistive a fluid is to flow. We can get the equation by the finite

difference method as        /VttVtV 2

12  . The third step

solves for the effect of advection (or convection) of the fluid on

itself. The advection term is non-linear and cannot be

approximated by the finite difference method. Here, we use the

method of characteristics to solve partial differential equations.

All the fluid particles are moved by the velocity of the fluid itself

at each time step. It is necessary to calculate the velocity at a point

x at the new time tt  . So, we backtrace the point x through the

velocity field
2

U over a time t . This defines a path  sxp ,

corresponding to a partial streamline of the velocity field. The

new velocity at the point X is set to the velocity at its previous

location a time t ago. The equation is    txpVtV  ,
23 .The

final step is project term which is used to solve the pressure term.

According to Helmholtz-Hodge decomposition theorem, any

vector can be decomposed into a set of basis vector components.

So, we can get the equation puw  . The new velocity field w

with nonzero divergence to solve the NSE that involves three

computations to update the velocity at each time step：force,

diffusion, advection application. The velocity field u is free

divergence velocity, and p is the pressure field. If we apply the

divergence operator to both sides, then we obtain)(puw  .

Because the velocity field u is free divergence (0 u), the

equation can be simplified to pw 2 . The equation is a Poisson

equation for the pressure of the fluid. We can solve the equation

for p, and then use w and p to compute the new divergence-free

field u. So, the velocity equation of the final step is

    /
34

ptVtV  .

3.2.2 Free surface
The free surface is the most influential factor for reality. So the

classification of the free surface grid is used to distinguish the

location of free surface. It is called full cell when the grid contains

only liquid. The grid is located at the top of the free surface and

the grid that contains no liquid is called empty cell. In addition,

the grid that contains liquid and gas, and where at least one

neighboring grid is empty is called the surface cell. We should

determine whether the grid belongs to the above cells before the

surface reconstruction. If the grid is a full cell, one can calculate

the velocity according to the internal fluid field. On the other

hand, it does not need to calculate when the grid is an empty cell.

Besides, it should get the average density when the grid is surface

cell, then calculate density by internal fluid field equation,

  f
121
  , where

1
 and

2
 are the gas and liquid

density respectively, and f is the fraction of fluid in the grid. We

can get the free surface through the above description but the

premise is that the grid type has already been determined.

Therefore we have to determine the grid type using VOF, which

defines an additional variable in the computing grid called

fraction-of fluid function, f(x,z,t). The value of f is between zero

and one. The value “0” expresses an empty grid, and we defined

“1” as a full grid and “0~1” as a surface grid. Because the free

surface moves over time, the value f will change with the free

surface. The VOF gets the free surface through the definition of f

for each grid, and the f in each cell is transported by the advection

equation as 0u
t

 ff .

We reconstruct the free surface according to a moving interface

reconstructing algorithm [15], but the reconstructing algorithm is

only implemented on the closed boundary grid. Hence, we modify

the algorithm for the ocean simulation (non-closed boundary).The

grids whose value is between zero and one are first located. The

intersection of the surface of the boundary line and the grid is

called spot. The surface grids shown in Figure 4 have three types.

Each type includes four patterns according to the relationship of

the location of the surface grid and the adjacent grid.

Figure 4：Three types for the free surface grid

The grid (1)(2)(3) is the order index for surface grid as shown in

Figure 4. The grid I is the current boundary grid. Type 1 is

characterized by “linear” that the current grid and the adjacent

grid is a straight line parallel to the x axis or y axis. Type 2 is

characterized by “convex” that the current grid and the adjacent

grid are not straight but convex. Type 3 is characterized by

“concave” that the current grid and the adjacent grid are not

straight but concave. We define four different cases according to

the different types. In order to obtain the spot, we define Qi as the

boundary spot. P is the grid node that locates at the adjacency of

Qi. The variable ti is the reference value and is defined as follows.













axisy the toparallel is if, /

axis x the toparallel is if, /

iiii

iiii

i
QPyQP

QPxQP
t (1)

where Δx and Δy are the length of the grid x axis and y axis

respectively. We record the related information of each Qi,

including the number of spot, type and the coordinate of

iP  
ii PP

YX , . Assuming the volume fraction of fluid of the I surface

grid is fi, we can build volume fraction of fluid as listed in Table 1

according to the type of the surface grid. After obtaining ti one

can calculate the coordinate of spot  
ii QQ

YX , according to the spot

Qi as shown in Table 2.

Table 1：Volume fraction of fluid

The I grid type Keeping volume fraction of fluid

Type 1：Linear

Type 2：Convex

Type 3：Concave

 
iii

ftt 
1

2

1

iii
ftt 

1
2

1

  
iii

ftt 
1

11
2

1
1

Table 2：Formula of spot Q

The pattern of the I

type

Spot Q

iQ
X

iQ
Y

(a)

(b)

(c)

(d)

iP
X

iP
tX

i


iP
X

iP
tX

i


iP
tY

i


iP
Y

iP
tY

i


iP
Y

Assuming the boundary grid, i , is the volume fraction of fluid fi.

If the boundary grid is closed and the boundary is composed of

the boundary grids, we can obtain N equations. By solving these

equations one can obtain  Niti ,,2,1  and the coordinate of Qi

by tN+1 = t1. When the simulation has non-closed boundary, the

equation would be tN+1 ≠ t1. Hence, we should obtain the spot of

start gird before the operation. Here, we divide the start grid into

three types and seven cases. And we can obtain the t1 as shown in

Figure 5 by the equations of the different cases. We divide the

start grid into three types. Type 1 is “leftward”, and the adjacent

grid is located on the left start grid. Type 2 is located below the

start grid, called “downward”. Type 3 is located above the start

grid, called “upward”. The different types have different cases.

According to the different cases one can calculate t1 as shown in

Table 3.

Figure 5：The status of the start grid

Table 3：Formula of t1

 Type 1

(a)

(b)

(c)

  2/3 211 fft 

  21

2

2211 22 ffffft 

  232322 2121

2

2211  ffffffft

 Type 2

(a)

(b)

221

2

111 / ffffft 









21111 22 fffft 

 Type 3

(a)

(b)

   22121

2

1211 1/23 fffffffft 









  21211 212 fffft 

3.2.3 Expansion to 3D
The slice method can generate the different 2D simulations, one

can further integrate them to get a 3D shape. We can use the level

of detail(LOD) scheme because LOD involves decreasing the

complexity of a 3D object representation as it moves away from

the viewer or according other metrics such as object importance,

eye-space speed or position. Based on the LOD each patch will be

determined by the distance to the viewer, one can use the larger

grid on the 2D simulation when grid is farther away from the

camera.

In contrast to the slice method that needs to process many slices,

the proposed method only process some key slices. We apply

linear interpolation with noise function to generate the new 2D

simulations between two key slices. The formula is shown as

follows.

 
t

ik

PP
PP

jijk

jijti







,,

,,
, nj 1 (2)

 )('
1,,1,,

jNoisePPPP
jijijiji 

 (3)

where Pi,j is the i-th of 2D simulation result (outline), and the j is

the order of the boundary. Pi,j and Pk,j are the two 2D simulations

by VOF, and they need to interpolate 2D new slice
jti

P
,

 between

the i-th and the k-th simulation. By Eq.(2) which is the linear

interpolation one can obtain the value of the interpolation. But the

quality is insufficient, when only use the value of the interpolation

to generate the 2D simulation, so a noise function is integrated

into Eq.(3). The noise function makes the simulation more real.

The reconstructed surface may have aliasing and not smooth.

Therefore, we should add some techniques to make the surface

more smooth. Here, we use the Chaikin's algorithm to smooth the

reconstructed surface.

3.3 Particle simulation
The particle system is used to simulate certain fuzzy phenomena

on computer graphics. The particle status of splashes and foam is

very important for the ocean simulation. In this paper, we only

render the splash. We generate the particles according to the value

of curvature, and the new splash particle has its lifespan. Then we

update position over time. And the splash particles are rendered in

white. In this way, we can effectively visualize splashes.

3.4 Render
In this step, we use the lighting and texture operations for the

ocean simulation. The texture technique that we used is bump

mapping. Bump mapping perturbs the surface normal of the

object at each pixel, and is applied before the illumination

calculation. In addition, it has been proved an effective way to

improve the appearance of reality and not increase the complexity

of the geometric objects. The technique has already implemented

in the field of real-time graphics with the graphics hardware

progresses and the application of shading language. In order to

render the water, we should implement the reflective and the

refractive effects. Environment mapping can help us to render the

effect. One can calculate the normal vector to get the

corresponding environment texture. Then one can mix the texture

with water color and get the final color. The technique is easy to

implement by GLSL, and the result is more realism.

4. IMPLEMENTATION
The simulation of breaking wave has a lot of formulas that are

very complicated to implement for hydrodynamics. In this paper,

we use the finite difference method to describe the formula of

NES. Then, we can get the velocity at the center of each face of a

grid and the pressure at the center of a grid. According to the

correctness of velocity and pressure one can construct a flow field

and do the ocean simulation.

4.1 2D simulations

4.1.1 Initialization
Before the simulation, the computation domain can be represented

via a fixed rectangular grid aligned with a Cartesian coordinate

system. To initial configurations of space such as mesh size,

velocity field and pressure field, and prescribe initial conditions

for the 2D NSE, one can create an ocean wave by [20]. At first,

we denote the period, T , wavelength,  , and amplitude, A . If

the frequency,  /2w , and the phase-constant T/2  which

expresses speed, the surface displacement for a wave is given as

   twxAtxW  cos, . And the velocity components are given by

   
   twxeAtxv

twxeAtxu
wz

wz











sin,
cos, (4)

where z is the depth, and we can obtain the equation when time

is zero.

           







 xwAxwAxwAdxW 


6cos

8

3
2cos

2

1
2cos

2

1
0,

32
 (5)

4.1.2 Discretization
We expand the equation via the finite difference method because

the 2D simulation is driven by NSE, The NSE contains three

different applications of the symbol  . The three applications are

gradient, the divergence, and the Laplacian operators respectively,

as shown in Table 4.

Table 4：Three finite difference forms

Operator Definition Finite Difference Form

Gradient 






















y

p

x

p
p ,





















 

y

pp

x

pp jijijiji

2
,

2

1,1,,1,1

Divergence
y

v

x

u
V











y

vv

x

uu jijijiji








  2/1,2/1,,2/1,2/1

Laplacian 2

2

2

2

2

y

p

x

p
p











2

1,,1,

2

,1,,1

)(

2

)(

2

y

ppp

x

ppp jijijijijiji








 

The subscripts i and j used in the expressions in Table 4 is used to

discrete locations on a Cartesian grid, Δx and Δy are the size of

the grid in the x and y dimensions, respectively, and 2/1,,2/1 ,  jiji vu

are the location of staggered velocity components on a grid. This

discretization leads to an explicit finite difference approximation

of Eq.(3).

4.1.3 Boundary conditions and surface grid
Boundary condition is set on the boundary between the obstacle

and the water. Assume the obstacle is non-slip, one can make the

gradient of pressure equal zero on the boundary and the velocity

on the boundary is zero.

The pressure of the empty and surface grid are set to atmospheric

pressure, and the velocity on each of its faces shared with another

empty grid, which is set to zero and the velocity should satisfy the

conservation of mass. As shown in Figure 6, Type 1 shows the

velocity on four sides of the two dimensional surface grid. Three

of them are surrounded three sides by grids containing fluid. In

order to keep the conservation of mass, the velocity of air 2v set

to  1212 uuvv  . When the grid has two sides which face an empty

grid, it is type 2. Each open side velocity equals the velocity of

the side of the grid opposite it. And when the grid has three open

sides, it is type 3. The side velocity equals the velocity of the side

that opposites it

Figure 6：Setting the velocity on the free surface

4.2 GPU implementation
The efficiency is lower when only using CPU, because of the

complex operations for NSE. General-purpose computing on

graphics processing units (GPGPU) is the technique of using a

GPU, which typically handles computation only for computer

graphics, to perform computation in applications traditionally

handled by the CPU.

We utilize GPU to improve for the complicated operations. In the

GPU pipeline, the traditional end point of every rendering

operation is the frame buffer, a special chunk of graphics memory

from which the image that appears on the display is read. The

frame buffer can get is 32 bits of color depth, shared among the

red, green, blue and alpha channels. The data will always be

clamped to the range of [0;1]. Fortunately, OpenGL extension

provides 32-bit floating point values on GPUs. Each RGBA

channel of offscreen buffer supports 32-bit floating point values

for vector calculations. We commonly call the technique FBO.

Arrays in GPU memory are called textures or texture samplers.

Texture dimensions are limited on GPU, the maximum value in

each dimension is 2048 or 4096. The data elements which are

accessed from texture memory, one needs to choose a special

projection from the 3D world to the 2D screen. Pixels and texels

are one to one mapping. To choose an orthogonal projection and a

proper viewport, one will enable a one to one mapping between

geometry coordinates and texture coordinates and pixel

coordinates. To use a texture as render target to attach the texture

to the FBO, the FBO extension provides a very narrow interface

to render to a texture. Then we transfer data to a texture from

CPU to GPU. The operations that are calculated on GPU can be

achieved by shading language. The shading language divides into

two parts(vertex and fragment shader), and we can code

according to the requirement and transfer from GPU textures to

CPU arrays or render.

GPGPU can help us to do the complicated arithmetic, but one

thing should be noted. It is expensive to transfer data from GPU

to CPU. So, we must consider very carefully before doing

GPGPU. We calculate the two dimensional NSE solver on CPU

and GPU respectively. Table 5 lists the comparison of

computation time between CPU and GPU. Here we divide the

GPU process into three major items, the NSE fragment, texture

transmission and glReadPixels function. GPU spends most of

time on glReadPixels function. The computation time on CPU is

about 15.9 milliseconds and GPU is about 2 milliseconds. The

result is calculated on the grid size 100  100. It shows the

excellence floating-point operation of GPU.

Table 5： Computation time between CPU and GPU

Operation
Run NSE

fragment

Texture

transmission
glReadPixels

GPU
Less than

0.5ms
0.25ms 0.7ms

CPU 15.9ms

4.3 Results
We generate a 2D initial wave and the parameters 2 and 3w .

The grid size is 100 100. Figure 7 shows the 2D wave. The left

picture is at time 2.8 and the right picture is at time 9.5. The

experiments were run in PC with 3.4GHz Pentium IV CPU and

NVIDIA GeForce 8800GTS display card. The performance is

about 44.15 frames per second.

Figure 7：Snapshots of the 2D wave

The 3D simulation result is through combining with the different

2D results of the proposed algorithm. Figure 8 shows the result.

The advantage of the proposed algorithm is that users can choose

the 2D results to determine the variation of wave. Figure 9 shows

the FPS measurements for the different slice counts. These slices

would be uniformly distributed on the interval of z-axis grid size.

And the grid size is 100 100 50 and the number of triangles is

about 148000.

Figure 8：Snapshots of the 3D wave

9.62
8.2

7.11 6.31 5.61

0

2

4

6

8

10

12

2 3 4 5 6

FPS

Slice counts

Figure 9：FPS measurements for the different slice counts

NSE can be divided into four steps with the time complexity is

listed in Table 6. Project step uses the PCG method to reduce

both the space complexity and time complexity per iteration from

 2n to  m , where n is the grid size, m is the number of

nonzero entries of A , and  is the iteration times. Our algorithm

efficiency is competitive compared with the previous method of

the slice method [20]. In [20], the free surface is calculated by

CLSVOF. The result is more realism but needs more

computational time. In the proposed algorithm, we use VOF to

solve the free surface. The VOF method is known for its ability to

conserve the "mass" of the traced fluid. Although the reality is

less, the computational time is twice less than that of CLSVOF.

Table 7 lists comparisons of time complexity for the proposed and

the slice methods. We assume the time complexity of 2D NSE and

the surface reconstruction is  K , so the time complexity of the

proposed method and the slice method is  Kt and  Kh

respectively, where t is the number of key slice and h is the

length of z axis (ht ). Here we assume the length of z-axis on

3D space is fifty. The slice method needs fifty slices and the

proposed method would use 2~6 slices to expand 3D environment.

The computation time of the proposed method is faster than the

slice method. Although fewer slices would reduce the reality, the

work efficiency would increase. And the proposed method is more

flexible due to users can decide to control slices count. In order to

reduce aliasing which producing by linear interpolation, we add

the noise function to make the free surface more natural.

Table 6：Time complexity for different solutions of NSE

NSE Force Diffuse Advect Project

Method
Finite

difference

Finite

difference

Method of

characteristics
PCG

Time

complexity
 n  n  n  m

Table 7：Time complexity of the proposed method and the slice

method

Method
The proposed

method
The slice method

Time complexity  Kt  Kh

Computation time 5~9 frames/s 1 frame/s

We render the environment mapping, the reflective and the

refractive effect of the water by GLSL. The reflective and the

refractive effect of the water are mix environment texture with

water color. And we use bump mapping to increase the reality.

The technique is simple and yields good results. Figure 10 shows

the render effect. And Figure 11 increases the splash effect by the

particle system.

Figure 10：Render effect

Figure 11：Snapshots of the breaking wave

5. CONCLUSIONS
In this paper, we have presented a slice-based water simulation

method for ocean breaking wave on natural simulation. By

combining linear interpolation with noise function to construct a

complete three dimensional ocean simulation, one can reduce

computational time and achieve better efficiency. The proposed

algorithm can improve the computational time of the slice method.

And we also avoid the aliasing using linear interpolation with

noise function. The proposed method is more flexible to users,

because users can determine how many slices are used. Users can

generate simple ocean waves by a few slices, or complicated

ocean waves by more slices. No matter what users choose, the

ocean wave is still realism.

People can design the different ocean waves by the slice method,

but it would spend much time and resources. The proposed

method can speed up the computation time as fast as 9 times and

make the simulation efficiency. And this method still can reserve

the reality because it uses the noise function to increase the

variation of water.

6. REFERENCES
[1]. C. Johanson, “Real-time water rendering,” Master of

Science paper, Lund University, 2004.

[2]. D. Enright, S. Marschner, and R. Fedkiw, “Animation and

Rendering of Complex Water Surfaces,” Proc. of the ACM

Transactions on Graphics, vol. 21, no. 3, pp. 736–744,

2002.

[3]. D. Kim, O.Y. Song, and H.S. Ko, “A Semi-Lagrangian CIP

Fluid Solver without Dimensional Splitting,”

EUROGRAPHICS 2008, vol. 27, no. 2, 2008.

[4]. G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw,

“Efficient Simulation of Large Bodies of Water by

Coupling Two and Three Dimensional Techniques,” Proc.

of the ACM Transactions on Graphics, vol. 25, 2006.

[5]. J. Stam, “Stable Fluids,” Proc. of ACM SIGGRAPH ‘99, pp.

121–128, 1999.

[6]. J. Tessendorf, “Simulating Ocean Water,” Proc. of ACM

SIGGRAPH 2002 Course Notes 9 (Simulating Nature:

Realistic and Interactive Techniques), 2002.

[7]. L.S. Jensen, and R. Golias, “Deep-Water Animation and

Rendering,” In Gamasutra, 2001.

[8]. M. Kass, and G. Miller, “Rapid, Stable Fluid Dynamics for

Computer Graphics,” Proc. of the ACM Transactions on

Graphics, vol. 24, no. 4, pp. 49–55, 1990.

[9]. N. Foster, and D. Metaxas, “Modeling the motion of a hot,

turbulent gas,” In Proc. of SIGGRAPH ‘97, pp. 181–188,

1997.

[10]. N. Foster, and R. Fedkiw, “Practical animation of liquids,”

Proc. of ACM SIGGRPAH, pp. 23–30, 2001.

[11]. N. Thürey, F. Sadlo, S. Schirm, M. Müller-Fischer, and M.

Gross, “Real-time Simulations of Bubbles and Foam within

a Shallow Water Framework,” Proc. of the ACM

SIGGRAPH/Eurographics Symposium on Computer

Animation, 2007.

[12]. N. Thürey, M. Müller-Fischer, S. Schirm, M. Gross, and

ETH. Zurich, „Real-time Breaking Waves for Shallow

Water Simulations,” 15th Pacific Conference on Computer

Graphics and Applications, 2007.

[13]. Q. Wang, Y. Zheng, C. Chen, T. Fujimoto, and N. Chiba,

“Efficient rendering of breaking waves using mps method,”

Journal of Zhejiang University SCIENCE A, 2006.

[14]. R. LeVeque, “Finite volume methods for hyperbolic

problems.” Cambridge Texts in Applied Mathematics,

Cambridge University Press, Cambridge, 2002.

[15]. R. Wang, P. Chen, and C. Ban, “Keeping Volume Fraction

of Fluid in Reconstructing Moving-interfaces of VOF on

Rectangular Meshes,“ Chinese Journal of Computational

Physic, vol. 25, no. 4, 2008.

[16]. S. Jeschke, H. Birkholz, and H. Schmann, “A procedural

model for interactive animation of breaking ocean waves,”

Proc. WSCG2003 POSTERS, 2003.

[17]. T. Klein, M. Eissele, D. Weiskopf, and T. Ertl, “Simulation,

modelling and rendering of incompressible fluids in real

time,” Workshop on Vision, Modelling, and Visualization

VMV '03 pp. 365-373, 2003.

[18]. T. Nakayama, and M. Mori, “An Eulerian finite element

method for time dependent free surface problems in

hydrodynamics,” Int. j. numer. methods fluids, vol. 22, pp.

175–194, 1996.

[19]. T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito,

K. Tanaka, and H. Ueki, “Realistic animation of fluid with

splash and foam,” Computer Graphics Forum, vol. 22, no.

3, 2003.

[20]. V. Mihalef, D. Metaxas, and M. Sussman, “Animation and

Control of Breaking Waves,” Proc. of the ACM

SIGGRAPH/ Eurographics Symposium on Computer

Animation, pp. 315–324, 2004.

About the author

Chung-Nan Lee is a professor at National Sun Yat-sen
University, Department of Computer Science and
Engineering. His contact email is cnlee@cse.nsysu.edu.tw.

Jyun-Ming Wu is a Master student at National Sun Yat-sen
University, Department of Computer Science and
Engineering. His contact email is piiwu2002@yahoo.com.tw.

Yan-Zheng Huang is a Master student at National Sun Yat-
sen University, Department of Computer Science and
Engineering. His contact email is lewis005299@hotmail.com

Da-Jing Zhang-Jian is a Ph.D. student at National Sun Yat-
sen University, Department of Computer Science and
Engineering. His contact email is
salmoner.tw@yahoo.com.tw.

