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ABSTRACT 
The simulation of breaking wave has a computationally intensive 

application. To reduce the computation this paper presents a slice-

based water simulation method for ocean breaking waves on 

natural simulation by generating the 2D simulations and then 

integrating these 2D simulation results into a 3D shape. We first 

simulate a 2D wave by a 2D Navier-Stokes (NS) solver to obtain 

the varying of ocean. Then, we propose a new reconstruction free 

surface method via Volume of Fluid (VOF) to further reduce the 

computation time and achieve better efficiency by using a linear 

interpolation with noise function to construct a complete 3D 

ocean simulation from these 2D simulations. 
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1. INTRODUCTION 
Physics-based natural simulation of computer animation becomes 

popular in recent years. The 3D graphics hardware has been 

widely applied to various fields with the rapid progress of 

multimedia system and virtual reality. In natural simulation, it was 

difficult to render the ocean on the PC, due to the restriction of 

computing power in the past. Fortunately, after the first graphics 

processing unit introduced by NVIDIA in 1999 that integrating 

transform, lighting, triangle setup/clipping, and rendering engines 

is capable of processing a minimum of 10 million polygons per 

second, as a result, the natural simulation and many other 3D 

graphic applications become feasible. Speed and realism are two 

mainly considerations in breaking wave simulation. For the game 

purpose the speed is mainly concerned. For the physical research, 

“realism” is very important due to users hope to get precise image 

or results. 

For ocean simulation one can use Navier-Stokes equations (NSE) 

to describe the motion of incompressible fluid. NSE is viscous 

Newtonian fluid, and can calculate the fluid motion accurately 

and simulate the effect effectively. The breaking wave needs much 

more calculation to simulate the fluid situation.  

In addition, most of existing studies about real-time water 

simulation cannot simulate breaking wave. The breaking wave 

simulation spends a lot of time because it needs complex physical 

calculation. In order to simulate the breaking waves in real time, 

this paper proposes a slice-based fluid simulation, and combines 

linear interpolation with noise function to construct a complete 

3D fluid simulation. The goal of this paper is to get a fast 

breaking wave simulation without loss of too much realism.  

2. Related Work 
Because the focus of computer animation is perceived by the 

human eye that can be fooled the visual on clever in the movies or 

games even if it is incorrect. Therefore, they often focus on real-

time simulation on current research. There are two types of fluid 

frameworks Eulerian and Lagrangian for the ocean simulation. In 

[2] a hybrid method, called particle level set method that 

combines Eulerian with Lagrangian framework is proposed. 

It is very important to get the free surface on the ocean simulation. 

According to the definition of Kinetics, the stress of the tangent 

direction sum is equal to zero. Assuming that the particle system 

based on the Lagrangian framework has enough number of 

particles, the particle will form automatically free surface. It needs 

to obtain the free surface on Eulerian framework, with the 

complicated calculation of boundary. Currently based on the grid 

method, there are some methods such as MAC grid, level set, 

particle level set, VOF, front tracking, ghost fluid, and height 

field.  

2.1 Height field 

Ocean wave is a sine wave alike. Breaking waves are traditionally 

modeled using sinusoidal and trochoidal functions [16]. It gets 

height of the surface by the height field function. The height 

function method doesn’t consider the eddy varying under the 

water, and the simulation is fast and has good result in quality. 

Height field has better effect when sea is calm, but the result is 

worse for windy weather. There is one problem for height field 

[8], when simulating the shallow water, due to it cannot generate 

the breaking wave. Tessendorf [6] used statistical methods by the 

oceanographer observation and fast Fourier Transform (FFT) to 

obtain the results of breaking wave. Jensen and Golias [7] 

introduced a new real-time level-of-detail deepwater animation 

scheme, which uses many different proven water models. 

Johanson [1] used Perlin nosie to simulate the details of ocean, 

and presented an alternative technique called “projected grid”. For 

the shallow water waves on a height-field, the wave equation in 

[17] can be used to describe the fluid flow by the 2D NSE and 

wave effects. In addition, a noise-based animation of detailed 

fluid structures further improves the realistic appearance. 

2.2 Breaking wave 
When the weather is stormy or windy, the wave will overturn and 

break. The breaking wave is very important for reality. The 

breaking wave includes the spilling breaking, plunging breaking 

and surging breaking.  

If we can simulate the different kinds of breaking waves, the 

simulation results will become more real. The height field can get 

the real result and fast simulation, but the disadvantage is that it 

cannot simulate breaking waves. Existing methods for breaking 

wave use NSE to calculate accurately the varying of sea to 

implement breaking waves. Unfortunately, the NSE is a set of 

highly non-linear partial differential equations (PDE).  

There are many methods for discrete the PDE in the literature (e.g. 

finite difference [9], finite volume [18] and finite element [14]). 

Stam [5] proposed the semi-Lagrangian approach to solve the 

advection of NSE and simulate the varying of the 3D fluid. Foster 

and Fedkiw [10] presented a general method for modeling and 

animating liquids, and extended the object interaction mechanism 

to provide control over the liquid’s 3D motion. Mihalef et al. [20] 

developed a novel fluid animation control approach to control 

breaking waves, and proposed the slice method to define the 



shape of a breaking wave at a desired moment by the library 

evolution of breaking waves. Irving et al. [4] proposed an 

approach which optimizes the fluid simulations with tall and thin 

cells, and also reduces the computational complexity for large 

fluid volumes. Thürey et al. [12] presented a new method for 

enhancing shallow water simulations by the effect of overturning 

waves that make it possible to simulate scenes in real-time. 

The wave simulation including the splashes and foam has an 

important role in the visual representation of the breaking waves. 

The particle system often specifies the splashes and foam 

movement in 3D environment. Takahashi et al. [19] proposed the 

control of the generation, vanishing and transition rule of splashes 

and foam. Based on the particle model Thürey et al. [11] 

presented a shallow water to achieve real-time by using a 

smoothed particle hydrodynamics simulation. Wang et al. [13] 

used moving particle semi-implicit (MPS) method, and using 

fractional Brownian motion (fBm) 2D simulation to expand into 

3D representation by giving motion variation.  

Due to simulating the effect of breaking waves needs a large 

amount of calculation and spends considerable time. Therefore, 

this paper proposes a slice-based method to speed up the 

simulation of breaking wave by using a new reconstructing 

algorithm keeps the simulation of volume fraction of fluid in VOF 

in 2D. Then it is expanded to 3D representation by combining 

linear interpolation with noise function. The proposed algorithm 

is effective in reducing the computation time. 

3. THE PROPOSED METHOD 
We proposed a slice-based method to get 2D simulation results 

first and then combined them using a linear interpolation with 

noise function to generate the new 2D simulation slices from 

previous two 2D simulations. Because the linear interpolation will 

cause unnatural result, the noise function is used to make the 

motion and behavior look more natural. For the 2D simulation we 

use NSE as the physical equation and solve free surface via VOF. 

In addition, about the reconstruction of volume fraction in VOF 

[15] one can improve by a moving interface reconstructing 

algorithm, and use the project grid method in reducing 

unnecessary computation in implementing the level of detail 

(LOD). 

The system architecture for the proposed ocean simulation is 

given in Figure 1. It consists four parts including the grid 

generation, wave simulation, particle simulation, and render 

respectively. And the flowchart is given in Figure 2.  
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Figure 1：System architecture 

 
Figure 2：The flowchart of the proposed method 

3.1 Grid generation 
We use finite difference schemes that can be described as non-

staggered or on staggered grids. In the same positions all the 

scalar variables for the non-staggered grid are stored, and the 

staggered grid the scalar variables (e.g. pressure and density) are 

stored in the cell centers of the control volumes, whereas the 

velocity or momentum variables are located at the cell faces. 

Using a staggered grid is a feasible way to avoid odd-even 

decoupling between the velocity and pressure. Odd-even 

decoupling is a discretization error that can occur on collocated 

grids and can lead to checkerboard patterns in the solutions. 

3.2 Wave simulation 
The main part we concern for the ocean simulation is the variation 

of water wave. We can use 2D NSE to calculate the fluid varying, 

and solve the problem of free surface using VOF. However, by 

combining the linear interpolation with noise function one can 

generate the new 2D simulation results between any two existing 

2D simulations. Finally, we use an isosurface reconstruction 

approach to obtain the 3D surface. 

3.2.1 Fluid equation 
The incompressible NS equation is used for the ocean simulation. 

The NSE includes three types of forces, they are body forces (
g

F ), 

pressure forces (
p

F ) and viscous forces (
v

F ). The body forces act 

on the entire water element. We assume only the gravity, GF
g

 , 

where   is density and G  is the gravitational force (9.81m/s2). 

The pressure forces act inwards and normal to the water surface, 

so the pressure forces are defined as the negative ( pF
p

 ). 

The viscous forces are VF
v

2   according to the definition of 

Newtonian fluid, where VL 1/ ,   is density, V  is velocity 

and L  is dimension. Newton’s second law is used ( mAF  ) to 

describe the motion. According to the AFFFF
vpg

 , we 

can get the expansion as VpGA 2  . Assume that 

density is uniform, the acceleration is  // 2VpGA  . The 

varying velocity over time is      /2// 






  VpGVVtV . 

This equation conserves the momentum. In addition, the equation 

0 V  describes a conservation of mass. The last two equations 

together are referred to as the NSE. The NSE contains four terms: 

force, advect, diffuse, and pressure. The steps of the NSE solver 

are illustrated in Figure 3. We can solve the equation one by one.  

 



 
Figure 3：The steps of the NSE solver 

First, the simplest term is the external force f. These forces may be 

either local forces (wind blow) or body forces (gravity). Here we 

assume that the force does not vary considerably during the time 

step. So, we can get the equation as     tftVttV  01 .The next 

step is the diffuse term. It is for the effect of viscosity and is 

equivalent to a diffusion equation. Viscosity is measure of how 

resistive a fluid is to flow. We can get the equation by the finite 

difference method as        /VttVtV 2

12  . The third step 

solves for the effect of advection (or convection) of the fluid on 

itself. The advection term is non-linear and cannot be 

approximated by the finite difference method. Here, we use the 

method of characteristics to solve partial differential equations. 

All the fluid particles are moved by the velocity of the fluid itself 

at each time step. It is necessary to calculate the velocity at a point 

x at the new time tt  . So, we backtrace the point x through the 

velocity field 
2

U  over a time t . This defines a path  sxp ,  

corresponding to a partial streamline of the velocity field. The 

new velocity at the point X  is set to the velocity at its previous 

location a time t  ago. The equation is    txpVtV  ,
23 .The 

final step is project term which is used to solve the pressure term. 

According to Helmholtz-Hodge decomposition theorem, any 

vector can be decomposed into a set of basis vector components. 

So, we can get the equation puw  . The new velocity field w 

with nonzero divergence to solve the NSE that involves three 

computations to update the velocity at each time step：force, 

diffusion, advection application. The velocity field u is free 

divergence velocity, and p is the pressure field. If we apply the 

divergence operator to both sides, then we obtain )( puw  . 

Because the velocity field u is free divergence ( 0 u ), the 

equation can be simplified to pw 2 . The equation is a Poisson 

equation for the pressure of the fluid. We can solve the equation 

for p, and then use w and p to compute the new divergence-free 

field u. So, the velocity equation of the final step is 

    /
34

ptVtV  . 

3.2.2 Free surface 
The free surface is the most influential factor for reality. So the 

classification of the free surface grid is used to distinguish the 

location of free surface. It is called full cell when the grid contains 

only liquid. The grid is located at the top of the free surface and 

the grid that contains no liquid is called empty cell. In addition, 

the grid that contains liquid and gas, and where at least one 

neighboring grid is empty is called the surface cell. We should 

determine whether the grid belongs to the above cells before the 

surface reconstruction. If the grid is a full cell, one can calculate 

the velocity according to the internal fluid field. On the other 

hand, it does not need to calculate when the grid is an empty cell. 

Besides, it should get the average density when the grid is surface 

cell, then calculate density by internal fluid field equation, 

  f
121
  , where 

1
  and 

2
  are the gas and liquid 

density respectively, and f is the fraction of fluid in the grid. We 

can get the free surface through the above description but the 

premise is that the grid type has already been determined. 

Therefore we have to determine the grid type using VOF, which 

defines an additional variable in the computing grid called 

fraction-of fluid function, f(x,z,t). The value of f is between zero 

and one. The value “0” expresses an empty grid, and we defined 

“1” as a full grid and “0~1” as a surface grid. Because the free 

surface moves over time, the value f will change with the free 

surface. The VOF gets the free surface through the definition of f 

for each grid, and the f in each cell is transported by the advection 

equation as 0u
t

 ff . 

We reconstruct the free surface according to a moving interface 

reconstructing algorithm [15], but the reconstructing algorithm is 

only implemented on the closed boundary grid. Hence, we modify 

the algorithm for the ocean simulation (non-closed boundary).The 

grids whose value is between zero and one are first located. The 

intersection of the surface of the boundary line and the grid is 

called spot. The surface grids shown in Figure 4 have three types. 

Each type includes four patterns according to the relationship of 

the location of the surface grid and the adjacent grid. 

 
Figure 4：Three types for the free surface grid 

The grid (1)(2)(3) is the order index for surface grid as shown in 

Figure 4. The grid I is the current boundary grid. Type 1 is 

characterized by “linear” that the current grid and the adjacent 

grid is a straight line parallel to the x axis or y axis. Type 2 is 

characterized by “convex” that the current grid and the adjacent 

grid are not straight but convex. Type 3 is characterized by 

“concave” that the current grid and the adjacent grid are not 

straight but concave. We define four different cases according to 

the different types. In order to obtain the spot, we define Qi as the 

boundary spot. P is the grid node that locates at the adjacency of 

Qi. The variable ti is the reference value and is defined as follows. 













axisy    the toparallel is   if,     /

axis  x  the toparallel is   if,     /

iiii

iiii

i
QPyQP

QPxQP
t                 ( 1 )  

where Δx and Δy are the length of the grid x axis and y axis 

respectively. We record the related information of each Qi, 

including the number of spot, type and the coordinate of 

iP  
ii PP

YX , . Assuming the volume fraction of fluid of the I surface 

grid is fi, we can build volume fraction of fluid as listed in Table 1 

according to the type of the surface grid. After obtaining ti one 

can calculate the coordinate of spot  
ii QQ

YX ,  according to the spot 

Qi as shown in Table 2. 

Table 1：Volume fraction of fluid 

The I  grid type Keeping volume fraction of fluid 

Type 1：Linear 

 

Type 2：Convex 

 

Type 3：Concave 
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Table 2：Formula of spot Q 

The pattern of the I 

type 

Spot Q 

iQ
X  

iQ
Y  

(a) 

(b) 

(c) 

(d) 

iP
X  

iP
tX

i
  

iP
X  

iP
tX

i
  

iP
tY

i
  

iP
Y  

iP
tY

i
  

iP
Y  

Assuming the boundary grid, i , is the volume fraction of fluid fi. 

If the boundary grid is closed and the boundary is composed of 

the boundary grids, we can obtain N equations. By solving these 

equations one can obtain  Niti ,,2,1   and the coordinate of Qi 

by tN+1 = t1. When the simulation has non-closed boundary, the 

equation would be tN+1 ≠ t1. Hence, we should obtain the spot of 

start gird before the operation. Here, we divide the start grid into 

three types and seven cases. And we can obtain the t1 as shown in 

Figure 5 by the equations of the different cases. We divide the 

start grid into three types. Type 1 is “leftward”, and the adjacent 

grid is located on the left start grid. Type 2 is located below the 

start grid, called “downward”. Type 3 is located above the start 

grid, called “upward”. The different types have different cases. 

According to the different cases one can calculate t1 as shown in 

Table 3. 

 
Figure 5：The status of the start grid 

Table 3：Formula of t1 

 Type 1 

(a) 

(b) 

(c) 

  2/3 211 fft   

  21

2

2211 22 ffffft   

  232322 2121

2

2211  ffffffft  

 Type 2 

(a) 

 

(b) 

221

2

111 / ffffft 







  

21111 22 fffft   

 Type 3 

(a) 

 

(b) 

   22121

2

1211 1/23 fffffffft 







  

  21211 212 fffft   

3.2.3 Expansion to 3D 
The slice method can generate the different 2D simulations, one 

can further integrate them to get a 3D shape. We can use the level 

of detail(LOD) scheme because LOD involves decreasing the 

complexity of a 3D object representation as it moves away from 

the viewer or according other metrics such as object importance, 

eye-space speed or position. Based on the LOD each patch will be 

determined by the distance to the viewer, one can use the larger 

grid on the 2D simulation when grid is farther away from the 

camera. 

In contrast to the slice method that needs to process many slices, 

the proposed method only process some key slices. We apply 

linear interpolation with noise function to generate the new 2D 

simulations between two key slices. The formula is shown as 

follows. 

 
t

ik

PP
PP

jijk

jijti







,,

,,
, nj 1                                 (2) 

  )('
1,,1,,

jNoisePPPP
jijijiji 

                                      (3) 

where Pi,j is the i-th of 2D simulation result (outline), and the j is 

the order of the boundary. Pi,j and Pk,j are the two 2D simulations 

by VOF, and they need to interpolate 2D new slice 
jti

P
,

 between 

the i-th and the k-th simulation. By Eq.(2) which is the linear 

interpolation one can obtain the value of the interpolation. But the 

quality is insufficient, when only use the value of the interpolation 

to generate the 2D simulation, so a noise function is integrated 

into Eq.(3). The noise function makes the simulation more real. 

The reconstructed surface may have aliasing and not smooth. 

Therefore, we should add some techniques to make the surface 

more smooth. Here, we use the Chaikin's algorithm to smooth the 

reconstructed surface.  

3.3 Particle simulation 
The particle system is used to simulate certain fuzzy phenomena 

on computer graphics. The particle status of splashes and foam is 

very important for the ocean simulation. In this paper, we only 

render the splash. We generate the particles according to the value 

of curvature, and the new splash particle has its lifespan. Then we 

update position over time. And the splash particles are rendered in 

white. In this way, we can effectively visualize splashes. 

3.4 Render 
In this step, we use the lighting and texture operations for the 

ocean simulation. The texture technique that we used is bump 

mapping. Bump mapping perturbs the surface normal of the 

object at each pixel, and is applied before the illumination 

calculation. In addition, it has been proved an effective way to 

improve the appearance of reality and not increase the complexity 

of the geometric objects. The technique has already implemented 

in the field of real-time graphics with the graphics hardware 

progresses and the application of shading language. In order to 

render the water, we should implement the reflective and the 

refractive effects. Environment mapping can help us to render the 

effect. One can calculate the normal vector to get the 

corresponding environment texture. Then one can mix the texture 

with water color and get the final color. The technique is easy to 

implement by GLSL, and the result is more realism. 

4. IMPLEMENTATION 
The simulation of breaking wave has a lot of formulas that are 

very complicated to implement for hydrodynamics. In this paper, 

we use the finite difference method to describe the formula of 

NES. Then, we can get the velocity at the center of each face of a 

grid and the pressure at the center of a grid. According to the 

correctness of velocity and pressure one can construct a flow field 

and do the ocean simulation. 

4.1 2D simulations 

4.1.1 Initialization 
Before the simulation, the computation domain can be represented 

via a fixed rectangular grid aligned with a Cartesian coordinate 

system. To initial configurations of space such as mesh size, 

velocity field and pressure field, and prescribe initial conditions 

for the 2D NSE, one can create an ocean wave by [20]. At first, 

we denote the period, T , wavelength,  , and amplitude, A . If 



the frequency,  /2w , and the phase-constant T/2   which 

expresses speed, the surface displacement for a wave is given as 

   twxAtxW  cos, .  And the velocity components are given by 

   
   twxeAtxv

twxeAtxu
wz

wz











sin,
cos,                                (4) 

where z  is the depth, and we can obtain the equation when time 

is zero. 

           







 xwAxwAxwAdxW 


6cos

8

3
2cos

2

1
2cos

2

1
0,

32
 (5) 

4.1.2 Discretization 
We expand the equation via the finite difference method because 

the 2D simulation is driven by NSE, The NSE contains three 

different applications of the symbol  . The three applications are 

gradient, the divergence, and the Laplacian operators respectively, 

as shown in Table 4. 

Table 4：Three finite difference forms 

Operator Definition Finite Difference Form 

Gradient 






















y

p

x

p
p ,  





















 

y

pp

x

pp jijijiji

2
,

2

1,1,,1,1  

Divergence 
y

v

x

u
V









  

y

vv

x

uu jijijiji








  2/1,2/1,,2/1,2/1  

Laplacian 2

2

2

2

2

y

p

x

p
p









  

2

1,,1,

2

,1,,1

)(

2

)(

2

y

ppp

x

ppp jijijijijiji








   

The subscripts i and j used in the expressions in Table 4 is used to 

discrete locations on a Cartesian grid, Δx and Δy are the size of 

the grid in the x and y dimensions, respectively, and 2/1,,2/1 ,  jiji vu  

are the location of staggered velocity components on a grid. This 

discretization leads to an explicit finite difference approximation 

of Eq.(3). 

4.1.3 Boundary conditions and surface grid 
Boundary condition is set on the boundary between the obstacle 

and the water. Assume the obstacle is non-slip, one can make the 

gradient of pressure equal zero on the boundary and the velocity 

on the boundary is zero.  

The pressure of the empty and surface grid are set to atmospheric 

pressure, and the velocity on each of its faces shared with another 

empty grid, which is set to zero and the velocity should satisfy the 

conservation of mass. As shown in Figure 6, Type 1 shows the 

velocity on four sides of the two dimensional surface grid. Three 

of them are surrounded three sides by grids containing fluid. In 

order to keep the conservation of mass, the velocity of air 2v  set 

to  1212 uuvv  . When the grid has two sides which face an empty 

grid, it is type 2. Each open side velocity equals the velocity of 

the side of the grid opposite it. And when the grid has three open 

sides, it is type 3. The side velocity equals the velocity of the side 

that opposites it 

 
Figure 6：Setting the velocity on the free surface 

4.2 GPU implementation 
The efficiency is lower when only using CPU, because of the 

complex operations for NSE. General-purpose computing on 

graphics processing units (GPGPU) is the technique of using a 

GPU, which typically handles computation only for computer 

graphics, to perform computation in applications traditionally 

handled by the CPU. 

We utilize GPU to improve for the complicated operations. In the 

GPU pipeline, the traditional end point of every rendering 

operation is the frame buffer, a special chunk of graphics memory 

from which the image that appears on the display is read. The 

frame buffer can get is 32 bits of color depth, shared among the 

red, green, blue and alpha channels. The data will always be 

clamped to the range of [0;1]. Fortunately, OpenGL extension 

provides 32-bit floating point values on GPUs. Each RGBA 

channel of offscreen buffer supports 32-bit floating point values 

for vector calculations. We commonly call the technique FBO. 

Arrays in GPU memory are called textures or texture samplers. 

Texture dimensions are limited on GPU, the maximum value in 

each dimension is 2048 or 4096. The data elements which are 

accessed from texture memory, one needs to choose a special 

projection from the 3D world to the 2D screen. Pixels and texels 

are one to one mapping. To choose an orthogonal projection and a 

proper viewport, one will enable a one to one mapping between 

geometry coordinates and texture coordinates and pixel 

coordinates. To use a texture as render target to attach the texture 

to the FBO, the FBO extension provides a very narrow interface 

to render to a texture. Then we transfer data to a texture from 

CPU to GPU. The operations that are calculated on GPU can be 

achieved by shading language. The shading language divides into 

two parts( vertex and fragment shader), and we can code  

according to the requirement and transfer from GPU textures to 

CPU arrays or render. 

GPGPU can help us to do the complicated arithmetic, but one 

thing should be noted. It is expensive to transfer data from GPU 

to CPU. So, we must consider very carefully before doing 

GPGPU. We calculate the two dimensional NSE solver on CPU 

and GPU respectively. Table 5 lists the comparison of 

computation time between CPU and GPU. Here we divide the 

GPU process into three major items, the NSE fragment, texture 

transmission and glReadPixels function. GPU spends most of 

time on glReadPixels function. The computation time on CPU is 

about 15.9 milliseconds and GPU is about 2 milliseconds. The 

result is calculated on the grid size 100  100. It shows the 

excellence floating-point operation of GPU.  

 

Table 5： Computation time between CPU and GPU 

Operation 
Run NSE 

fragment 

Texture 

transmission 
glReadPixels 

GPU 
Less than 

0.5ms 
0.25ms 0.7ms 

CPU 15.9ms 

4.3 Results 
We generate a 2D initial wave and the parameters 2  and 3w . 

The grid size is 100 100. Figure 7 shows the 2D wave. The left 

picture is at time 2.8 and the right picture is at time 9.5. The 

experiments were run in PC with 3.4GHz Pentium IV CPU and 

NVIDIA GeForce 8800GTS display card. The performance is 

about 44.15 frames per second. 

 
Figure 7：Snapshots of the 2D wave 

The 3D simulation result is through combining with the different 

2D results of the proposed algorithm. Figure 8 shows the result. 

The advantage of the proposed algorithm is that users can choose 



the 2D results to determine the variation of wave. Figure 9 shows 

the FPS measurements for the different slice counts. These slices 

would be uniformly distributed on the interval of z-axis grid size. 

And the grid size is 100 100 50 and the number of triangles is 

about 148000.  

 
Figure 8：Snapshots of the 3D wave 
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Figure 9：FPS measurements for the different slice counts 

NSE can be divided into four steps with the time complexity is 

listed in Table 6. Project step uses the PCG method to reduce 

both the space complexity and time complexity per iteration from 

 2n  to  m , where n  is the grid size, m  is the number of 

nonzero entries of A , and   is the iteration times. Our algorithm 

efficiency is competitive compared with the previous method of 

the slice method [20]. In [20], the free surface is calculated by 

CLSVOF. The result is more realism but needs more 

computational time. In the proposed algorithm, we use VOF to 

solve the free surface. The VOF method is known for its ability to 

conserve the "mass" of the traced fluid. Although the reality is 

less, the computational time is twice less than that of CLSVOF. 

Table 7 lists comparisons of time complexity for the proposed and 

the slice methods. We assume the time complexity of 2D NSE and 

the surface reconstruction is  K , so the time complexity of the 

proposed method and the slice method is  Kt  and  Kh  

respectively, where t  is the number of key slice and h  is the 

length of z axis ( ht  ). Here we assume the length of z-axis on 

3D space is fifty. The slice method needs fifty slices and the 

proposed method would use 2~6 slices to expand 3D environment. 

The computation time of the proposed method is faster than the 

slice method. Although fewer slices would reduce the reality, the 

work efficiency would increase. And the proposed method is more 

flexible due to users can decide to control slices count. In order to 

reduce aliasing which producing by linear interpolation, we add 

the noise function to make the free surface more natural.  

Table 6：Time complexity for different solutions of NSE 

NSE Force Diffuse Advect Project 

Method 
Finite 

difference 

Finite 

difference 

Method of 

characteristics 
PCG 

Time 

complexity 
 n   n   n   m  

Table 7：Time complexity of the proposed method and the slice 

method 

Method 
The proposed 

method 
The slice method 

Time complexity  Kt   Kh  

Computation time 5~9 frames/s 1 frame/s 

We render the environment mapping, the reflective and the 

refractive effect of the water by GLSL. The reflective and the 

refractive effect of the water are mix environment texture with 

water color. And we use bump mapping to increase the reality. 

The technique is simple and yields good results. Figure 10 shows 

the render effect. And Figure 11 increases the splash effect by the 

particle system.  

 
Figure 10：Render effect 

 
Figure 11：Snapshots of the breaking wave 

5. CONCLUSIONS 
In this paper, we have presented a slice-based water simulation 

method for ocean breaking wave on natural simulation. By 

combining linear interpolation with noise function to construct a 

complete three dimensional ocean simulation, one can reduce 

computational time and achieve better efficiency. The proposed 

algorithm can improve the computational time of the slice method. 

And we also avoid the aliasing using linear interpolation with 

noise function. The proposed method is more flexible to users, 

because users can determine how many slices are used. Users can 

generate simple ocean waves by a few slices, or complicated 

ocean waves by more slices. No matter what users choose, the 

ocean wave is still realism.  

People can design the different ocean waves by the slice method, 

but it would spend much time and resources. The proposed 

method can speed up the computation time as fast as 9 times and 

make the simulation efficiency. And this method still can reserve 

the reality because it uses the noise function to increase the 

variation of water. 
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