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Abstract 
A new short reference image quality metric is introduced in this 
paper. It is based on the idea that a high quality image has a high 
value of angular edge coherence in the basic edges points and a 
low level of angular edge coherence in the basic edges 
neighborhood. The angular edge coherence is measured using the 
coefficients of image expansion into the Gauss-Laguerre Circular 
Harmonic Functions. The practical usability is illustrated with 
several test images. 
Keywords: Gauss-Laguerre circular harmonic functions, image 
quality metric, angular edge coherence, basic edges. 

1. INTRODUCTION 
The problem of results quality estimation in image enhancement 
or restoration algorithms does not have an universal solution. The 
automatic image quality metrics often do not correlate well 
enough with the perceptual image quality. 
There are many approaches which are performed by direct pixel-
by-pixel calculation of conventional signal metrics (such as MSE, 
PSNR, RMSE etc.) of the obtained and the original images. These 
techniques are referred in the literature as full reference image 
quality assessment metrics. There are also more sophisticated 
metrics taking into account perceptual features of human visual 
system [1]. 
But for the majority of image processing tasks we cannot use the 
full reference metrics due to the absence of the reference image. 
For this reason no-reference (or “blind”) methods and short 
reference methods are designed. No-reference approaches assess 
the quality of image without any information about original 
image. Short reference approaches operate with partial 
information about original image. Some of these methods are 
introduced in [2-4]. The methods based on the edge coherence 
approach are introduced in [5,6]. They are based on the local 
expansion of the observed image into the system of so-called 
Gauss-Laguerre orthonormal family. 
In this paper a new approach using modified angular edge 
coherence is proposed. The modification is based on Gauss-
Laguerre expansions analysis. The importance for the human 
image perception of the areas near the main image edges has also 
been taken into consideration. 

2. MULTIMODAL ANGULAR EDGE COHERENCE 
Let us consider a family of complex orthonormal and polar 
separable family of functions: 
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Their radial profiles are Laguerre functions: 
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The Laguerre function  can be calculated using the 
following recurrence relations: 
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These functions , called Laguerre Gauss circular harmonic 
(LG-CH) functions, are referenced by integers  (referred by 
radial order) and 
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α  (referred by angular order). The real and 

imaginary part of ,  and  are illustrated in Figure 1. 1
0g 3

0g 5
0g

   

   
Figure 1: The real parts of ,  and  (upper row) and the 

imaginary parts of ,  and  (lower row). 
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The LG-CH functions are self-steerable, i.e. they can be rotated 

by the angle ϕ  using multiplication by the factor . They 
also keep their shape invariant under Fourier transformation. They 
are suitable for multiscale and multicomponent image analysis 
[7]. 
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Let us consider an observed image  defined on the real 

plane 
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2R . Due to the orthogonality of  family the image 

 can be expanded in the analysis point  for fixed 
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These coefficients can be calculated at any image point  by 
convolution: 
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Let us consider the convolution results ,  and 

 for LG-CH functions of index orders 1,0 3,0 and 5,0. 

As it has been shown in [5, 6] the high level of magnitude of 
 corresponds to the edges of the image, while ),(0,3 yxc  

), y  cor  to different types of crosses, corners 

(these values are smaller in the edge points). At the same time it is 
shown in [6] that for the ideal edge patterns, i.e. unitary step edges 
passing through 00 , yx , the arguments of ),(0,1 yxc  and 

)  satis owing relation: 
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It can be shown that the arguments of  and  

satisfy the analogous relation: 
),(0,1 yxc ),(0,5 yxc
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This relationship is analogues to the relationship of the odd 
harmonics of the Fourier expansion for a periodic square 
waveform (see Figure 2). In our approach we take 3 first odd 
modes (the work [6] took 2 first odd modes). 

 
Figure 2: Phase relationship and its analogue with the odd 
harmonics of the Fourier expansion for a periodic square 

waveform. 

The modified angular edge coherence filter based on these 
relationships is defined as: 
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This approach is more sensitive to the weak edges than the AEC 
[5] (PEC [6]). The AEC metric (with contrast normalization) is 
defined in [6] as: 
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It is also important to mention that the value of MAEC is positive 
while the values of AEC (PEC) can be negative as well. This is 
crucial for the calculation of MAEC for an image region R: 
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where R  is the number of points in R and the value MAEC(x,y) 

is normalized to lie within [0,1] interval. 

3. IMAGE QUALITY METRIC 
Standard metrics based on whole image square error calculation 
like MSE, PSNR do not correlate well with the perceptual image 
quality. As an example, ringing effect in textured areas is not 
noticeable while ringing effect near sharp isolated edges is 
annoying. 
In [8] the authors introduced an image quality metrics in edge and 
edge neighborhood regions for image restoration methods like 
image interpolation or image deringing. The authors introduced 
Basic Edge Points (BEP) regions and Basic Edge Neighborhood 
(BEN) regions in images (see Figure 3). They estimated the 
quality using RMSE (root of mean square error) of the reference 
image and the restored image within these areas. 

 
a) Reference image b) Its BEP (white color) and 

BEN (grey color) regions 
Figure 3: BEP and BEN regions illustration. 

In this paper a short reference approach is introduced. This 
approach is inspired by the fact that MAEC value should be 
reasonably high in BEP regions indicating the good quality of 
edge restoration. Meanwhile, the values of MAEC should be 
reasonably low in BEN regions indicating the absence of ringing 
effect. Thus we suggest the following basic edge quality metric: 
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Obviously, the specific BEQ values correspond to the specific 
image. For this reason, the relative modification of BEQ can be 
defined as follows: 
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where  is observed image and  is the reference 
image. The RBEQ metric is a short reference metric. It analyzes 
only areas in the region of isolated strong edges. The value of 
RBEQ(I) is less than 1 in case of image quality degradation and 
greater than 1 in case of image quality improvement. 
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4. EXPERIMENTAL RESULTS 
To illustrate the sufficiency of the proposed approach it was tested 
with different images. The suggested metric has been compared 
with RTAEC metric (the relative short reference metric based on 
angular edge coherence function for the whole image) [5]. RTAEC 
metric shows good correlation with DMOS results [5]. These 
results are also close to the results of MSSIM metric. 

In Figure 4 (“Lena”) and Figure 6 (“Peppers”) the reference 
images, their BEP and BEN map images and corrupted versions 
of the reference images with different kinds of artifacts are 
presented. The values of RBEQ and RTAEC for these images are 
given. The RBEQ metric is more sensitive than RTAEC to the 
image corruption with Gaussian blur, white Gaussian noise and 
unsharp mask artifacts (see Figures 6d, 6e and 6f). But in the case 

of pixelized image the RBEQ and RTAEC values do not reflect 
properly the existing artifact (see Figure 6c). 

  
a) Reference image 

RBEQ=1.0,   RTAEC=1.0 
b) BEP (white color) and BEN 

(grey color) regions of 
reference image 

 
c) Unsharp mask of reference image 

RBEQ=1.057,   RTAEC=0.992 
Figure 5: Comparison of RBEQ and RTAEC values for the 

unsharp masking result 
In Figure 5 the result of unsharp mask of blurred “House” image 
is given. This illustrates the different behavior of RBEQ and 
RTAEC metrics. Despite the fact that unsharp mask is enhancing 
algorithm for blurred images RTAEC < 1 indicates the degradation 
of image quality. On the contrary, RBEQ > 1 indicates the 
improvement in image quality that corresponds to human 
perception. 
It can be seen from the given examples that the RBEQ and RTAEC 
metrics both find the blurring of the image but the RBEQ is much 
more sensitive to the presence of noise and it estimates better the 
unsharp masking results. 
In Table 1 the RBEQ and RTAEC metrics are compared with other 
types of edge coherence metrics. Where RBEQ1 is defined as: 
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and RTAEC1 is defined as: 
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It is illustrated that RTAEC1 and RBEQ1 metrics are not 
appropriate. RTAEC1 > 1 in case of image quality degradation and 
RTAEC1 < 1 in case of image quality improvement. The RBEQ1 
metric has the same drawback for images corrupted with white 
Gaussian noise and it is also less sensitive to the artifacts even in 
comparison with RTAEC metric. 
The given results demonstrate the sufficiency of using MAEC 
metric in BEP and BEN regions to construct RBEQ image quality 
metric. 

  
a) Reference image  

RBEQ=1.0,   RTAEC=1.0 
b) BEP (white color) and BEN 

(grey color) regions of 
reference image 

  
c) Reference image with white 

Gaussian noise 
RBEQ=0.530,   RTAEC=0.982 

d) Gaussian blurred reference 
image 

RBEQ=0.486,   RTAEC=0.947 
Figure 4: Comparison of RBEQ and RTAEC metrics. 



 

Image RBEQ RTAEC RBEQ1 RTAEC1

Figure 4c 0,530 0,982 1,002 1,289 

Figure 4d 0,486 0,947 0,917 2,707 

Figure 6c 0,643 0,748 0,981 1,638 

Figure 6d 0,340 0,898 0,950 2,527 

Figure 6e 0,241 0,999 1,005 1,088 

Figure 6f 0,157 0,951 0,888 2,776 

Figure 5c 1,057 0,992 1,011 0,955  
Table 1: Comparison of RBEQ, RTAEC, RBEQ1 and RTAEC1 

metrics. 
 

  
a) Reference image 

RBEQ=1.0,   RTAEC=1.0 
b) BEP (white color) and BEN 

(grey color) regions of 
reference image 

  
c) Pixelized reference image 

RBEQ=0.643,   RTAEC=0.748 
d) An unsharp mask result for 

the reference image 
RBEQ=0.340,   RTAEC=0.898 

  
e) Reference image with white 

Gaussian noise 
RBEQ=0.241,   RTAEC=0.999 

f) Gaussian blurred reference 
image 

RBEQ=0.157,   RTAEC=0.951 
Figure 6: Comparison of RBEQ and RTAEC metrics. 

5. CONCLUSION 
A new short reference image quality metric using a modification 
of the angular edge coherence approach has been developed. The 
preliminary testing results look promising. The future work will 
include a detailed statistical analysis of the results for big image 
bases and a more detailed analysis of specific image artifacts like 
pixelization. 
The work was supported by federal target program “Scientific and 
scientific-pedagogical personnel of innovative Russia in 2009-
2013” and RFBR grant No 10-01-99535. 
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