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Abstract 
The solution simulation of the global illumination equation by the 
local estimation of the Monte Carlo method is analyzed in the 
paper. Local estimation methods allow implementing simulation 
at the arbitrary reflectance law and directly calculating luminance 
in every point and direction of 3D scene. The local estimations are 
more effective methods than straight modeling. Their usage does 
not demand the mesh creation for the illumination map formation. 
The possibility of 3D object representation on the basis of the 
spherical harmonics is also considered in the paper. The spectral 
representation possesses the essential advantages for some object 
classes. The algorithms of the local and double local estimation 
with the usage of object representation on the basis of the spheri-
cal harmonics are implemented in the framework of paper. This 
algorithm allow realizing the physically adequate modeling of the 
global illumination equation solution and calculating the lumin-
ance directly that opens new horizons both in the photometry and 
computer graphics. 
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1. INTRODUCTION 

3D scene simulation is inherently the calculation of object lumin-
ance on the basis of the solution of the global illumination equa-
tion, which is an integral equation of the second order [1]: 
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π
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where ˆ( , )L r l  is the luminance at the point r in the direction l̂ , 
ˆ ˆ( ; , )σ ′r l l  is bidirectional scattering distribution function (reflec-

tion or transmittance), L0 is the luminance of the direct radiation 
straight from sources. 
The equation (1) has no analytical solution at an arbitrary law of 
reflection, so the methods of numerical simulation are used. The 
Monte Carlo methods, direct and reverse ray tracing are the most 
popular among them. 
The reverse ray tracing suffers from basic defects connected with 
that the sizes of light sources as a rule are sufficiently small and 
the expectancy of hitting in the source is very low. 
In case of the direct simulation the scene is divided into elements, 
in which the photon hits are calculated. As a result the illumina-
tion map is created. This approach is connected with the compli-
cations of mesh generation and the excessive consumption of 
memory. 
The finite element method, which is called in the global illumina-
tion theory as a radiosity [3], is used for the solution of equation 
(1) on the basis of diffuse reflection approximation. In this case 
the equation (1) could be rewritten as [3] 
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where M(r) is the luminosity of the surface in point r, M0(r) is the 
luminosity of the surface in point r straightforward from sources, 

( , )′Θ r r  is the visibility function of element 2d ′r  from point r , 
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 is the infinitesimal form-

factor. 
In our paper we propose to use the local estimation of the Monte-
Carlo method, which are well-known in the optics of atmosphere 
at the solution of radiative transfer equation [2, 4]. Rendering 3D 
objects represented by the spherical harmonics spectrum is ana-
lyzed in the paper. 

2. LOCAL ESTIMATION 

Equation (1) is not convenient for the statistic simulation, as the 
unknown function is under the integral in the point r′, but it is 
determined in the point r. In addition to that the variables r′ and 
ˆ′l  are not independent, and combined by the relation 
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r rl
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Accordingly we can write down the equation (1) in the following 
form 
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This expression contains the δ-function impeded the simulation by 
the local estimation of the Monte Carlo method. It is possible to 
eliminate the singularity in the expression (4) integrating over 
space. In addition to that the equation (2) contains no singularities 
and fit to simulation by the local estimation. Consequently the 
estimation for the arbitrary functional Iϕ of ˆ( , )L r l  takes a form 
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where k(r,r′) is the kernel of (4), Qn is the weight of Markov 
chain, and M is the mean operator by the different random ray 
trajectories. 
Markov chain in this case represents the sample of random ray 
trajectory, which is created using 0

ˆ( , )L r l  as an initial probability 
and k(r,r′) as a transition probability [2, 4]. From every knots of 
this random ray trajectory r�, which coincide with the intersec-
tion points of ray with object surfaces, is calculated the contribu-
tion in the illumination in the given point r by the term k(r,r′) in 
expression (5). 
Of course all the probability distribution must satisfy to the nor-
malizing condition. The distinctions of 0

ˆ( , )L r l  and k(r,r′) from 
this condition generate the statistical weights Qn. For example, in 
case of the diffuse reflection it is equal to the surface reflectivity. 
The expression (5) was called the local estimation of the Monte 
Carlo method [2, 4]. It allows estimating the illumination in the 
given point. Thereby to calculate the illumination in some given 



point r it is necessary to create the Markov chain in the space, and 
at every point to calculate the value k(r,r′) for investigated points. 
The mathematical expectation of this value is equal an illumina-
tion. 
Let’s note that as opposed to the classical ray tracing the local 
estimation allows estimating in several points at once by one sta-
tistical sampling ray that sufficiently accelerates the convergence 
of calculations. 

3. ACCURACY EVALUATION OF LOCAL ESTIMATION 
The accuracy estimation of algorithm is possible on the basis of 
comparison with other known methods or with exact analytical 
solution of the equation (2) for some special situation. It is known 
two exact analytical solution of the global illumination equation: 
for the Ulbricht sphere and for so called Sobolev problem [9]. In 
case of the Ulbricht sphere we have the uniform distribution of the 
luminosity over sphere that makes this case ineffective for the 
accuracy estimation. In the Sobolev problem we solve the (2) for 
the luminosity distribution in case of the illumination of two pa-
rallel diffuse reflecting planes by the point isotropic source lo-
cated between these planes. In this case the equation (2) is trans-
formed to the set of two integral equations (for the first plane): 
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where Ei(r) is the illuminance of i-th plane (i=1,2), ρi is the reflec-
tion coefficient of i-th plane, hi is the distance from the source to 
the i-th plane. We assume the source intensity equal to 1 and 
h1+h2=1. 
For the solution of the equation set (6) let’s execute the Fourier 
transformation of each equation that results in the set of linear 
algebraic equations. After the solution of the obtained equation set 
and inverse Fourier transformation we get the following expres-
sion: 
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where K1(k) is the modified Bessel function of second kind, J0(kr) 
is the Bessel function of first kind. 
In Figure 1 we can see the numerical comparison of the luminosi-
ty distribution calculation by the local estimation method and the 
expression (7). 

 
Figure 1. Illuminance distribution in case of the Sobolev problem: 

h1 = h2 = 0.5, and reflection coefficients ρ1 = ρ2 = 0.5. 

In this case it was used 2000 rays at the calculation by the local 
estimation method, and the running time was less than 1 second 
for the computer AMD Athlon 64 X2 5200. 
We realized also the solution of the Sobolev problem by the ra-
diosity, and compared it with the local estimation: the local esti-
mation exceeds the radiosity in computation speed at 80-90 times 
for the equal calculation accuracy. 

4. DOUBLE LOCAL ESTIMATION 

The equation of global illumination can be represented in the op-
erator form 
 0L L L= +K . (8) 
The solution of this equation is represented in the form of the 
Neumann series that allows conducting following transformations 
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that results in normal a form 
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The local estimation corresponding expression (10) can be called 
as double local estimation [2, 4] and takes the following view 
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where 
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In the expression (12) the δ-function is eliminated as a result of 
integration, and independent variables ˆ ˆ ˆ, , , , ,′ ′ ′′ ′′r l r l r l  corres-
pond to the geometry of ray propagation [4]. 
Thereby the double local estimation allows modeling the global 
illumination equation solution and calculating straight the lumin-
ance of incident radiation in the given point for the reflectance of 
orders higher than the first taking into account an arbitrary reflec-
tance law. The first order can be calculated directly. 
We do not know currently any software, which is capable to cal-
culate the luminance directly. Thereby the double local estimation 
for the first time in light engineering and computer graphics al-
lows computing the spatial-angular distribution of luminance in 
the given point of space. 

5. SPECTRAL REPRESENTATION OF OBJECTS 

Standard representation for the 3D objects is the mesh representa-
tion, in which objects are described by the set of vertices con-
nected into faces. Such representation is universal and allows 
describing any object. However it is not capable to reproduce 
exactly many objects, and in case of the essential error influence 
on the result the solid modeling can be applied, when objects are 
described analytically. SolidWorks and TracePro are the most 
known programs using the similar approach. 
One of the challenging directions of the 3D object representation 
is the spectral representation on the basis of spherical harmonics 
[5] that is the object surface representation by the series of spheri-
cal harmonics. In the sequel we will use the term “spectral repre-
sentation” for short. Such object representation gives a possibility 



of the reproduction quality control. So objects located far from a 
camera can be reproduced with low quality. In terms of photome-
try the essential advantage of this approach is the continuous re-
presentation of surface normals without any approximation. Let’s 
analyze the mathematical techniques underlying the method of 
spectral representation. 
The spherical harmonic { }( , ) :m

kY m k≤θ ϕ  is the special function 

defined on the unit sphere 
 ( , ) ( cos sin ) (cos )m m

k km km kY A m B m Pθ ϕ ϕ ϕ θ= +  (13) 
where θ is the zenith angle [0 π], φ is the azimuth angle [0 2π], 
Akm, Bkm are some coefficients, (cos )m

kP θ  is the associated Le-
gendre polynomials. The major property of spherical harmonics is 
their orthogonality: 
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where δ is the delta Kronecker symbol. 
Owing to this property any twice continuously differentiable func-
tion can be expanded into uniformly and absolutely convergent 
series of spherical harmonics [6] 
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where Akm, Bkm are the Fourier coefficients determined by formu-
lae 
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and 
2m

kY  is the norm determined by the expressions 
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The calculation of factorial is the substantial complication by the 
expansion. As a result it is the essential difference of coefficients 
resulting in the extra miscalculation. At the expansions of spheri-
cal harmonics it is more convenient to use the Schmidt polynomi-
al determined as 
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It is not difficult to see that at the Schmidt polynomial expansion 
there is no necessity to calculate the factorials for the norm and 
that essentially improved productivity of calculations. 
Therefore, any object defined unambiguously on radius from 
some point can be expanded by spherical harmonics. 

6. RENDERING SPECTRAL OBJECTS 

At the global illumination equation solution by the local estima-
tion method it is necessary to calculate surface normal and to 
determine the cross point of ray with an object. In case of the 
mesh object representation this problem is not difficult, but in 
case of the spectral representation it becomes a hard one. We ana-
lyze the determination of normal to the given point of object de-
fined in the basis of spherical harmonics. 

The normal in the point 0 0 0( , , )r θ ϕ  on the surface defined in the 
spherical coordinate system is equal the value of its gradient in 
this point 
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For the function described the surface in the spherical coordinate 
system we can write down the expression 

 
0 0

( cos sin ) (cos ) 0
k

m
km km k

k m
U A m B m Q r

∞

= =

≡ + − =∑∑ ϕ ϕ θ . (20) 

Let’s find partial derivatives in accordance with the equation (19). 
The derivative with respect to r 
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The derivative with respect to φ 

 
0 0

( sin cos ) (cos )
k

m
km km k

k m

U mA m mB m Q
∞

= =

∂
= − +

∂ ∑∑ ϕ ϕ θ
ϕ

 (22) 

The derivative with respect to θ 
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Consequently, it is necessary to calculate the derivative of the 
Schmidt polynomial. It is known the recurrent relation for the 
Legendre polynomial [7] 
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that taking into account the relation between the Schmidt and 
Legendre polynomial [7] 
 0, ( ) Q ( )m m m

k kP iμ μ−= , (25) 
allows to receive after some transformations the final expression 
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It is necessary to analyze separately the case m=0. In this case 
taking into account a number of the relations [8] it is not difficult 
to result in 
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Using the derived gradient in the local spherical coordinate sys-
tem ˆ ˆ ˆ( , , )r θ ϕe e e  it is necessary to represent it in the world Carte-
sian coordinate system. Taking into account some known relations 
ones can get the final expression for the normal to object surface 
represented by spherical coordinates 
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The search of the point of ray intersection with the object 
represented by the spherical harmonics is also a nontrivial task. 
Let’s consider the object represented relative to the origin of the 
Cartesian coordinate system and the ray 
 0

ˆξ= +r r l . (29) 



The cosine of angle θ of the point of ray intersection with the 
surface can be written as 

 0

2 2
0 0

ˆ( , )cos
ˆ2 ( , )

zz l

r r

+
= =

+ +

k r
r l

ξθ
ξ ξ

. (30) 

For the vector ρ we have accordingly 
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The cosine and sine of angle φ have the form 
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Therefore we get the dependence of angles θ and φ on one varia-
ble ξ. The equality takes place in the point of intersection 
 0

ˆ( ( ), ( )) 0sgf θ ξ ϕ ξ ξ− − =r l . (33) 
Solving the equation (33) relatively the parameter ξ we can find 
all the point of ray intersection with the object surface. In case of 
the global illumination equation solution for scene rendering we 
are interested only by the first intersection with the object. It can 
be found both the standard procedures, for example the bisection 
method, and more complex and fast algorithms. 

7. REALIZATION OF LOCAL ESTIMAION METHOD AND 
RENDERING OBJECTS REPRESENTED BY SPHER-
ICAL HARMONICS  

We implemented the algorithms of the local and double local 
estimations with 3D object representation in the basis of spherical 
harmonics. In Figure 2 we see rendering of the simple 3D scene. 
It is the room represented by the mesh with one column and one 
omni light source. The head of man in the scene is represented by 
the surface harmonics. The initial mesh contains 32 654 edges. In 
Figure 1 it was used N = 32 spherical harmonics to play the head. 
In this case the rendering time increased by 40% in comparison 
with the visualization of the mesh, but the amount of stored 
information decreased in more than 1,000 times. 

 
Figure 2. 3D scene rendering by the local estimation method. 

8. CONCLUSIONS 

The local estimation method of the Monte Carlo methods allows 
implementing the physically adequate simulation of the global 
illumination equation solution. In addition it allows obtaining 
directly the absolute values of luminance in every point and direc-

tion of scene. This algorithm opens the new horizons in the pho-
tometric research and can be the ground of the new rendering 
methods on the basis of direct solution of the global illumination 
equation. 
The usage of the object spectral representation on the basis of 
spherical harmonics is the successful approach for the description 
of some class objects that allow reducing significantly the infor-
mation content, which is necessary for the adequate reproduction. 
The possibility of continuous normal retrieval with the control 
accuracy in aggregate with the local estimation method is an im-
portant approach in the 3D scene rendering and its photometric 
investigation. The continuous restoring of normals has the special 
importance in case of luminance angular distribution calculations, 
where the wrong normal approximating results in considerable 
degradation of calculation accuracy. 
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