
3D Curve-Skeletons Extraction and Evaluation
Denis Khromov, Leonid Mestetskiy∗

Department of Computational Mathematics and Cybernetics
Moscow State University, Moscow, Russia

denis.v.khromov@gmail.com, l.mest@ru.net

Abstract

A novel definition of the 3D curve-skeleton is presented. Many ex-
isting approaches to the problem can be formalized in the given def-
inition. The main advantage of the presented mathematical model
is that it allows strict quality assesment of the produced curve-
skeleton. The definition is based on the usage of fat curves. A fat
curve is a 3D object which allows to approximate tubular fragments
of the shape. A set of fat curves is used to approximate the entire
shape; such a set can be considered as a generalization of the 2D
medial axis. An example algorithm which obtains curve-skeletons
due to the given definition is also presented. The algorithm is robust
and efficient.
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1. INTRODUCTION

The medial axis, first introduced in [1], has been proved to be very
useful for 2D shape analysis. The medial axis of a closed bounded
set Ω ⊂ R2 is the set of points having more than one closest point
on the boundary; or, equivalently, the medial axis is the set of cen-
ters of the maximum inscribed in Ω circles. The medial axis is a
graph embedded in R2. This graph emphasizes geometrical and
topological properties of the shape Ω. Such graphs are usually
called skeletons. There are efficient algorithms for 2D medial axis
computation.

It would be natural to try use the same approach for 3D shape anal-
ysis. A medial axis of a 3D shape Ω ⊂ R3 is a set of points having
more than one closest point on the boundary. But such an object is
not a graph since it may contain 2D sheets [2]. Those sheets may
be very complex, and there are some methods which try to simplify
the inner structure of the medial axis in 3d [3]. Therefore 3D medial
axis is as difficult for the processing as the initial shape Ω. So there
is a problem: how to define a skeleton of a 3D shape as a graph
embedded in R3 so that this graph would have all of the advantages
of the 2D medial axis?

Figure 1: Medial axis of a 2D rectange and a 3D box.

Such graphs are called curve-skeletons. To date, there are lots of
publications on curve-skeletons. However, unlike 2D case, where
the strict mathematical definition of the medial axis was given
decades ago, the definition of a 3D curve-skeleton still hasn’t been
presented. Usually, curve-skeleton is defined as the result of apply-
ing some algorithm to the 3D shape. There is no way to compare
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these algorithms with each other because their working principles
and results may have totally different nature. It’s very difficult to
evaluate the quality of the skeletons produced by those algorithms,
since there is no formal criterion for such an evaluation. There’s
only visual evaluation, which is subjective and not mathematical at
all.

In [4][5] the authors presented the classification of curve-skeleton
algorithms. The curve-skeleton is intuitively defined as a 1D thin-
ning of the 3D object. The authors also made a list of possible
properties of a curve-skeleton. Some of these properties are strict
(for example, topological equivalency between curve-skeleton and
the original shape), others are intuitive and should be formalized
(centeredness of the skeleton and possibility of reconstruction of
the original 3D object). Almost every published algorithm com-
putes skeletons which have some of these properties. In such cases,
these properties are considered to be advantages of the algorithm.

One of the popular approaches is based on the thinning of voxel
images. Such thinning may be done directly (deleting boundary
voxels step-by-step, [6] [7]) or with the distance function [8]. The
skeletons produced by such methods are not continuous but discrete
objects. Algorithms of this class are not universal because they’re
applicable to the voxel images only. Finally, there is no mathe-
matical criterion to evaluate and compare different techniques of
thinning.

It seems natural to try to extract 1D curve-skeleton from the 2D me-
dial axis. The medial axis itself is a very complicated object, which
consists of quadratic surfaces, so it’s usually replaced by some ap-
proximation. However, extraction of 1D piece from the medial axis
usually based on some successfully found heuristic. For example,
in [9] such an extraction is done with the help of the geodesics on
the boundary surface. As in the previous case, there’s no strict cri-
terion for evaluation and comparison of various heuristics of a 1D
curve-skeleton extraction.

There are some other techniques used to compute curve-skeleton,
such as usage of optimal cut planes [10] or physical interpretation
of the problem [11]. However, these methods are also successfully
found heuristics which allow to compute some object visually cor-
responding to the human idea of the curve-skeleton. And again,
formal mathematical evaluation of these algorithms doesn’t seem
to be possible.

In this paper, a strict definition of the curve-skeleton is given. The
model being proposed

1. allows to evaluate the correspondence between the curve-
skeleton and the original object;

2. approximates the given shape with a fixed precision;

3. doesn’t depend on the type of the shape description (polygo-
nal model, voxel image or point cloud).

Also, an algorithm which computes the curve-skeleton according to
the definition, is presented.



2. DEFINITIONS

Let C be a set of smooth curves in R3. For every curve c ∈ C ,
there is a set Rc of continuous non-negative functions defined on c.

Definition 1 A fat curve is a pair (c, r), where c ∈ C , r ∈ Rc.
The curve c is said to be an axis of the fat curve, and the function r
is its radial function.

Definition 2 An image of the fat curve (c, r) is a set of points

I(c, r) = {x ∈ R3|∃y ∈ c : ρ(x,y) ≤ r(y)}. (1)

Definition 3 A boundary of the fat curve (c, r) is a set of points

∂I(c, r) = {x ∈ I(c, r)|∀y ∈ c : ρ(x,y) ≥ r(y)}. (2)

The fat curve is an object which is very convenient to approximate
tubular 3D shapes (see Fig. 2).

Figure 2: Fat curve.

Definition 4 Let C be a set of fat curves such that axis of these
fat curves intersect each other in their endpoints only. A fat graph
F over a set C is a graph whose edges are fat curves from C and
vertices are endpoints of their axis.

Definition 5 A boundary ∂F of a fat graphF is an union of bound-
aries of the fat curves composing F .

Let FC be a set of all possible fat graphs.

Consider an embedded in R3 connected 3D manifold Ω with the
boundary ∂Ω. We’ll approximate Ω with some fat graph.

Definition 6 A distance between the point x ∈ R3 and the fat
graph F is a distance between x and the closest point on FC ’s
boundary:

ρ(x, G) = min
y∈∂F

ρ(x,y). (3)

Definition 7 A distance between a manifold Ω and a fat graph F
is a value

ε(Ω, F ) =

∫
x∈∂Ω

ρ2(x, F )dS. (4)

Approximation quality can be evaluated by two values: distance
ε(Ω, F ) and complexity of the fat graph F . A complexity of a fat
graph can be evaluated as

1. sum of lengths of axis of fat curves composing the fat graph;

2. number of the fat curves.

If the set C is rather wide, it’s better to use the first criterion in order
to avoid too crooked curves. However, if C is narrow and doesn’t
contain such curves, the second criterion can be used since it’s very
simple.

In these terms, the problem of approximation with a fat graph can
be defined as following

1. compute an approximation with the smallest possible ε(Ω, F )
and a fixed fat graph complexity;

2. compute an approximation with the least possible complexity
and

ε(Ω, F ) < ε0, (5)

where ε0 is a fixed value.

The fat graph can also be defined for planar curves. 2D medial
axis would be an example of such a graph if we define the radial
function at a point x equal to the distance from x to the boundary.
Image of this special graph coincides with the whole shape, so its
approximation error is zero.

3. IMPLEMENTATION

The main issue which wasn’t discussed in the previous chapter but
seems to be very important in the practical implementations of the
method is how to choose the first approximation of the skeleton.
It’s possible to use any existing algorithm which produces curve-
skeletons. But the proposed scheme has the advantage that the first
approximation of the skeleton doesn’t have to be very nice and ac-
curate. It can be easily fitted into the shape afterwards using numer-
ical methods.

That means that we can use some algorithm which is inaccurate but
very fast, hoping to improve it during the fat graph fitting. One way
to do so is to use the 2D medial axis of some Ω’s planar projection.
There’re some facts in favor of this decision.

• It seems that medial information plays the key role in the hu-
man vision and visual perception[5]. But the human vision is
planar, so if some 3D graph feels to be a good curve-skeleton,
its projection would be also considered as a graph which is
very close to the 2D medial axis of the object.

• 2D medial axis is a well-defined and examined object. There
are fast and robust algorithms for 2D skeletonization.

• As mentioned above, the 2D medial axis can be considered as
a fat graph which has zero approximation error. It’s possible
to try to bring this property in 3D as close as possible.

• 2D medial axis of a polygonal shape consists of smooth curves
of degree 1 and 2, which can be fitted in the manner described
above.

An example of the object and its planar projection is shown in the
Fig. 3.

Each knot of the 2D skeleton is a projection of at least 2 points on
the surface (see Fig. 4). A maximal inscribed ball tangent to the
surface ∂Ω at those two points is a good mapping of the knot into
the 3D space.

The main problem of this method is the possibility of occlusions.
For example, if one of the legs of the horse in Fig. 3 was occluded
by another one, the usage of this particular projection would lead
to an incorrect result. For some models it’s possible to find a pro-
jection which gives no occlusions. The incorrect projection with
occlusions produces significant approximation error. But for some



Figure 3: A model of a horse (left), its orthogonal planar projection
with the 2D medial axis (center) and the approximating fat graph
(right).

Figure 4: 2D projection (left) of a 3D cylinder (right); center of the
maximum inscribed circle is a projection of points A,B.

shapes it’s impossible (or very difficult) to find a good projection
with no serious occlusions. This problem is solved by the prelim-
inary segmentation. The shape is divided into tubular segments.
Each segments is approximated with its own fat graph produced
by some particular planar projection. Finally, all these partial fat
graphs are joined into one.

The segmentation is defined by a set of points

Qs = {q1, . . . ,qs},qi ∈ ∂Ω. (6)

Let ρΩ be a geodesic distance on the surface ∂Ω. Then each seg-
ment Si is defined as a set of points closest to qi:

Si = {x ∈ ∂Ω|∀k, 1 ≤ k ≤ s, ρΩ(x,qi) ≤ ρΩ(x,qk)}. (7)

An example is shown on the Fig. 5.

Figure 5: Segmentation of the model.

If the segmentation based on the set Qs is not detailed enough, we
can replace it with a new one

Qs+1 = Qs ∪ {qs+1},qs+1 = arg max
x∈∂Ω

ρΩ(x, Qs), (8)

where
ρΩ(x, Qs) = min

1≤i≤s
ρΩ(x,qi). (9)

The segmentation process starts with the set Q2 which consists of
two points which are most distant from each other.

The short summary of this chapter gives us the following scheme
of the algorithm.

1. Segmentation of the model.

2. Choosing the best 2D projection for each segment (the word
”best” means that this projection leads to the least value of the
approximation error on the next step).

3. Computation of the approximating fat graph for each segment
using the planar skeleton of the projection obtained on the
previous step.

4. Join all of the fat graphs into one and final fitting using the
numerical methods.

4. EXPERIMENTS

The described algorithm was successfully implemented. As men-
tioned above, it’s impossible to compare the quality of the skeletons
produced by other methods, since there has been no numerical cri-
terion for evaluation of the difference between the curve-skeleton
and the given shape. We’ll prove the capacity of our approach in
the way that is common in the literature on the curve-skeletons,
which is based on the visual evaluation and experimental proof of
the claimed properties.

First of all, we demonstrate the examples of curve-skeletons pro-
duced by the described algorithm (see Fig. 6). 3D models which
have been chosen for the experiment are widely used to evaluate
various computer geometry algorithms, so they’re appropriate for
the visual comparison with other methods.

Figure 6: Examples.

It’s useful to discuss the properties listed in [4]. Homotopy equiv-
alence between the curve-skeleton and the shape is not guaranteed,



since the fat graph with relatively large amount of edges approx-
imates wide non-tubular fragments of the shape with a loop con-
sisting of a pair of edges. However, this property can be easily
provided by more strict requirements for the topological class. In-
variance under isometric transformations (i.e. transformations in
which the distances between points are preserved) is obvious. The
possibility of reconstruction of the original shape is provided by
the definition of a fat graph: the image of the fat graph is a 3D
manifold which approximates the original object with a known pre-
cision. The reliability (which means that every boundary point is
visible from at least one curve-skeleton location) is not guaranteed,
but it’s achieved when the fat graph has enough edges. The robust-
ness is implied by the robustness of the function ε(Ω, F ).

In order to justify the meaningfulness of the function ε(Ω, F ),
which is the core part of the described method, we’ve prepared a
number of various curve-skeletons of the same object. These skele-
tons were made without any fitting and with badly tuned parameters
of the algorithm. The curve-skeletons and their corresponding ap-
proximation error values are shown on the Fig. 7. It’s pretty obvious
that the greater the value of ε(Ω, F ), the worse the visual quality of
the produced curve-skeleton. That implies that the proposed defini-
tion is not only theoretically grounded but also has some practical
utility.

(a) ε = 0.0077 (b) ε = 0.0080

(c) ε = 0.0082 (d) ε = 0.0089

Figure 7: Curve-skeletons of the horse with different approxima-
tion error.

5. CONCLUSION

In the paper, a new mathematical model for curve-skeleton for-
malization was presented. This model allows to compare and re-
search various approaches for the 3D skeletonization. Also, a new
algorithm for skeletonization was described, implemented and dis-
cussed. The further research involves the following issues:

• elaboration of the model, in particular, approximation evalua-
tion via Hausdorff metric;

• further development of the algorithm, better selection of the
first approximation and formalization of the iterative fitting.
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