Resolution Independent NURBS Curves Rendering using Programmable
Graphics Pipeline

Rami Santina
CCT International
rsantina@cctintl.com

Abstract

Non-Uniform Rational B-Splines (NURBS) are widely used,
especially in the design and manufacturing industry, for their
precision and ability to represent complex shapes. These
properties come at the cost of being computationally ex-
pensive for rendering. Many methods have tackled NURBS
rendering by view based approximations and/or heavy pre-
processing. We present a method for resolution indepen-
dent rendering of curves and shapes, defined by NURBS, by
utilizing the high parallelism of the programmable graph-
ics hardware. The computation of the curve is processed
directly on the GPU, without the need for complex pre-
processing and/or additional storage of the basis functions
as textures. Our method enables rendering of a complex
NURBS shape in precise form, by defining only the curve’s
hull. We also present a method to enhance the performance
of the preprocessing stage, mainly triangulation, that fits
our requirements and speeds up the process. With opti-
mized preprocessing and using only the mobile profile of the
programmable graphics pipeline, we achieve a fast and reso-
lution independent method for rendering NURBS based 2D
shapes on desktop and mobile devices.

Keywords: NURBS, Curve Rendering, Resolution Inde-
pendence, GPU Algorithm, Mobile Graphics.

1. INTRODUCTION

Resolution independent rendering is becoming a standard re-
quirement for visualizing shapes. Earlier methods presented
a resolution independent rendering for Bezier curves. The
Bezier form, by definition, limits the curve’s shape to the
position of the control vertices. Thus, editing the control
vertices is the only degree of freedom (DoF) for defining
the curve. Such form of editing requires a regeneration of
the shape and/or additional control vertices. In addition,
designing some shapes using Bezier requires more control
vertices and sometimes a higher order definition; this can
be reduced by using a more general family of curves. Non-
Uniform Rational B-Splines (NURBS) are widely used for a
precise design of complex shapes using fewer control vertices,
especially in CAD/CAM based applications. The evaluation
of a NURBS curve is quite expensive requiring a recursive
computation of the basis functions. Many tools transform,
as a preprocessing step, the curves to a more simplified form
to speed up the rendering.

In this paper, we present a method for Resolution Indepen-
dent rendering of 2D shapes, defined partially or totally by
NURBS curves, using the graphics hardware. Our method
defines a simple and memory efficient approach to render 2D
NURBS shapes by utilizing the high parallelism of the pro-
grammable graphics hardware. The NURBS curve is evalu-
ated, using an implicit function, during rasterization.

The rest of this paper is organized as follows: Related Works

are discussed in Section 2. . In Section 3., we present a gen-
eral overview of our method describing the preprocessing
stage and the GPU based NURBS curves rendering algo-
rithm. In Section 4., we enhance the rendering technique to
anti-alias the resulting curve. In Section 5., we discuss anti-
aliasing for the whole shape to ensure generating a smooth
and continuous representation.

2. RELATED WORKS

In [1], the authors presented a method for rendering NURBS
curves on the GPU using textures, generated in a prepro-
cessing phase, to store the values of the basis functions de-
pending on the curve’s order. This technique produces good
results, but requires a computationally expensive preprocess-
ing step and additional memory to store the textures.

To represent our NURBS shapes on the graphics hardware,
we depend on the curve’s implicit form [2]. In [3] and [4], im-
plicit curve rendering has been used for representing curves
and surfaces based on distance approximations. In [5], the
authors presented a method for embedding sharp linear fea-
tures into images to obtain resolution independence while
leveraging GPU pixel processing. In [6], curved elements
were embedded into texture images at the texel level. In
these methods a computationally expensive preprocessing,
performed on the CPU, was required.

In [7], the authors presented a method for rendering 2D re-
gions based on quadratic Bezier curves. They defined each
curve by a triangle, formed by the curve’s control hull. Each
of these triangles is rasterized using an implicit equation
which defines the Bezier Curve. The mosaic formed by the
set of such triangles along with the non-curved triangles gives
the form of the final 2D shape. They then extended this
process to handle cubic Bezier curves defined by neighbor-
ing triangles, depending on a classification of the curve. For
preprocessing, the authors rely on constrained delaunay tri-
angulation for generating the non-curved triangles; which is
computationally expensive, in its general form. For anti-
aliasing of the whole shape, they primarily depend on hard-
ware accelerated Multi-Sampling. This technique produces
good results but does not provide high quality anti-aliasing
for tiny and skinny shapes, like small text, since the shape
as a whole will be blurred.

One of the main applications for [7], is resolution indepen-
dent font rendering. Earlier methods for font rendering are
based mainly on generating a texture processed on the CPU
[8], which produces crisp and sharp small text, but are res-
olution dependent. Our algorithm supports font rendering
since the bezier curve is a special case of NURBS. In section
5. we will present a technique which produces high quality
text, as an optional extension to our method.

3. ALGORITHM OVERVIEW

The input to our algorithm is a set of outlines which rep-
resents the shape’s boundaries. Each of the outlines con-
sists of a set of connected vertices. The vertices are of two
types, namely: off-curve and on-curve (interpolated by the
curve). One or more off-curve vertex defines a curve with
endpoints being the closest neighboring on-curve vertices
from the same outline. Examples of similar outline based
definition are the 2D CAD drawings, scalar vector data, and
fonts data (figure 1). In addition, each off-curve vertex has
a weight, which defines the influence of the vertex on the
curve’s final shape. An off-curve vertex with no predefined

weight is assigned a weight w = 1.

Figure 1: Snapshots of Rendered text, using the NURBS
rendering described along this paper, with and without the
discarded pixels of the curved triangles showing method
compatibility with TTF rendering. Left: the glyph of char-
acter S from a TTF based font data. Right: A conic shape

We convert all the curved regions of an outline to a set of
triplets, defined by two on-curve vertices surrounding an
off-curve vertex. This representation enables us to map
the curved regions to a set of curved triangles. For the
quadratic case, the conversion is simply performed by rep-
resenting each curve segment by the 3 vertices that influence
the curve shape. As for the cubic case, we subdivide the
curve to the quadratic form [9]. Generalizing the equations
to cubic form is doable by formulating the equations in the
same steps described along this paper, but will require a
preprocessed classification of the curve’s shape and a more
computationally expensive rendering. The transformation
to quadratic is a mathematical approximation. Since the
rendered curve is accurate only to the pixel level, this ap-
proximation doesn’t effect any details of the shape

With all the curved regions defined as a set of triangles, we
map the rendering of the curves to texture space; assigning
the curve control points as texture coordinates to the curve
vertices, this step is detailed in Section 3.2. As for the non
curved parts we perform a modified Delaunay triangulation
(Section 3.1). Finally, the set of triangles generated by the
triangulation along with the curved triangles form the final
shape of the 2D object. An example output is shown in
figure 2.

Figure 2: A CAD handle rendered using our method, with
different weights. Right: Zoom in on part of the shape.

The produced shapes will have the following properties:

1. viewpoint independence, since the curves are computed
on the GPU, using an implicit function, during the ras-
terization phase.

2. minimized memory usage, since we are not using subdi-
vision to approximate the curved parts and we are not
using any textures in the algorithm.

3. high performance rendering, since preprocessing
(mainly triangulation) is computed once at input defi-
nition and rendering is processed directly on the GPU.

4. mobile compatible, since our method only uses features
included in the mobile profile (OpenGL ES2)

3.1 Preprocessing

In this section, we present a modified version of constrained
delaunay triangulation [10] that fits our requirements, re-
moving the need for any cleanup stages. Note that, this is
not a requirement for the algorithm described in this paper;
but is a major block in the preprocessing phase which af-
fects the overall performance and memory usage. As stated
earlier, the curved regions are transformed into curved tri-
angles which excludes them from the general triangulation
step and thus from the algorithm described in what follows.

First, we transform each of the input outlines to a set of
connected half edges forming a loop A. Then, we add each
A, sequentially, to the final set of loops A. While adding, we
check if this loop is intersecting, constrain, or is constrained
by any of the already added loops in A, using a simple ray
tracing (in/out) test. If the loop constrain or is constrained,
we combine the two loops at the closest pair of vertices by
adding two sibling half-edges between them. Hence, we get
a simplification of the problem since now we have only one
well connected loop. If the loop intersects, we split at the
intersecting positions, which may result in a maximum of two
new vertices. Then, we constrain the first by the contained
part of the second and combine the two open ended parts
forming another closed loop.

At the completion of the above steps, A contains a set of
independent closed loops that define the resulting shape.
Hence, we can now triangulate each loop separately with-
out any additional cleanup steps.

Figure 3: Top Left: Input shape defined as a set of con-
nected vertices forming five outlines. Middle: Outlines con-
verted to half edges. Right: The constraint outlines are
merged with the respective outline (red half-edges), and the
intersecting outlines are split editing the second large out-
line (green half-edges) and forming the third outline (blue
half-edges)

In figure 3, the five input outlines are transformed into 3
well connected independent outlines. This step simplifies the

triangulation process of the shape, to be a triangulation of
independent set of loops, where a cleaning phase is no more
required to define the holes. Note that we can not guarantee
that a complete delaunay triangulation can be achieved, but
we can maximize it using a greedy approach.

3.2 Quadratic NURBS Rendering

Since all the curved parts of the region have been trans-
formed into quadratic NURBS, the following is applied to
all the curved triangles.

The general form of a NURBS curve is given by,

Yo Nip(z)w P;

C(x) = = 1
(z) S Ny p@w; (1)
where
1 ift; <z <tipa
N; = -

(@) {O otherwise.

and
Nip(z) = (@ = ti)Nig-1(2) | (tiva = 2)Nip1,a-1(2)

tita—1 — b tivd — tit1
where t; corresponds to the knot at location 7 in the Knot
Vector.

Equation 1, gives the definition of a NURBS curve C as a
function of the parameter x, where P; are the control points
and N; p(u) are the basis functions of degree D. w; are the
weights of each control point. The special case of % that
may arise in one of the basis functions, is taken to be 0.

We first map the curve definition to texture space; by as-
signing the control points of our quadratic NURBS curve as
attributes to the vertices. Hence, the control points po, pi,
and po are assigned to the vertices by the set [u v w], where
[u v] are the texture coordinates and w is the weight. We
set po = [0 0 wo], p1 = [3 w1] and p2 = [1 0 wa), where
p1 is assigned to the off-curve vertex. During rasterization,
the GPU will calculate a texture coordinate for each pixel
on the interior of the triangle by interpolating the defined
texture coordinates.

Since u belongs to [0 1] and the curve is defined in the do-
main [0 1], we get the following property: for each value of u
generated by the interpolation there exists a value v which
is on the curve. In the fragment shader, we determine the
fragment position w.r.t. the curve by evaluating the implicit
function of the curve [2], which can be derived as:

wiu(l — u)
(wo — 2w1 + w2)u? + 2(w1 — wo)u + wo

f=v—- 2)

If f < 0, then the fragment belongs to the region below the
curve (in). Otherwise, it belongs to the region above the
curve (out). With this function we can choose which part
of the triangle we which to render, above the curve or below
it. Note that, equation 2 is the implicit form of equation
1, where D = 3 and applying triple Knot insertion. An
illustration of this process is provided in figure 4. In figure
5, a sample output with different weight values is shown.
Also we see the basic difference with [7] where the latter can
only render the triangle on the far left.

By 2] P[0505w]

[
T '
1
P00wW,] P10w)]

Alxy2)

Figure 4: Left: Triangle in world coordinates. Middle:
corresponding mapping in texture space. Right: Final Im-
age in screen space.

A A A A

Figure 5: A triangle rendered with decreasing weight val-
ues at the off-curve vertex. Left to Right: wi=1 — 0. In
comparison, [7] can only render the left-most shape for the
given triangle

4. CURVED REGIONS RENDERING

The in-out function of equation 2 does not provide a
smoothly curved boundary of the shape, due to aliasing ar-
tifacts. In this section, we enhance equation 2, to provide a
smooth interpolation between the in and out parts. We en-
hance this equation, to handle change factor in the (z,y) di-
rections by computing 7g(x,y) according to the chain rule:

z wi((wo—wp)u® —2woutwg)g¥
9y (au2+42Bu+wg)?
vy = (3)
y _ wi((wo—wa)u? —2woutw)g¥
9y (au?+2Butwp)?
where
a=wo— 2w +ws, f=w1 —wo
and gj' denotes 2 (b) the values of the partial derivative of

t wr.t. a in the b direction, and ¢t = (u,|v|) is the abso-
lute value of the texture coordinates at the current location.
Absolute values of the texture coordinates are used since we
negate v to define that the out region is required instead of
the in region.

The fragment shader of the programmable pipeline supports
the computation of functions of the form gy, by local differ-
encing, since GLSL version 1.x. Having the gradient ap-
proximation, we compute e(u, v) which resembles the signed
distance from the current pixel to the curve.

f
Ivgll

e(u,v) = % — sign(v)

(4)

The sign function is used to provide the ability to render
any of the two regions within the triangle (in or out). Hence
to render the out region of the triangle, we negate the sign
of the v texture coordinate of pi. Using the value of e(u,v),
we classify the fragment according to the equation:

in e(u,v) > 1
e(u,v) <0 (5)
boundary otherwise.

class(u,v) = { out

In Equation 5, we get a classification of three cases in com-
parison to the previous two, provided by equation 2. If
class(u,v) is determined as in, we render the fragment with

full color/shade/texture. If the classification is out, we dis-
card the fragment or render it with the back color/texture,
depending on the rendering technique used. In the bound-
ary case, we do a linear interpolation between the back color
¢y and the shading color ¢y, as defined in equation 6.

color = (1 — e(u,v))cy + e(u,v)cy (6)

Other rendering techniques might need to define only the al-
pha channel, in that case we use the value of e(u, v) clamped
to the region [0 1]. An example of this process is shown in
figure 1 where discarded pixels are rendered in red. Figure
6 shows the smoothness provided by the extended approach
described above.

Figure 6: Left: A NURBS shape, rendered using our
method. Right: Zoom in to the area marked in red, showing
the smoothness

5. ANTI-ALIASING

In what follows, we will present a View Based Anti Alias-
ing (VBAA) technique for dealing with skinny small shapes,
such as tiny text and condensed P&ID cad drawings. This
step is optional since a one pass rendering will provide good
results, but to get a crisp overall image an additional ren-
dering pass is required. First, we compute the size d using
the following equation:

d=r-(Mp- Bw) (7

where 7 is the radial region of fragments that will affect the
final fragment color, M, is the projection matrix from world
coordinates to screen coordinates, and B,, is the bounding
box of the shape. We then render the shape into a texture
of size d. In the second pass we attach the generated tex-
ture to By, and apply a Gaussian based filter of radius r
to produce the final rendered image. We assign horizontal
and vertical texels a higher weighting average than diagonal
texels. This is to provide the sharp and crisp features of the
final shape. A comparison of the output produced by VBAA
w.r.t. MSAA is shown in figure 7.

The quick brown fox jumps over the lazy dog
The quick brown fox jumps over the lazy dog

The quick brown fox jumps over the lazy dog

The quick brown Fax jumps over the lazy dog

Figure 7: A comparison between rendering using VBAA
and hardware MSAA at different sizes. Top: A string ren-
dered at two different sizes using the View Based AA. Bot-
tom: Same string rendered with 4x MSAA.

6. ACKNOWLEDGMENT

The author is grateful for all the reviewers of this work re-
garding the algorithm and its application. A special thanks

to Sven Gothel and the JogAmp open-source community for
the valuable discussions held regarding this work.

7. CONCLUSION

This paper presents a method for a fast and resolution in-
dependent rendering of NURBS curves and shapes, with-
out the need for heavy preprocessing. With our method, a
user is able to render NURBS shapes in high performance,
low memory usage, and high quality anti-aliasing around
the curve. We have also shown how our method can be
used to render lower order curves (Bezier) such as fonts by
setting the weights to one. Finally, since our method does
not require heavy computations, it can be used to visual-
ize NURBS shapes on mobile devices. The complete source
code of the algorithms presented in this paper is published in
JOGL open-source project, part of the JogAmp Community.

8. REFERENCES

[1] Adarsh Krishnamurthy, Rahul Khardekar, and Sara
McMains, “Direct evaluation of nurbs curves and sur-
faces on the gpu,” in Proceedings of the 2007 ACM
symposium on Solid and physical modeling, New York,
NY, USA, 2007, SPM ’07, pp. 329-334, ACM.

[2] Thomas Warren Sederberg, Implicit and parametric
curves and surfaces for computer aided geometric de-
sign, Ph.D. thesis, West Lafayette, IN, USA, 1983,
AAIB8400421.

[3] H. Pottmann, S. Leopoldseder, M. Hofer, T. Steiner,
and W. Wang, “Industrial geometry: recent advances
and applications in cad,” Comput. Aided Des., vol. 37,
pp. 751-766, June 2005.

[4] Gabriel Taubin, “Distance approximations for rasteriz-
ing implicit curves,” ACM Trans. Graph., vol. 13, pp.
3-42, January 1994.

[5] Jack Tumblin and Prasun Choudhury, “Bixels: Picture
samples with sharp embedded boundaries,” in Ren-
dering Techniques, Alexander Keller and Henrik Wann
Jensen, Eds. 2004, pp. 255264, Eurographics Associa-
tion.

[6] Ganesh Ramanarayanan, Kavita Bala, and Bruce Wal-
ter, “Feature-based textures,” in Rendering Techniques,
Alexander Keller and Henrik Wann Jensen, Eds. 2004,
pp- 265-274, Eurographics Association.

[7] Charles Loop and James Blinn, “Resolution inde-
pendent curve rendering using programmable graphics
hardware,” ACM Trans. Graph., vol. 24, no. 3, pp.
1000-1009, 2005.

[8] Sampo Kaasila, “Method and apparatus for moving
control points in displaying digital typeface on raster
output devices,” in US Patent 5155805. 1992, Apple
Computer, Inc.

[9] Les Piegl and Wayne Tiller, The NURBS book,
Springer-Verlag, London, UK, 1995.

[10] L. P. Chew, “Constrained delaunay triangulations,” in
Proceedings of the third annual symposium on Compu-
tational geometry, New York, NY, USA, 1987, SCG 87,
pp. 215-222, ACM.

