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Abstract 

Feature detection in color images frequently consists in image 
conversion from color to grayscale and then application of one of 
many known grayscale detectors. This approach has a few disad-
vantages: some features become indistinguishable in grayscale 
and features ordering based on grayscale detector response do not 
accord with features order of importance from human’s percep-
tion point of view. In this paper the method for direct detection of 
blobs in color images is proposed. The proposed algorithm is 
based on scale space approach and estimates blobs sizes. Two 
modifications of the proposed method are given and compared. 

Keywords: color blob detection, feature points, scale-space, hes-
sian matrix. 

1. INTRODUCTION 

Point and linear feature detection is a base problem of image mo-
saicing, image registration, 3D recovery, pattern recognition, and 
scene analysis. It has been shown [8] that blobs are the most ap-
propriate point features for the applications which need feature 
matching. In contrast to corners [4], blobs [8] have more stable 
location and size. The algorithm for color blob detection will be 
proposed in the paper. 

Feature detection in color images often consists of conversion 
from color to grayscale mode and application of one of grayscale 
detectors. This approach has disadvantages described below. 

Most of feature detectors [1, 4, 11] consist of three steps. The first 
of them is application of some transform to image in order to 
construct Feature Response Image (FRI). Typical examples of 
FRI are gradient absolute value image (for Canny edge detection 
[1]), difference of Gaussians (grayscale blob detection [8]), Harris 
functional (corner detection [4]). The second is extrema detection 
(or non maxima suppression [1]) in FRI. The third step is thresh-
olding or hysteresis [1]: sufficiently large extrema are considered 
to be features. Using of thresholds gives rise to the first argument 
for color image analysis without conversion to grayscale: a possi-
bility of feature distinguishability reduction. Equal brightness of a 
feature and background is a rare situation, but visibility decreas-
ing of some features after conversion to grayscale is typical. 

For a wide class of algorithm correct feature sorting in order of 
their importance is significant. [5] can be considered as an exam-
ples of the algorithms which estimate model parameters (homo-
graphy or essential matrix) using matched pairs of features from 
different views. Estimation is fulfilled in two stages: using pairs 
of “most important” features (with high FRI value) and refine-
ment with all feature pairs. If feature ordering is not stable, sets of 
most important features from different views can contain images 
of different points of 3D scene and matching will be incorrect. 

The corner [10] and edge [2, 3] detectors for color images are 
known. Unfortunately such approach is not applicable to features 

dependent on second image derivatives. In this paper two variants 
of color blob detection are proposed. In our method sizes of blobs 
are defined adaptively in scale-space. We know the only work [9] 
on color blob detection, comparative discussion of the proposed 
method and [9] will be given. Also comparison with detection in 
converted to grayscale images is presented. 

2. SCALE-SPACE 

Blobs in image can be described using derivatives of an image 
brightness function. However, the input image  yxI ,  is given at 

discrete pixel mesh in the plane  yx, . Scale-space theory [7] 

proposes to use instead discrete image  yxI ,  its version 

 tyxL ,,  blurred with the Gaussian kernel  tyxG ,, : 
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Blurred function  tyxL ,,  is infinitely differentiable. Using 

convolution properties the derivatives of  tyxL ,,  can be cal-

culated via convolution of  yxI ,  with the corresponding deriva-

tives of Gauss function. Thus image derivatives depend on the 

blurring parameter 2t  called scale [7]. 

In blob detection there is no a priory known scale, which should 
be used for derivatives calculation. A blob should be detected at 
the scale where it is visible better. Such scale is proportional to 
the blob size. This leads to consideration of one-dimensional fam-
ily of images  tyxL ,,  blurred with different t . 

Let us notice that since Gauss function is used as the blurring 
kernel, then function  tyxL ,,  satisfies diffusion equation [7]: 
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3. GRAYSCALE BLOB DETECTION AT A FIXED 
SCALE 

Let us consider Taylor series (3) of image brightness at the point 
 yx,  in order to explain popular blob [8] detection techniques 

basics. 
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In the middle of a blob first derivatives (gradient) are small and 
the second term becomes the main. Image brightness  0,, tyxL  

defines the surface and eigenvalues 1 , 2  ( |||| 21   ) of Hes-

sian matrix characterizes curvature of this surface in direction of 

eigenvectors 1v , 2v . If both curvature values have the same sign 

and similar magnitudes then the feature is blob. Thus grayscale 
blob detection procedure consists of FRI construction  yx,2  

and local extrema detection. 

 In order to avoid square root calculation Laplacian (4) is fre-
quently used as FRI for blob detection: 

Another popular FRI for blob detection is determinant of Hessian 
matrix  Hdet . 

4. COLOR BLOB DETECTION AT A FIXED SCALE  

4.1 Color variation vector and Hessian matrix for 
color image 

Feature detection using Hessian matrix eigenvalues cannot be 
directly applied to color images. Usually in order to solve this 
problem grayscale image is constructed as a projection of color 
image to some direction in color space, for example, 
 114.0,587.0,299.0 . In this work we propose to select color 

projection direction adaptively in every image point as a direction 
in color space of the fastest color change. 

In order to introduce vector of the fastest color change let us ap-
ply Laplace operator to each of image color channels and let us 

introduce auxiliary vector C


: 
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Application of the Laplace operator, i.e. convolution with second 
derivatives of Gauss function, means difference between weighted 

mean   TBGRC   ,,
3

1
 over the point neighbourhood of 

radius 0r  and weighted mean   TBGRC   ,,
3

1
 over 

outer ring neighbourhood (Figure 1). Here GNr 0 , where 

GN  is the dimensionality of used Gaussian function, in our case 

2GN . So we can say that   CCC


 is a color variation 

vector in the feature neighbourhood. 

 

 

Figure 1: Second derivative of the 1D Gauss function. 

 

Direction of C


 is a vector of the fastest color change (6): 
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In order to form Hessian matrix, derivatives of the adaptively 
projected image should be constructed. Derivatives calculation in 
the point  ii yx ,  via convolution with Gaussian derivatives would 

require forming of separate image iL , using the fixed coefficients 

 ii yxc ,


 in all points of iL . 
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Fortunately we can avoid building of this image set  iL  and cal-

culate derivatives in all points directly from color components 
derivatives: 
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where  D̂  is differentiation operator. 

(8) 

Since only adaptive image derivatives are needed for blob detec-
tion, the proposed method does not contain image conversion 
from color to grayscale. 

4.2 Detection at a fixed scale 

Hessian matrix can be formed using derivatives (8). Further blob 
detection is analogous to detection in grayscale images using 
eigenvalues 1 , 2  ( 21   ) of Hesse matrix. 

Let us chose threshold   characterizing maximum allowed ob-

longness of a blob. Local extrema of FRI ),(2 yx , where 

0112   , are detected as blobs. These local extrema can 

be detected via scanning by 33  frame and comparing central 
pixel on FRI with its 8 neighbour pixels. In our experiments 

8  have been used. 

In the previous work [6] ),(2 yx  was used as FRI and local 

maxima needed to be detected. Detection of maxima instead of 
maxima and minima slightly saves computation time but leads to 
artifacts. 

4.3  “Continuity” and “compatibility” properties 

Like classical color extensions of corner [10] and edge [2, 3] de-
tectors the proposed method obeys an important “continuity” 
property: small changes in RGB channel values results in small 
FRI changes. It also obeys property of “compatibility” with gray-
scale detector: when image color components are equal: 

),(),(),( yxByxGyxR  , (9) 

formulae used to construct FRI of color image come to formulae 
used for grayscale images. Thus the results of detection using 
color and grayscale algorithms are the same when (9) is true. 

5. TWO VARIANTS OF SCALE-SPACE BLOB 
DETECTION 

Unlike edge detection, where incorrect scale selection frequently 
leads only to some change of the edges shape, blobs will be 
missed if incorrect scale is used for detection. In the current sec-

  21   yyxx LLtrace H . (4) 



tion the method for scale-space detection which allows to detect 
feature at the scale where it is better visible is proposed. 

For blob detection in scale-space we construct Hessian matrices 
(3) for a set of sequential scales jt  using derivatives (8). Then we 

construct a set of FRIs  jtyx ,,2  and detect local extrema 

via scanning with window 333  . 

This scale-space blob detection method can be modified if simul-
taneous blob and ridge detection is needed. Ridge detection [6] 
uses Hessian matrix  tyx ,,H , characterizing brightness curva-

ture in 3D space  tyx ,, : 
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Using of second eigenvalue of Hessian matrix  tyx ,,H  (10) as 

FRI gives result equivalent to result of detection with  yx,H  

(3): sets of detected local extrema are almost the same (see exam-
ple in Figure 2) and contrasts of the corresponding extrema are 
close. To compare extrema contrast two values have been calcu-
lated: in case of local maxima max1  meanc   and 

maxmax2  prec  , where max  is detected maximum value, 

maxpre  is maximum value among 333   - neigbourhood of max  

of size 333  , mean  is mean value among 333  . Analogi-

cally in case of local minima: min1  meanc   and 

minmin2 prec  . Mean values over the test base, containing syn-

thetic and natural images, are 3.21 c  and 02.12 c . 

 

  
a)                                               b)

 c) 

Figure 2: The blobs detected (response threshold 1.25): a) using 
 yx,H , b) using  tyx ,,H , c) color of ellipses correspond to 

blob response. 

 

Figure 3 illustrates eigenvalues of  yx,H  and  tyx ,,H  at a 

set of scales. For a figure in the left part four FRI sets have been 
calculated:  tyx ,,1  and  tyx ,,2  of  yx,H  and 

 tyx ,,H . Each diagram in the right part of Figure 3 contains 

the same row of FRI taken at sequential scales. Rows ccy  and ecy  

of FRIs are shown, where circle blob in the original image has 
center  cccc yx ,  and elliptic blob has center  ecec yx , . It can be 

seen that in the middle of circle or elliptic blob there is evident 
extremum of  tyx ,,2  and both eigenvalues 1 , 2  have 

close values. 

6. COMPARISON 

Adaptive projection (8) preserves features distinguishability to-
wards background unlike methods using a fixed direction or the 
adaptive method [9] proposed by Ming and Ma (11): 
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Unlike the proposed algorithm method [9] take into consideration 
only the color in current point and do not use background color. 
Let us consider an example blob of color  0,0,255  against a 

background of color  5,0,255 . In formula (11) red component, 

which does not distinguish feature and background, has the high-
est contribution while the most important blue component is sup-
pressed, so projection direction is  02.0,0,98.0 . In our method 

(8) a component has the higher weight the higher change between 
feature and background for this component. The color variation 
vector is proportional to  1,0,0  for the above example. 

Comparative examples of blob detection with the proposed algo-
rithm and detection after conversion to grayscale are given in 
Figure 4. It can be seen that after conversion to grayscale most 
noticeable from the human perception point of view color features 
are missed. At the same time these features have been detected by 
the proposed method with high response. 

7. CONCLUSION 

Two variants of scale-space algorithm for blob detection in color 
images have been developed. Up today the color detectors of 
features dependent on first derivatives (edges and corners) were 
known. In this paper we have proposed an other approach to using 
color information. In contrast to previous approach our method 
can be applied to features dependent on second derivatives, par-
ticularly blobs. It has been showed that the proposed method has 
advantages in comparison with the only previously known color 
blob detector and with detection after conversion to grayscale. 
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Figure 3: Eigenvalues of  yx,H  and 

 tyx ,,H  at a set of scales. For a 

figure in the left part four FRI sets 
have been calculated:  tyx ,,1  

and  tyx ,,2  of  yx,H  and 

 tyx ,,H . Each diagram in the right 

part contains the same row of FRI 
taken at sequential scales. Shown rows 

are taken in the middle of circle and 
elliptic blobs. Values in diagrams are 

normalized to [0, 255]. 

 

  
a)                                   b) 

  
c)                                    d) 

  
e)                                    f) 

Figure 4: Comparison of results obtained from the proposed algo-
rithm ((c) and (d)) and detection after conversion to grayscale ((e) 
and (f)). Response threshold is 0.75. After conversion to grayscale 

most noticeable color features are missed. 
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