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Abstract 

Noise in 3D computer tomography (CT) images is close to 
white and becomes large when patient radiation doses are re-
duced. We propose two methods for noise reduction in CT im-
ages: 3D extension of fast rank algorithms (Rank-2.5D) and 3D 
extension of a non-local means algorithm (NLM-2.5D). We call 
both our algorithms “2.5D” because the 3-dimensional NLM 
algorithm is slightly asymmetric by slice axes, while our Rank 
algorithms, being fully symmetric mathematically and by re-
sults, have some implementation asymmetry. A comparison of 
the methods is presented. It is shown that NLM-2.5D method 
has the best quality, but is very computationally expensive: its 
complexity quickly rises as a function of the neighborhood size, 
while Rank-2.5D only shows a linear growth. Artificial test 
sequences are used for signal-to-noise performance measure-
ments, while real CT scans are used for visual assessment of 
results. 

Keywords: medical imaging, CT, DICOM, filtering, enhance-
ment, noise reduction, denoising, 3D image processing. 

1. INTRODUCTION 

The problem of noise reduction in digital images has a long 
history. The first algorithms were linear filters [7], such as con-
volutions with a low-pass window function (rectangular or 
Gaussian), frequency-domain filtering, Wiener filtering. The 
problem with linear methods is inevitable loss of quality of the 
image: loss of sharpness, blurring of edges, ringing effects. 

The next wide class of image filtering methods has been intro-
duced in [15], they are called rank algorithms. The most well-
known of these methods is the median filter, which has fast 
computational algorithms [3], [14], [6]. Median filter preserves 
sharp edges, but rounds the corners in the image. Recently we 
have proposed fast algorithms for other types of range filters 
[10], [11]. Before their existence, practical applications of such 
filters were limited. Unlike median filtering and linear methods, 
rank algorithms reduce the contrast of edges without blurring or 
changing their shape. A well-known bilateral filtering algorithm 
can be roughly considered as being a rank filter too. If the exist-
ing Gaussian spatial and range kernels in [12] are replaced with 
rectangular kernels, a so-called V  averaging algorithm is pro-

duced [15]. The only fast algorithms known for the bilateral 
filter are approximating algorithms. 

Most recent works in noise reduction show the advantage of 
methods which average pixels depending on their neighborhood 
statistics, not just pixel values [1], [2]. The first method, known 
as non-local means, calculates averaging weights using similar-
ity of pixel neighborhoods (patches). The second one is more 
complex and consists of two stages. On the first stage a rough 
frequency-domain filtering is performed to facilitate the search 
of similar patches. The second stage is the joint filtering of 
groups of similar patches from the source image. In [2] there 

are comparisons of the proposed method with 5 other algo-
rithms. 

This paper focuses on noise reduction in computer tomography 
(CT) scans. CT images capture the density of a sequence of 
slices of a human body. These slices are obtained with a small 
fixed stride, which is perpendicular to the slice plane and is 
comparable with the pixel size in each slice. Together they 
represent a 3D set of data, so traditional 2D methods of image 
denoising are less than optimal because they fail to exploit a 
high degree of data correlation between slices. Independent 
noise reduction in each slice may cause difference in color and 
position of edges of objects between slices. Our main objective 
is to reduce noise and avoid the loss of small low-contrast im-
age areas. Such areas may contain symptoms of an illness and it 
is important to maintain sharp edges and prevent the loss of 
information for them. This requirement limits the use of median 
filtering and other algorithms based on the image blurring as 
they may shift the edges. 

Noise is always present in CT images. Interestingly, as the 
noise reduction methods advance over time, one can expect 
even noisier raw data to be coming from the scanner, because it 
means lower radiation dose for the patient. Specialized algo-
rithms for denoising of CT images are an area of active research 
[9], [13]. 

The noise spectrum in our images is close to white: slightly 
low-pass, but without evident directionality (Figure 1c). The 
amplitude p.d.f. is close to Gaussian (Figure 1b). This justifies 
application of standard noise reduction methods, most of which 
have been formulated for additive white Gaussian noise. An-
other study of noise in CT images is given in [4], [5]. 

 
b. Noise histogram 

 
a. Collected noise patches 

 
c. Noise spectrum 

Figure 1: Analysis of noise in our CT images. 

This paper proposes two approaches to noise reduction. A 
higher-quality algorithm is based on a non-local means [1] 
adapted to a 3-dimensional image data. We are using a fast, but 
not quite symmetric variant (we call it NLM-2.5D) developed 
in our previous work for video processing [8]. The second ap-
proach (Rank-2.5D) is using the adaptation of fast rank filters 
which do not blur or shift the edges of the image [10], [11]. The 
proposed algorithm is fully symmetric in 3 dimensions and 
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comprises the direct extension of V  averaging [15] on a 3D 

space, with an adaptive choice of   in every point of the im-
age. This   is calculated using another rank algorithm. Every 
slice is processed using information from a collection of adja-
cent slices. The implementation of the algorithm is not symmet-
ric: it is based on sequential processing of 2D slices and 1D 
filtering across slices. This allows considerable savings in 
memory, but slows down the computation. The processing time 
becomes proportional to the number of slices in the collection 
(neighborhood). A comparison of speed and PSNR quality is 
carried out on phantom images with an artificially generated 
noise. Visual results on real medical images are also provided. 

2. EV - FILTERING 

We start with some necessary definitions, following [15]. Con-
sider the current 0v  and some neighborhood S of pixel 0v  that 

contains N  pixels. Frequently S-neighborhood has a square, 
round or octagonal shape [15], [6].  

Definition 1. A rank series  )(rv  is a one-dimensional se-

quence of N  pixels from S whose elements are sorted in an 
ascending order with respect to their values: 
 1..0),1()(  Nrrvrv .  

Definition 2. Pixel’s Rv  rank R  is the position of the Rv  ele-

ment in the rank series. )( RvrankR  . 

Let’s consider some selected pixel Svc  ; for example we can 

consider 0vvc  , )}({ rvmedvc  , or )}({ rvmeanvc  ) as a 

pivot. It should be noted that under such definition the pivot 
pixel do not always satisfy conditions Svc   or  )(rvvc  .  

Then 

Definition 3. V  (or EV) neighborhood is a subset of pixels set 

 )(rv   whose values deviate from the value of the pivot pixel at 
most by a predetermined quantity  : 

})(:)({)(   ccv vrvrvv  (1) 

As it can be seen from the definition, V  neighborhood average 

can be treated as a simplified bilateral filter [12], where bilat-
eral filter parts that depend both on distance and on pixel 
brightness, are represented by rectangular functions instead of 
Gaussians. For this reason V  filtering should keep the edges of 

the objects sharp, assuming the parameter ε is properly chosen. 

3. 3D RANK FILTERING ALGORITHM 

It is proposed to use a 3-dimensional V  filtering algorithm 

with an adaptive search of parameter ε for denoising of CT 
images. Fast rank algorithms [10] are based on multiscale his-
togram approach. Either fast rank algorithms or a lazy calcula-
tions technique remain the same in a 3D case, though some 
difficulties occur with column histogram maintaining [6], [11]. 
Thus if a 2-dimensional image with the size of 512x512 pixels 
requires maintaining of 512+1 multiscale histograms, then in a 
3 dimensional case we will have to maintain 
512x512+1=262145 multiscale histograms for a sequence of 
images with the same size. Taking into account the large size of 
multiscale histograms with the specific additional information 
[10], we may see that the number above is at the limit of 
memory size of 32-bit computers. We propose to use a separa-
ble approach for reduction of complexity by processing 2D 
images. At first, V  neighborhood average will be calculated 

separately with the same pivot for all N  slices that are used for 
denoising of the current image. Then the 1D variant of V  fil-

tering will be applied to the result. Really, if the inequality (1) 
is true for a number of subsets it is true for the union of these 
subsets too. V -averaging means calculation of the ratio of 

sum of values to number of elements, so it is sufficient to sum 
up the sums for each subsets and the number elements in each 
subsets and than calculate their ration once.   

For the correct choice of the   parameter we propose to 
calculate the intensity variance in a square neighborhood of 
small radius dispR  for each pixel of the image. This step allows 

determining the uniformity of an area of a specified radius 
around the pixel. For a flat area with insignificantly varying 
color the intensity variance value will provide the noise 
variance.  

The choice of dispR  is based on the fact that the noise in CT 

images is almost non-correlated (white). So the neighborhood 
can have an arbitrary radius. Since our main goal is to preserve 
small low-contrast objects, it is essential to choose dispR  in 

accordance with the size of the object that needs to be 
preserved. Since the variance will be high on the boundaries of 
areas with different colors, it is proposed to apply a some kind 
of minimum filter to the variance image, using the 
neighborhood of a larger radius. This allows propagating 
correct values of noise variation to regions with excessive 
variance. 

So the next step is the min-filtering of variance by averaging K  
pixels with the smallest rank of the neighborhood of a larger 
radius. To completely suppress high-variance values on 
boundaries it is proposed to use the neighborhood of a higher 
radius 

dispR5.1 . Let us consider possible cases for location of a 

boundary within the neighborhood. Since the radius of the 
neighborhood is small enough, we assume that the boundary 
between the objects inside the sliding window is a straight line. 

In the easiest case (Figure 2a) the amount of pixels that 
represent variance outside the edge area is about 30% of the 
bigger neighborhood. In the worst case (Figure 2b) the amount 
of pixels for the variance of the outside-edge area is about 10%. 
These values can be easily proved by simple geometrical 
calculations. 

 

Figure 2: The area with high variance value for a) the vertical 
edge; b) the diagonal edge 

Variance minimized in such a way corresponds to adaptive ε 
value. In order to control the degree of noise reduction it is 
proposed to use a multiplier parameter M. In general the coeffi-
cient M is user-defined, but it is essential to use the range of 
[2…6] in order to simultaneously suppress the majority of noise 
pixels and to avoid blurring of the edges. 

Then V  algorithm with the ε value that was obtained on the 

previous step and the 
dispR  neighborhood radius is performed 

for each slice. It is important to emphasize that we take not the 
central intensity value of the current slice but the intensity 
value of a source image with corresponding coordinates as a 
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central pixel r fo V  neighborhood average algorithm. This 

condition is important because we apply the algorithm not to a 
2D neighborhood, but to the volume region.  

To extend the algorithm to a 3D space, it is proposed to calcu-
late the total sum and the total number of elements involved in 
the averaging for the current pixel of the current slice. As a 
result, for each pixel of each slice we receive the structure that 
contains the total sum and the amount of the V  neighborhood 

elements. 

The last step is V  filtering for slices. It is proposed to use the 

minimized variance for the source image multiplied by M  as 
the value of ε for each pixel of the source image. The averaging 
is performed with only one structure from each slice (i.e. if we 
use N  slices, only N  elements will take part in averaging). 
For the pixel ),( yxI  of the source image the necessary structures 
will be located at the same coordinates in the corresponding 
slice. The number of slices for processing is defined automati-
cally in accordance with the distance between slices. 

Let N be the number of images (slices) for denoising of one 

image, srcI  be the source image, iI  be the i-th image from the 

array of image slices, 
dispR  be the radius of the variance calcu-

lation window, )( iID  be the variance of the i-th image, M be 

the variance multiplier, Reps be the radius for a 2D spatial V  

filtering. The following algorithm is proposed for CT image 
denoising. 

Algorithm 1. 2.5D rank denoising algorithm. 

1. for i:= 0, i < N do 

2.       for each pixel ),( yxI i  of iI  do 

3.             Compute the variance of ),( yxI i  with the win-

dow radius Rdips; 

4.             Minimize variance )),(( yxID i  for iI  by aver-

aging K elements with the smallest rank using 
the window radius of 1,5·Rdips; 

5.             Perform V  filtering around the current pixel’s 

),( yxIi neighborhood to obtain the total sum 

and total count of elements for ),( yxI i . 

)),((),( yxIDMyx i , the window radius is   

Rdips and ),( yxI src  is taken as the central pixel 

of the neighborhood; 

6.       end for; 

7. End for; 

8. for each pixel ),( yxI src  of srcI  do  

9.       Perform 1D V  filtering with 

      )),((),( yxIDMyx src  for N corresponding 

      elements ),( yxI i , Ni ,1 ; 

10. End for. 

4. 3D NON-LOCAL MEANS FILTERING 

Bilateral filtering algorithm is well known in image processing 
for its simplicity and edge-preserving properties [12]. The out-
put pixel value Iout(x,y) is formed as a weighted sum of pixel 
values from the neighborhood Ω: 

 



ji

ji

out iyjxIijyxW
W

yxI
,

,

),(),,,(
1

),(  
(2)

The weights W depend on geometric distance and color differ-
ence between pixels (x,y) and (x+j,y+i) in order to facilitate 
averaging of pixels with similar values: 

 
2

2

2

22

2

),(),(
exp

2
exp),,,(
















yxIiyjxI

ij
ijyxW

 (3) 

Non-local means is a relatively novel method of image filtering 
that builds upon a bilateral algorithm. A formula (3) for pixel 
similarity in bilateral filtering considers colors and spatial coor-
dinates of two pixels. In the non-local means algorithm, this 
formula instead considers the context of two pixels [1]. Specifi-
cally, instead of comparing values of two pixels, the algorithm 
compares the content of image patches v around two pixels: 

2

2

2

2

),(),(
exp),,,(






yxviyjxv
ijyxW  (4) 

The squared norm of pixel-wise patch differences in formula 
(4) ensures that only pixels with a similar surrounding content 
are averaged together. 

The extension of this method on a 3-dimensional space is 
straightforward. For the standard 2D image processing, the 
neighborhood Ω from formula (2) is a circle or a square around 
the central pixel. For the 3D filtering, we extend the neighbor-
hood to be a sphere or cube in the 3D image space: it includes 
several image slices that are adjacent to the processed pixel. A 
2-dimensional summation in formula (2) turns into a 3-
dimensional summation and calculation of weights in formula 
(4) is adjusted accordingly: similar patches are searched among 
the array of several adjacent slices. Since the compared patches 
are still 2-dimensional, we call this method NLM-2.5D. 

For improved speed of calculations we employ an optimization 
from [8] for sparse update of weights W. 

5. SYNTHETIC PHANTOM GENERATION 

For testing the noise reduction capability of our algorithms we 
have generated a synthetic phantom image. We don not use real 
phantom images because they always contain noise due to CT-
imaging generation process. An attempt to shoot a phantom 
without noise results in high-dose shooting which is radically 
different from real medical imaging conditions. Our synthetic 
phantom construction (see Figure 3) is described below. The 
phantom body is cylindrical. It has two cylindrical “organs” 
with different radioparency. These two “organs” are connected 
by two thin truncated cones (“processes” or “ligaments”), with 
radioparency smoothly changing from one organ to another. 
Each “organ” has one truncated conic “vessel” with different 
radioparency. These truncated cone shapes are used for thin 
objects in order to detect the extent of damage to the phantom 
along the slice axis in the process of filtering (if any). 

We model all “body”, ”organs”, “ligaments”, and “vessels” 
with color jc  and density function 

),(,exp)(
2

0 yx
R

n





















 
 r

rr
r 


  (5)

which is used smooth object boundaries, mainly to avoid pixe-
lated (aliased) shapes. The center of small objects (“ligaments” 
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and “vessels”) depends on a slice position z : )(0 zr , )(zR , so 

density function depends on all 3 coordinates ),,()( zyx r . 
The resulting slice image set is obtained recursively as   

).,())(1()().,(

)().,(

1

0

zyxIczyxI

czyxI

jjjjj

bodybody





rr

r







 (6)

where large objects are added first. Typical simulated phantom 
images are presented in Figure 3. 

 

Figure 3: Simulated noise-free phantom images 

The sharpness of edges is n = 30 for body, n = 20 for “organs”, 
and n = 4…12 for different “ligaments” and “vessels”. The size 
of each slice is 512×512 pixels and the total number of slices is 
100. Thin object radii )(zR  are from 5 to 12 pixels. 

6. RESULTS 

Figure 4 shows the results of a phantom CT image denoising. 
The Gaussian noise which corresponds to the real noise distri-
bution on CT images was added to the synthesized phantom 
slices. The measured value is the improvement of PSNR in 
decibels between processed images and the ground-truth noise-
free image. Each algorithm has been run with optimal parame-
ters which maximize PSNR for each size of the neighborhood. 
The optimized parameter for Rank-2.5D was M, while the op-
timized parameter for NLM-2.5D was ρ. The patch size in 
NLM has been set to 8×8 pixels, while the “pixel” size has been 
set to 2×2 pixels.  
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Figure 4: Improvement of PSNR for the phantom image fil-
tered by different algorithms, depending on the neighborhood 

size N. 

The maximum in the curve for Rank-2.5D algorithm occurs 
when the neighborhood size is of order of smallest significant 
object size (“ligaments” and “vessels”). When the neighbor-
hood becomes larger, small objects are suppressed as noise.  

It can be seen that the algorithms are able to exploit high degree 
of correlation between image slices, which is reflected in PSNR 
and visual quality. 
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Figure 5: Speed of our C++ implementation of the proposed 
algorithms on a 2.8-GHz desktop. 

 

Figure 6: Original noisy CT image, result of Rank-2.5D algo-
rithm, result of NLM-2.5D algorithm. 

Figure 5 compares the speed of the proposed algorithms on a 
CT scan with 515×512-pixel slices. It shows that the Rank-2.5D 
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algorithm has a linear complexity growth depending on the 
neighborhood size, which makes is suitable for future high-
resolution CT scanners. The NLM-2.5D algorithm’s complexity 
grows much faster. 

Figure 6 shows the result of real CT image denoising with 
Rank-2.5D and NLM-2.5D algorithms operating on a neighbor-
hood of 7×7×5 pixels (the last ‘5’ being the number of slices). 
The value of parameter M in Rank-2.5D method has been set to 
3.5 for good visual results. This is lower than the value of M = 
5 which optimized PSNR in our experiments. 
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from Figure 5 that when the neighborhood size in slices is lar-
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neighborhood size is approximately equal to the minimal useful 
object size in the image. 
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