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Abstract

A non-iterative auto-calibration algorithm is presented. It deals
with a minimal set of six scene points in three views taken by a
camera with fixed but unknown intrinsic parameters. Calibration is
based on the image correspondences only. The algorithm is imple-
mented and validated on synthetic image data.

Keywords: Projective reconstruction, Metric reconstruction, Auto-
calibration.

1. INTRODUCTION

The problem of camera calibration is a necessary part of computer
vision applications such as path-planning and navigation for robots,
self-parking systems, camera based industrial detection and recog-
nition, etc. At present, a great deal of calibration algorithms and
techniques have been developed. Some of them require to observe a
planar pattern viewed at several different orientations [6, 15]. Other
methods use the 3-dimensional calibration objects consisting of two
or three pairwise orthogonal planes, whose geometry is known with
good accuracy [14]. In contrast with the just mentioned methods,
the auto-calibration does not require any special calibration ob-
jects [3, 4, 7, 8, 10, 13], so only point correspondences in several
uncalibrated views are required. This provides the auto-calibration
approach with a great flexibility and makes it indispensable in some
real-time applications.

In this paper we give a new non-iterative solution to the auto-
calibration problem in a minimal case of six scene points in three
views, provided that the intrinsic parameters of a moving camera
are fixed. Our method consists of two major steps. First, we use
the efficient six-point three-view algorithm from [11] to solve for
projective reconstruction. Then, using the well-known constraints
on the absolute dual quadric [5, 13], we produce a system of non-
linear polynomial equations, and resolve it in a numerically stable
way by a series of Gauss-Jordan eliminations with partial pivoting.

The rest of the paper is organized as follows. In Section 2, we
briefly recall how to construct a projective reconstruction from six
matched scene points in three uncalibrated views. In Section 3, an
algorithm of metric upgrading of the projective reconstruction is
described. In Section 4, we test the algorithm on a set of synthetic
data. Section 5 concludes.

1.1 Notation

We use a,b, . . . for column vectors, and A,B, . . . for matrices.
For a matrix A, the entries are Aij or (A)i,j , the transpose is AT,
and the determinant is det(A). For two vectors a and b, the vector
product is a × b, and the scalar product is aTb. We use In for
identical matrix of size n× n and 0n for zero n-vector.

2. PROJECTIVE RECONSTRUCTION

First of all, to avoid any degeneracies, we restrict ourselves to the
“general position case” both for scene points and camera motions,

i.e., the sequence of camera motions is assumed to be non-critical
and all the observed points do not lie on critical surfaces in a sense
of [12]. In particular, this means that the scene is non-planar and
the motion is not a pure translation or rotation around the same axis.

Given three uncalibrated images of six points of a rigid scene, we
first produce a projective reconstruction of the cameras applying
the minimal 3-view algorithm from [11]. Recall that the output of
this algorithm is either one or three real solutions for the homoge-
neous coordinates of the sixth scene point X6, whereas the first five
points are chosen to be the vectors of standard basis of the projec-
tive 3-space. The twelve entries of the camera matrix Pi are then
recovered by solving the twelve linearly independent equations (for
each i = 1, 2, 3):

xij ×PiXj = 03, j = 1, . . . , 6,

where xij is the image of Xj under the projection Pi. Thus we
found

Pi =
[
Ai ai

]
, i = 1, 2, 3.

Using the projective ambiguity [5], we transform the obtained cam-
era matrices to

P′1 = P1H0 =
[
I3 03

]
,

P′2 = P2H0 =
[
B2 b2

]
,

P′3 = P3H0 =
[
B3 b3

]
,

(1)

where

H0 =

[
A−1

1 −A−1
1 a1

0T
3 1

]
.

3. METRIC RECONSTRUCTION

The projective reconstruction (1) is the starting point for our auto-
calibration algorithm. Let the metric camera matrices be repre-
sented as

PM
1 = K

[
I3 03

]
,

PM
2 = K

[
R2 t2

]
,

PM
3 = K

[
R3 t3

]
,

(2)

where Ri and ti are the rotation matrix and translation vector re-
spectively, and K is an upper triangular matrix called the calibra-
tion matrix of the camera. It is assumed to be identical for all three
views. Our goal is to estimate K and then upgrade the projective
cameras to the metric ones.

Auto-calibration determines a 4×4 projective matrix H, that trans-
forms the projective camera P′i from (1) into a metric camera PM

i

from (2), i.e.,
PM

i = P′iH, i = 1, 2, 3. (3)

The matrix H must have the form [5]:

H =

[
K 03

−pTK 1

]
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for some 3-vector p. Then the entries of H are constrained by [1, 5]

λω∗ = P′2Q
∗
∞P′2

T
,

µω∗ = P′3Q
∗
∞P′3

T
,

(4)

where ω∗ = KKT is the dual image of the absolute conic, λ, µ
are scalars and 4× 4 matrix

Q∗∞ =

[
ω∗ q
qT r

]
,

with q = −ω∗p, r = pTω∗p, is called the absolute dual
quadric [13].

Thus, constraints (4) give 12 equations in 11 variables: r, q1, q2,
q3, five components of ω∗ (recall that ω∗33 = 1), λ and µ. Let us
rewrite these equations in form

Cx = 012, (5)

where

C = C(λ, µ) =

[
06×4 λI6
06×4 µI6

]
−D, (6)

D is a 12× 10 scalar matrix, and

x =
[
r q1 q2 q3 ω∗11 ω∗12 ω∗13 ω∗22 ω∗23 1

]T
is a monomial vector.

It follows that the determinant of any 10× 10 submatrix of C must
vanish. Denote by Si(λ, µ) the determinant of a submatrix of C
obtained by eliminating the rows with numbers i and i+ 6 for i =
1, . . . , 6. Hence we get the system Si = 0 of polynomial equations
in only two variables λ and µ.

Remark 1. Due to the form (6) of matrix C, we do not need to
compute a 10×10 functional determinant here. Each polynomial Si

can be found as
det(C1 + λC2 + µC3),

where the 5×5 scalar matrices Cj are obtained by a patrial Gauss-
Jordan elimination on matrix C.

Let us rewrite the system Si = 0, i = 1, . . . , 6, in form:

F0 y = 06, (7)

where F0 is a 6× 18 coefficient matrix, and

y =
[
λ4µ λ3µ2 λ2µ3 λµ4 λ4 µ4 λ3µ λ2µ2

λµ3 λ3 λ2µ λµ2 µ3 λ2 λµ µ2 λ µ
]T

(8)

is a monomial vector. To solve the system (7) in a numerically
stable way, we perform the following sequence of matrix transfor-
mations:

F0 → F̃0 → F1 → F̃1 → F2 → F̃2 → F3 → F̃3, (9)

where each F̃i is obtained from Fi by the Gauss-Jordan elimination
with partial pivoting.

The matrix F1 of size 8 × 18 is obtained from F̃0 by adding two
new rows: first one corresponds to the last row of F̃0 multiplied
by λ, second one — to the next to last row of F̃0 multiplied by µ.

The matrix F2 of size 12× 18 is obtained from F̃1 by adding four
new rows corresponding to the last two rows of F̃1 multiplied by λ
and µ.

Figure 1: Numerical error distribution. Median error is 2.8×10−9.

The matrix F3 of size 17 × 18 is obtained from F̃2 by adding five
new rows. We multiply the last two rows of F̃2 by λ and µ, and thus
get four additional rows. One more row is obtained by multiplying
the 10th row of F̃2 by µ.

Finally we get

µ = −(F̃3)16,18, λ = −µ (F̃3)17,18.

Remark 2. From algebraic point of view, the above sequence (9)
interreduces the ideal J = 〈Si | i = 1, . . . , 6〉. The result is the
Gröbner basis of J with respect to the graded lexicographic order.
It consists of two polynomials represented by the last two rows of
matrix F̃3.

Having found λ and µ, we compute the entries of ω∗ performing the
Gauss-Jordan elimination with partial pivoting on matrix C in (6).
Finally, we compute the calibration matrix by the Cholesky decom-
position of ω∗ = KKT, and then find (up to scale) the metric
camera matrices PM

i by (3).

Remark 3. Note that the matrices Ri estimated from (2) are not
in general rotations and thus need to be corrected [15]. We used
the singular value decomposition Ri = UiDiV

T
i and then re-

placed Ri by R̃i = UiV
T
i . It is well-known that the rotation

matrix R̃i is the closest to Ri with respect to Frobenius norm.

4. EXPERIMENTS ON SYNTHETIC DATA

The algorithm has been implemented in C/C++. All computations
were performed in double precision. Synthetic data setup is given
in Table 1, where the baseline length is the distance between the
first and third camera centers. The second camera center varies
randomly around the baseline middle point with amplitude 0.025.

Distance to the scene 1
Scene depth 0.5

Baseline length 0.1
Image dimensions 352× 288

Calibration matrix

425 0 176
0 425 144
0 0 1


Table 1: Synthetic data setup.
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Figure 2: Rotational and translational errors relative to noise level.

We have measured the numerical error by the value

‖K− K̂‖
‖K̂‖

,

where K̂ is the ground truth calibration matrix, ‖ · ‖ is the Frobe-
nius norm. The distribution of the numerical error is reported in
Figure 1, where the total number of trials is 106.

The running time information for our implementation of the algo-
rithm is given in Table 2.

Step Projective reconstr. Metric reconstr.
µs 7.9 28.4/root

Table 2: Average running times for the algorithm steps on a system
with Intel Core i5 2.3 GHz processor.

In Figure 2, we demonstrate the stability of the algorithm under
increasing image noise. We have added a Gaussian noise with a
standard deviation varying from 0 to 1 pixel in a 352× 288 image.
Each point is a median of 106 trials.

4.1 Outliers

To test the algorithm in presence of outliers (incorrect matches), we
have modeled a sequence of 70 cameras with centers on a circle,
and 400 scene points viewed by all the cameras. For each image, we
have added a Gaussian noise with one pixel standard deviation and
20% of outliers (uniformly distributed points in the image plane).

The auto-calibration algorithm was used as a hypothesis generator
within a random sample consensus (RANSAC) framework [2]. For
better computational efficiency we used the preemptive RANSAC
from [9]. The motion hypotheses were scored by the Sampson ap-
proximation to geometric error [5]. The number of hypotheses was
set to 400 for each camera position, and the preemption block size
was set to 100.

The results are presented in Figure 3 and Figure 4. No iterative re-
finements were performed in the estimation. The calibration matrix
averaged from the image sequence is as follows:

K =

399.52 2.16 161.54
0 405.37 142.14
0 0 1

 .

Figure 3: Skew parameter K12 estimated from the sequence of 70
synthetic images. Average value of K12 is 2.16.

Figure 4: The camera track estimated from the sequence of 70 syn-
thetic images. The red solid boxes are the ground truth camera
positions.

5. CONCLUSION

A new non-iterative auto-calibration algorithm is presented. It de-
rives the camera calibration from the smallest possible number of
views and scene points. A computation on synthetic data confirms
its accuracy and high speed performance. The algorithm is quite
flexible. It is reliable, for example, even in case of pure rotations
(baseline = 0), if the calibration matrix is only needed.
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