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Abstract 

In this paper we propose a new approach to progressive video 

rendering.  We apply a multidimensional filtering to samples with 

additional information about a scene along with color. Our filter 

takes noisy output of path tracing with a low amount of paths per 

pixel and yields the resulting movie quicker than tracing a large 

amount of rays. Our approach adds only a linear member O(N) to 

a path tracing computing complexity (where N is amount of 

pixels). With the help of progressive scheme the resulting video 

quality is improving after the every iteration. Using our approach 

we can get a video of a good quality even computing 10 paths per 

pixel. 

Keywords: path tracing, multidimensional filtering, progressive 

rendering, video rendering, video filtering. 

1.  INTRODUCTION 

Photorealistic rendering is one of the main tasks of computer 

graphics. A properly high quality and physical correctness are 

provided by the Monte Carlo ray tracing algorithm [Ritschel et al 

2011] (and its modifications: backward ray tracing, path tracing), 

but it has a high computing complexity that complicates 

application of ray tracing for real-time rendering. Often it takes 

minutes to render every frame of a movie even for a simple scene. 

When rendering process has finished and a user estimates the 

result he may want to change it by tweaking scene parameters, so 

the long rendering process should be performed again.  

A small amount of rays can be used for faster frames rendering, 

but it leads to highly noised results, so a filtration is necessary in 

this case. But many fast denoising methods can’t safe small details 

and sharp edges. On another hand, many high quality algorithms 

have a high complexity and can’t work in real-time. 

Aiming at achieving a high speed we apply a fast filtrating 

algorithm to noisy ray tracing results. It removes the most part of 

noise saving details and edges. The rest of noise is expected to be 

removed with the help of progressive rendering scheme after a 

few iterations. 

2. RELATED WORKS 

2.1. Bilateral filtering  

Bilateral filtering [Tomasi and Manduchi 1998] smoothes 

images while preserving edges, by means of a non-linear 

combination of nearby image values. The method is non-iterative, 

local, and simple. It combines gray levels or colors based on both 

their geometric closeness and their photometric similarity, and 

prefers near values to distant values in both domain and range. In 

contrast with filters that operate on the three bands of a color 

image separately, a bilateral filter can smooth colors and preserve 

edges in a way that is tuned to human perception. Also, in contrast 

with standard filtering, bilateral filtering produces no phantom 

colors along edges in color images, and reduces phantom colors 

where they appear in the original image. The main disadvantage 

of the bilateral filtering is its computing complexity which doesn’t 

allow to apply the classic algorithm for real-time filtering.  

Bilateral filtering is computationally expensive due to the adaptive 

kernel recomputation at every pixel. [Pham and van Vliet 2005] 

present a separable implementation of the bilateral filter. 

Separable implementation of a multi-dimensional bilateral filter 

offers equivalent adaptive filtering capability at a fraction of 

execution time compared to the traditional filter.  

In [Yang et al 2009] a new real-time bilateral filtering algorithm 

with computational complexity invariant to filter kernel size is 

proposed. Also, the algorithm lends itself to a parallel 

implementation. The method gives the same output accuracy and 

can be about 10x faster on average than the state-of-the-art.  

2.2. Non-local denoising 

Essentially different method of a non-local image denoising is 

proposed by [Buades et al 2005]. This algorithm computes for 

every pixel a weighted average of all pixels in the image. It 

compares spatial neighborhoods of pixels and gives large weights 

to the similar ones and small weights to others, so gathering 

information from the whole image, though that leads to a 

nonlinear complexity of the algorithm. In comparison to bilateral 

filtering [Tomasi and Manduchi 1998] the non-local approach 

shown better results of denoising, giving the best results on 

periodic images. In [Seo and Milanfar 2008] the non-local 

denoising is implemented for 3D filtration for video through 

enlargement neighborhoods along time axis.   

2.3. Time-coherence video filtering 

A modification of the non-local image denoising is presented by 

[Liu and Freeman 2010]. An integrating of optical flow into the 

method is a key to ensure temporal coherence in video filtering, 

and an approximate K-nearest neighbor matching reduces the high 

complexity of the classical algorithm.  

[Bartovcak and Vrankic 2012] present an adaptive pixel-wise 

algorithm based on temporal averaging. Processing blocks of 

pixels requires lots of resources, and this approach observes a 

video as a group of 1D signals – one time depended signal per 

each pixel. The proposed method is simple and intuitive, has a 

lower computing complexity than some other algorithms. Giving 

comparable to other methods results, nevertheless it has a 

weakness of edges processing. 

[Tawara et al 2004] propose to extend traditional photon density 

estimation methods for global illumination computation by using 

spatio-temporal bilateral filtering to reduce stochastic noise, while 

preventing excessive blurring in reconstructed lighting. This 

method is suitable for practical animation systems, where the 

rendering speed is the key factor even at the expense of lower 

accuracy in the lighting computation. 

2.4. Multidimensional filtering 

[Gastal and Oliveira 2012] present a new approach to efficiently 

performing high-quality high-dimensional filtering. The method 
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Figure 2. Steps of the algorithm. Computing a weighted sum 

and filtering.  

accelerates filtering by evaluating the filter’s response on a 

reduced set of sampling points and using these values to 

interpolate the filter’s response at all input pixels. The resulting 

filter is quite flexible, being capable of producing responses that 

approximate either standard bilateral filter [Tomasi and Manduchi 

1998]. The presented filter can be implemented for a large number 

of dimensions, so it can be applied for video filtering or filtering 

with additional information. For a proper choice of the sampling 

points the total cost of the filtering operation is linear both in a 

number of pixels and in a number of dimensions. 

[Sen and Darabi 2012] propose random parameter filtering for 

noisy results of Monte Carlo ray tracing with a low amount of 

samples per pixel. The method considers a sample as a high-

dimensional vector of scene parameters, that allows using more 

information about a pixel than its color, and computes functional 

relationships between sample values and random parameter 

inputs. Then the approach uses all information to compute 

weights of every pixel when applying a cross-bilateral filter 

[Petschnigg et al 2004], which removes only the noise caused by 

the random parameters but preserves important scene detail. 

2.5. Filtering for progressive rendering 

[Schwenk et al. 2012] presents an approach for filtering in 

progressive Monte Carlo rendering. This method performs a 

strong denoising with saving sharp edges and is able to display 

the first resulted image after ray tracing a few paths per pixel. 

Using light path classification high-variance and low-variance 

noise is separated into different buffers; the bilateral filtering is 

applied only to high-variance noise. High complexity of bilateral 

filtering is compensated by not each frame denoising and 

accumulating new samples during filtration process.   

2.6. Summary  

The reviewed methods can be used for filtering video, though all 

of them have disadvantages for our task. The non-local 

approaches ([Buades et al 2005], [Tomasi and Manduchi 1998], 

[Seo and Milanfar 2008], [Liu and Freeman 2010]) have very 

high computing complexity, so they don’t fit progressive video 

rendering well. The pixel-wise algorithm [Bartovcak and Vrankic 

2012] has a weakness saving noise at edges, while the bilateral 

filtering process edges better. The bilateral filters ([Tomasi and 

Manduchi 1998], [Yang et al 2009], [Pham and van Vliet 2005]) 

show good results in image and video denoising, and can be 

applied for filtering results of 3D rendering ([Tawara et al 2004]), 

though they can’t be applied for high-dimensional data without 

Figure 1. Components of the sample vector: a) color; b) time; c) depth; d) material color; e) normal direction; 

 f) reflected ray direction; g) shadow ray direction 
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modifications. The filtering for progressive Monte Carlo 

rendering [Schwenk et al. 2012] is not suitable for our task due to 

bilateral filtering disadvantages and an absence of ability to 

accumulate new samples during filtration process. Both [Gastal 

and Oliveira 2012] and [Sen and Darabi 2012] approaches can 

work with additional information and be applied for a large 

number of dimensions, though the first one is faster and 

implement a more general approach. So we use the method of 

high-dimensional filtering. In contrast to [Gastal and Oliveira 

2012] we apply it to filtering of videos saving time coherence but 

for single images. 

3. SUGGESTED APPROACH 

In our implementation frames are rendered by Monte Carlo path 

tracer with a low amount of paths per pixel (1-8 paths). The 

algorithm takes at the input a sequence of frames with additional 

information about a scene: time t of a frame for filtering, 

parameter σ of blurring strength, a size of a window. We define 

the window as a sequence of rendered frames in a definite time 

range, including time t as well. (Fig. 2)  

Information from all frames in the window is used for filtering the 

current frame. We use a Gaussian weighted sum while an 

accumulating samples from the frames. Also we can produce a 

new frame if the time t is set between existing frames. In future 

work we are going to avoid using a separate filter pass for time 

and use filtering capability of the multidimensional filter [Gastal 

and Oliveira 2012]. 

Each sample is considering as a high-dimensional vector: S = (R, 

G, B, T, Z, Mr, Mg, Mb, Nx, Ny, Nz, Dx, Dy, Dz, Sx, Sy, Sz), 

where R, G, B – computed color; T – time; Z – ray depth value; 

Mr, Mg, Mb – material color; Nx, Ny, Nz – direction of a normal 

to the first ray hit point; Dx, Dy, Dz – direction of the reflected 

ray after the first bounce; Sx, Sy, Sz – direction of the shadow ray. 

(Fig. 1) All additional data can be got from the classical path 

tracer and don’t require any considerable modification of the path 

tracing algorithm. 

As a stopping criterion of the [Gastal and Oliveira 2012] 

algorithm, a manifolds tree depth limit is chosen. The depth 2 is 

considered as a good balance of denoising quality and computing 

speed. The fixed depth and dimensions amount make the filtration 

complexity O(N). 

The algorithm works iteratively, processing the whole video 

sequence and outputting the resulted video on the each iteration. 

The following main steps of processing one video frame can be 

marked out: 

1) Accumulating information to the current frame from neighbor 

frames by computing samples as a sum of all frames with the 

Gaussian weights. We use the Gauss distribution with 

mathematical expectation equal t and dispersion equal 1 (the value 

can be varied like an algorithm parameter). 

2) Performing high-dimensional filtration of the current frame, 

using the method of [Gastal and Oliveira 2012]. We reduce the 

blurring strength σ after the each iteration [Hachisuka et al 2012]:  
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where i – iteration number, a – a parameter from (0; 1). This way 

we achieve consistency of the Monte-Carlo estimation and 

filtering blur will be vanished when the number of iterations gets 

infinite. 

3) The resulted samples are added to a current frame buffer with 

cumulative values of all previous iterations. The buffer contents 

can be displayed right after this step.  

4. RESULTS 

Our implementation performs a progressive video rendering 

through path tracing with 1 sample per pixel and 

multidimensional filtering per iteration. The method reaches a 

good output quality after 10 iterations (Fig. 3). Also the motion 

blur effect, that usually radically influences performance, can be 

Figure 3. Output of the algorithm after 1, 10 and 100 

iterations 
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achieved with the help of this algorithm with only small 

additional performance cost. 

Taking into account the additional information gives an advantage 

over other non-multidimensional algorithms. Figure 4 shows that 

our method yields a result comparable to etalon path tracing after 

10 iterations, while Gaussian filter keeps edges blurry. Path 

tracing of the equal amount of paths outputs a noisy image.   

The algorithm was implemented on MATLAB with the help of the 

filtration scripts of [Gastal and Oliveira 2012]. Frames samples 

were got from smallpt path tracer [Beason 2010].  

Taking into consideration the linear complexity of the [Gastal and 

Oliveira 2012] filtering and a high speed of tracing 1 path per 

pixel we expect this algorithm to work in the real-time on the 

modern GPU. This is our next goal.  
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a) Etalon rendering. 100 spp. b) Our approach. 10 spp. c) Progressive rendering with 

Gaussian blurring with 10 spp. 

d) Non-filtered path tracing 

rendering with 10 spp. 

Figure 4. Comparison of progressive filtering methods. 
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