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Abstract 
In the current work we consider a multi-target tracking 
problem. The proposed algorithm is based on energy 
minimization within a temporal sliding window and is a 
modification of the approach from [10]. We propose a method 
to impose physical constraints on the trajectory such as 
curvature or maximum velocity using the energy. Experimental 
evaluation of the algorithm shows that we were able to achieve 
a performance improvement compared to the base method [10]. 
Keywords: tracking, MCMC DA, energy minimization. 

1. INTORDUCTION 
Multi-target tracking is an important computer vision task. It 
implies constructing trajectories for all people in a given video 
fragment. The trajectory contains a unique identifier for every 
person and his position in all frames of the video. This task is 
important for many applications, for example: video 
surveillance, improving pedestrian safety. Despite a significant 
progress in recent years, humans are still far ahead of existing 
automatic algorithms in terms of solving this task. 
In the current work we consider tracking by detection as one of 
the most promising approaches to this task. 
All methods of multi-target tracking can be divided into three 
groups. 
Methods from the first group determine the position of the 
object in the current frame based its position in the previous 
frame. Some examples of this approach are algorithms based on 
Kalman filtering [5] or particle filtering [6]. 
Methods from the second group use information from the 
following frames to estimate the person's position in the current 
frame [10, 3]. These algorithms use energy minimization within 
a temporal sliding window. The current frame is somewhere in 
the sliding window, and people's estimated positions might 
change when the window moves. 
The third group is similar to the second. These methods use 
energy minimization on the whole video fragment, that is the 
size of the sliding window is equal to the duration of the video. 
The possibility of defining a continuous energy function that 
depends on every person's position in all frames was researched 
in [1, 7]. 
Besides this approach the same authors developed a descrete-
continuous method [2]. In this approach the energy function is 
divided into two parts: continuous and descrete. Every 
trajectory is modeled by a cubic B-spline. The continuous part 
contains terms that impose constraints on how close the 
trajectory is to detections, velocity, inter-object occlusions. The 
descrete part is responsible for associating detections from 
adjacent frames. 
The proposed algorithm is a modification of [10]. Due to the 
improvements the modified algorithm shows better perfomance 
than the base method. 

2. PROPOSED METHOD 
The base algorithm and its modification are described below. It 
consists of the following steps: applying object detector to 

every frame of the video, building tracklets, building 
trajectories, estimating people's positions in intermediate 
frames. 
2.1. Searching For Objects 
The objects we want to track in the video are people. So we use 
a HOG based detector [9] to find all people's heads. Using a 
head detector instead of a full body detector allows us 
sometimes to find a person even in case of an occlusion. 
2.2. Building Tracklets 
Then for every found detection a tracklet is built. A tracklet is 
an object containing information about a detection and a set of 
its motion estimates. A tracklet is built based on the information 
obtained using the "Flock of features" tracking algorithm. It 
uses only one detection and tracks it for several frames 
forwards and backwards. The position of the head of the person 
in the frame where it has been detected and its position found 
by the visual tracking algorithm are used to build the estimate. 
It is important that as the time of tracking with this algorithm 
increases the probability of finding a wrong position for a 
person also increases. That is the reason why it is used only to 
determine a position of a person in a small temporal 
neighborhood of the detection. 
2.3. Building Trajectories 
Let  denote the set of all detections in the temporal sliding 
window.  is the hypothesis that shows how  is divided 
into trajectories, that is: 
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Here | |X  is the number of elements in the set , X jc  is the 

type of the thj  trajectory. Like in the base algorithm we 
propose two types of a trajectory: fpc  (a trajectory of false 

positives) and pedc  (a person's trajectory). 

Let's consider the factor . In the base algorithm the 
trajectory was modeled by a Markov chain (see figure 1). 
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Fig. 1. Trajectory Model 

 
The likelihood of this Markov chain is:     
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This representation has its drawbacks: 
• It imposes constraints on the behavior of the trajectory in the 
neighborhood of every point but it doesn't impose global 
constraints on the whole trajectory. 
• The likelihood of the trajectory doesn't depend on other 
trajectories' behavior. 
To overcome some limitations of the base algorithm we propose 
to use the idea from [2] to use B-splines to model the trajectory. 
The new trajectory model is shown in figure 2. 

     
Fig. 2. Modified Trajectory Model 

 
The likelihood of this bayesian network is: 
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Here jf  is the spline, constructed for the trajectory jT . 

Following the work[10], every detection j
nd  is described by its 

size ns , position nx  and motion estimate . The likelihood of 
a single detection is: 

nm
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2.3.1. Detection Size 
The size of the first detection of a trajectory can't be estimated 
based on previous frames, so let's define an a priori distribution: 
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The sizes of the following detections depend on the previous 
ones: 
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Here tδ  is the time difference between frames which the 
corresponding detections were found on. 
2.3.2. Detection Position 
We assume that the position of false positives may change only 
due to the noise. 
(11)   1 1| , ~ ( ,2i i fp i dx x c N x− − Σ )

Let pv
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 be a motion estimate, obtained from the tracking results 
from the previous frame and the next frame. This estimate is 
considered the most reliable. Consider the distribution 

pedx x c− . First let's derive the estimate for the person's 

position at time i  using the motion estimate pv : 
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Here vΣ  is a parameter modeling an error in the speed pv . In 
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px −

iY =
i

 we propose to use the 

remaining motion estimates. Let  be the set of motion 
estimates for a detection at time . The more accurate estimate 
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The parameter localΣ  describes the error of the algorithm used 
for building the tracklets (see section 2.2), tδ  is the time 
difference between detections  and . id 1id −

Although this estimate is more accurate, it is less reliable, 
because the error of the tracking algorithm used for building 
tracklets increases. Therefore, we propose to define the 
distribution for a person's position at time  as a mixture of 
normal distributions: 
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Here α  is the probability of the visual tracking algorithm to lose 
a person in a given frame. 
In the work [10] it was shown that using motion estimates  of 
the tracklet i , besides the motion estimates 1iY  of the tracklet 

1i

iY
d −

d − , improves tracking performance. Therefore it was proposed 
to use motion estimates from both associated tracklets. 
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2.3.3. Motion Magnitude 
The motion estimate  is needed to distinguish a person's 
trajectory from a trajectory of false positives. Following the 
work [10], it is modeled by a histogram of 4 bins. The 

boundaries of the bins represent the movement of 

m

1 1 1, ,
8 4 2

 of 

the detection's size. We assume that the histogram corresponds 
to one of the two multinomial distributions, depending on the 
type of the track: 
(21)  | ~ ( )i ped pedm c Mult m

(22)   | ~ ( )i fp fpm c Mult m

2.3.4. Spline Distribution 
Let's define an a priori distribution for a spline . Let  
be a number of parts in the spline. Then it can be defined by a 
coefficient matrix 

( )p f K

2 4KC ×∈ . Number 2 represents the fact that 
splines are constructed for two dimensions x  and . 
Supposing a spline consists of polynomials:      

y
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Let's denote:         
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And assume:         
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In the work [2] it was mentioned that the coefficient of the 
highest degree of the polynomial has the greatest influence on the 
person's speed. The parameters of the described distribution were 
estimated using the maximum likelihood method. The training set 
consisted of PETS-S2-L11, PETS-S2-L2, PETS-S2-L3 and 
TownCentre2 datasets, containing ground truth. Modeling 
parameter  with a discrete distribution (see figure 3) showed 
that a normal distribution is a reasonable approximation of the 
distribution of this parameter obtained from the real data. 

ia

    

 
Fig. 3. Statistic for A 

2.3.5. Associating Algorithm 
As it was described in the beginning of section 2.3, at every 
moment the algorithm searches for an optimal splitting of 
tracklets into trajectories within a temporal sliding window. 
There is no efficient algorithm to find a trajectory hypothesis 

 (see eq. (2)), which is a global maximum point of the 
likelihood function. Therefore we use an approximate inference 
method MCMC DA [8]. The Metropolis–Hastings algorithm is 
used to obtain a sequence of samples from the distribution. 

*H

We use an initial hypothesis with high likelihood as an 
initialization for the algorithm in order to accelerate convergence. 
This hypothesis can be obtained from the tracking results from 
the sliding window corresponding to the previous time step. New 
tracklets are added using a greedy algorithm, trackets that went 
beyond the sliding window are removed from the hypothesis. 
In order to generate new hypotheses, three types of trajectory 
transforms are used: "swap", "switch", "change type". 
When a "swap" move occurs, two randomly chosen trajectories 
exchange tracklets having equal time stamps, or if no such 
tracklets exist, a random tracklet from the first trajectory is 
moved into the second. The "switch" move makes two random 
trajectories exchange tracklets from the beginning of the sliding 
window to a random moment of time. The "change type" move 
changes the type of a randomly chosen trajectory. 
While generating new hypotheses, each of the three types of 
transforms can be chose with equal probability. The trajectories 
and moments of time are chosen from a uniform distribution. 
The probability of accepting a new hypothesis in the 
Metropolis-Hastings algorithm is given by: 
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1 http://www.cvg.rdg.ac.uk/PETS2009/ 
2 http://www.robots.ox.ac.uk/ActiveVision/Research/ 
Projects/2009bbenfold_headpose/project.html#datasets 
 

Here ( | )iq H H  and ( | )iq H H  is the probability of switching 

from the hypothesis H  to  and from  to iH iH H  
respectively. 
2.4. Restoring People’s Positions 
After finding an approximation of an optimal hypothesis, the people's 
positions at a certain time within a sliding window are estimated. 
It is not necessary for the detections to be obtained in every 
frame for the algorithm to work. They may be obtained once in 
several frames. The linear interpolation is used to estimate a 
person's position in an intermediate frame. 

3. EXPERIMENTS 
The aim of the experimental evaluation was to compare the 
base method [10] with its modification. The modified part 
consists of modeling trajectories using splines, and thus taking 
into account some physical features of a person's movement 
(see sec. 2.3 and 2.3.4). 
The base algorithm and its modification were evaluated on the 
TownCentre dataset. It contains a high resolution video 
sequence (1920 1080 / 25× fps), filmed from a static camera. 
The calibration matrix and the ground truth are also provided. 
To evaluate the methods standard precision and recall metrics 
were used along with the widely known CLEAR MOT [4] 
metrics. Here is a brief description of some of them. FP - 
number of false positives; FN - number of false negatives, ID - 
number of identity switches, MOTA - a total error that takes 
into account FP, FN and ID; MOTP shows how close the 
trajectory lies to the real person's position obtained from the 
ground truth. The results are shown in table. 

The results of comparing the base method [10]  
with its modification 

Algorithm Baseline Modification 

Precision 74.73 76.03 

Recall 47.92 50.02 

FP 976 950 

FN 3137 3011 

ID 76 71 

MOTA 30.46 33.08 

MOTP 44.24 43.95 
As it was mentioned in [10], the proposed approach can be used 
to process a video in real time. But in order to simplify the 
development process we chose MATLAB to implement the 
algorithm. Thus the time to process one frame significantly 
increased. Therefore we had to resort to a very rare usage of the 
head detector (only once in 20 frames). Our experiments 
showed that the proposed algorithm was able to perform 
tracking even in such poor conditions, although the quality of 
the result significantly dropped. 

Fig. 4. An example of tracking results 
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4. CONCLUSION 
In this work we have proposed a modification of the base 
algorithm [10]. The experimental results showed that the 
modification improved the base method. It proves that imposing 
global constraints on the trajectory influences tracking 
performance. In future work we plan to add new factors such as 
occlusion reasoning. It is also possible to integrate an 
appearance model into the likelihood function. 
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