РАСПОЗНАВАНИЕ СИМВОЛОВ НА БАЗЕ НИЗКОУРОВНЕВЫХ МОДЕЛЕЙ ОПИСАНИЯ ГРАФИЧЕСКИХ ИЗОБРАЖЕНИЙ

Д. Васин¹, М. Ершов¹

¹ НИИ Прикладной математики и кибернетики
Нижегородского государственного университета им. Н.И. Лобачевского

Аннотация

докладе рассмотрен алгоритм формирования эффективных правил решающих признаков распознавания символов низкоуровневой на структурированной модели описания бинарного растрового изображения

Одной из основных проблем, возникающих при решении задачи распознавания образов, и существенно влияющих, как на эффективность распознавания, с одной стороны, так и на его качество – с другой, является выбор системы эффективных признаков классификации.

В работе рассматривается формирование решающих правил в задаче распознавания символов, находящихся в произвольной ориентации по отношению к горизонту, на низкоуровневой структурированной модели описания бинарного растрового изображения (БРИ) [1].

Низкоуровневая структурированная модель описания БРИ. Непроизводным элементом модели является штрих. Формально штрих — одномерный кластер связных пикселей заданного цвета, т.е. представляется набором чисел S=(t, N, K, C), где t — номер строки растра; N, K — координата начала и конца совокупности подряд идущих пикселей одного цвета вдоль линии растра; C — код цвета связанных пикселей, образующих штрих.

Для бинарных изображений штрих описывается тройкой типа S=(t, N, K), где t- номер строки растра; N, K- координаты начала и конца штриха.

Совокупность штрихов для заданной строки растра t определяет строку штрихов $SH=\{S_i\}(i=1,2,...m)$, где S_i – штрих.

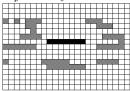
Описание растра с помощью набора строк штрихов является однозначным. Отметим, что штриховой формат представления и хранения растровых данных является в 10 – 20 раз более компактным, по сравнению с пиксельным.

Топологические свойства штриха S=(t, N, K) определяются через его связность со штрихами смежных строк [1]. Два штриха S_t и S_{t-1} смежных строк t и t-1 связаны, если $(N_{t-1} \ge N_t) \wedge (N_{t-1} \le K_t) \vee (K_{t-1} \ge N_t) \wedge (K_{t-1} \le K_t)$. Связный штрих — это набор $H=\{S, sw_p, sw_s\}, sw_p, sw_s -$ количество связных штрихов со штрихами смежных строк, а t — номер текущей строки штрихов растра. Тогда $sw_p=0$, если в предыдущей строке p=t-1 нет ни одного штриха, для которого выполняется условие $(N_p \ge N_t) \wedge (N_p \le K_t) \vee (K_p \ge N_t) \wedge (K_p \le K_t)$, (1)

иначе, $sw_p = \mu_p$, μ_p – кратность выполнения условия (1), т.е. количество связных штрихов предыдущей строки.

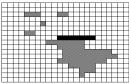
Аналогично, sw_s=0, если в следующей строке s=t+1 нет ни одного штриха, для которого выполняется условие: $N_s \ge N_t \wedge N_s \le K_t \vee K_s \ge N_t \wedge K_s \le K_t$ (2)

иначе, $sw_s = \mu_s$, μ_s — кратность выполнения условия (2), т.е. количество связанных штрихов последующей строки.

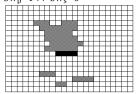

Здесь N, K – координаты начала и конца исследуемого на связность штриха, N_t , K_t – координаты начала и конца текущего штриха предыдущей смежной строки штрихов,

 $N_{s},\ K_{s}$ – координаты начала и конца текущего штриха следующей смежной строки штрихов.

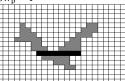
По суперпозиции значений sw_p и sw_s можно ввести следующую классификацию графических ситуаций. В текущей строке:


Штрих изолированный (Ши):

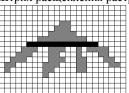
 $sw_p=0 \land sw_s=0.$


Штрих начала растрового объекта (Шн):

 $sw_p=0 \land sw_s=1$

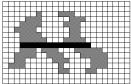

Штрих конца растрового объекта (Шк):

 $sw_n=1 \land sw_s=0$



Штрих слияния растровых объектов (Шс):

 $sw_p > 1$



Штрих расщепления растровых объектов (Шр): $sw_s > 1$

Штрих слияния и расщепления растровых объектов (Шср):

 $sw_p > 1 \land sw_s > 1$.

Растровый простой объект РПО – кластер связных штрихов, не содержащий графических ситуаций типа слияния и расщепления, то есть для любого штриха кластера выполняется условие

$$sw_p < 2 \wedge sw_s < 2. \tag{3}$$

Растровый составной объект РСО – кластер связных штрихов, для каждого штриха которого выполняется условие

$$sw_p > 0 \lor sw_s > 0, \tag{4}$$

и для любых двух элементов (штрихов или пикселей) найдется хотя бы одна соединяющая их пиксельная траектория, состоящая из связных смежных элементов.

Предложенная иерархия моделей описания РИГД на нижних уровнях позволила перейти к структурированному описанию РИГД. При этом РИ представляется совокупностью связных растровых компонент (СРК) – РПО, РСО, узловых штрихов (Шр, Шс) и штрихов начала и конца объекта (Шн, Шк).

Алгоритм построения эффективных признаков и решающих правил классификации символов

В качестве рассматриваемых символов были выбраны заглавные буквы русского алфавита A-Я, цифры 0-9 и знаки препинания — точка, запятая, прямой и обратный слеши.

Примеры обучающих символов:

АБВГДЕЁЖЗИЙКЛ МНОПРСТУФХЦЧ Ш ЩЪЫЬЭЮЯ 1234567890,./\

Для каждого символа алфавита была сформирована матрица связных штрихов и фиксировались следующие признаки:

- 1. Число внутренних областей (ВО).
- 2. Отношение аспекта (отношение ширины к высоте) (Е).
- 3. РПО, для которых вычисляются:
- количество штрихов, входящих в РПО;
- средняя длина штриха.
- 4. Процент заполненности соотношение пиксельной площади символа к площади описывающего прямоугольника.
- 5. Число "вертикальных" РПО (ВРПО). РПО признается "вертикальным", если средняя длина штриха более 70% высоты символа. Уровень 70% высоты символа как признак вертикальности выбран на основе эмпирических наблюдений.
- 6. Особые штрихи (Шн, Шк, Шр, Шс).

Приведем фрагмент автоматически сформированной таблицы значений вышеуказанных признаков (см. таблицу).

Символ	BO	E	Число ВРПО	% заполн	Число Шс/
				•	Шр
7	0	0.52-	0	21.5-	1/0
		0.65		26.6	
3	0	0.59-	0		2/1
		0.64			
Д	1	0.71-	1		2/2
		0.89			
Ю	1	1.35-	1		2/2
		1.45			
Φ	2	1-1.12	1		2/2
В	2	0.8-	1		3/2
		0.92			

Алгоритм подсчета числа внутренних областей

Пусть имеется изображение с объектом, представленным единственной связной компонентой. В процессе работы на изображении находятся "особые" точки,хранящиеся в списке S.

- 1. Просматривая штриховой файл, находим штрихи расщепления.
- 2. Пусть штрих расщепления находится в i-столбце. Просматриваем все связные с ним штрихи в столбце (i+1), для каждого H=(t, N, K) добавляем в список S особые точки (i+1, N-1), (i+1, K+1).
- 3. Просматриваем все особые точки (х, у) из списка.
- 3.1. Если координаты точки выходят за рамки матрицы P, то удаляем её из списка как несуществующую
- 3.2. Запускаем поиск в ширину со стартом в (x, y). При этом *цвет 1* белый, *цвет 2* любой дополнительный цвет (отличный от черного и белого).
- 3.3. Проверяем все особые точки из S, следующие по списку за точкой (x, y).

Если они окрашены в цвет 2, то удаляем их как лишние.

- 3.4. Просматриваем граничные точки всего изображения $[P_{1j}], [P_{Nj}], [P_{i1}], [P_{im}]$ (i=1,...,N; j=1,...,M). Если хотя бы одна из них будет закрашена в *цвет 2*, то значит точка (x,y) не является точкой, принадлежащей внутренней области объекта (замкнутая область белого цвета). Удаляем её из списка S.
- 4. Количество элементов в списке S равно количеству внутренних областей в объекте.

Алгоритм автоматического распознавания символов

Разработан на основе иерархической модели, в узлах которой производится вычисление указанных признаков. Приведем примеры решающих правил для некоторых символов шрифта «Times New Roman». В записи решающих правил выражение вида $\text{Шi} = \xi$ означает, что рассматриваемый символ содержит ξ штрихов типа $\text{Шi} \in \{\text{Шh}, \text{Шh}, \text{Шh}, \text{Шc}\}.$

- 1) BO = 2, это "B" \checkmark "Ф". Если E < 0.95, то это "B", иначе "Ф".
- 2) ВО = $1 \land E \in [0-0.66]$, это "0" \checkmark "4" \checkmark "6" \checkmark "9": если Шс = $1 \land \text{Шр} = 2$ это "6", если Шс = $2, \land \text{Шр} = 1$ это "9". Пусть площадь внутренней области So, а площадь описанного вокруг буквы прямоугольника Sn. Если (So/Sn) < 0.2, то это "4", иначе "0".
- 3) Если ВО = $1 \land E \in [0.71\text{-}0.89] \land IIIc=2 \land IIIp=1$, это "Б" у"Р" у"В". Для их распознавания поворачиваем символ на 90 градусов. Далее: если IIIc = $2 \land IIIp = 1$, это "Б"; если IIIc = $1 \land IIIp = 1$, это "Р" у "В". Если IIIc находится в первой трети повернутого символа, то это "В", если в последней трети то это "Р".
- 4) Если ВО = 0 \wedge Е \in [0.65-0.87] \wedge ВРПО=1, это "Г" \vee "Е" \vee "Т" \vee "Ч": если ВРПО находится во второй половине символа, то это "Ч", если в первой половине символа, то поворачиваем символ на 90 градусов, и если (Шс+Шр)=1, это "Г", если (Шс+Шр)>1, это "Е", если ВРПО расположен в середине символа, то это "Т".
- В ходе анализа работы распознавания с помощью введённых выше решающих правил было отмечено следующее:
- исходные эталоны были расположены горизонтально с минимальным углом отклонения от горизонта, имели обычную ориентацию (не были повёрнуты на 90 или 270 градусов, не были перевернуты на 180 градусов);

- при малом угле наклона текста по отношению к горизонтальной линии (до 2) значения признаков (особые штрихи, вертикальные ПРО, аспект и т.д.) не претерпевают значительных изменений. Измеряемые значения находятся в допустимых рамках, принимаемых решающими правилами;
- при большем наклоне текста (ближе к 5 и более) качество распознавания резко падает. Наиболее чувствительными к повороту являются признаки количества вертикальных ПРО, количества штрихов слияния/расщепления, взаимное расположение особых штрихов, отношение аспекта. Наиболее устойчивым, ожидаемо, является число внутренних областей у символа;
- при наклоне даже эталонных символов на ± 5 правильно распознано было около трети эталонов.

В связи с этим возникает необходимость корректировки наклона текста.

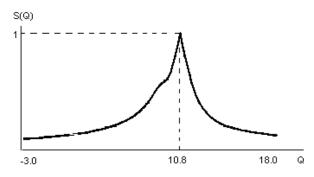
Определим основные требования к алгоритму определения угла наклона текста к горизонту:

- быстродействие (время работы алгоритма не должно зависеть от контента изображения);
- точность (малая величина систематической ошибки);
- корректная работа с полутоновыми и, в большинстве случаев, с цветными графическими документами;
- угол наклона может быть определён, как локально для некоторой части изображения, так и для всего документа в пелом:
- вместе с углом наклона, метод должен выдавать степень доверия к своему ответу, либо оценивать погрешности измерения.

В обзоре [2] предлагается несколько различных методов определения угла наклона документа. Разработанный алгоритм комбинирует некоторые из них и адаптирован к штриховому формату, что уменьшает количество необходимых вычислений. Для оценки угла наклона текста используем вертикальные проекционные гистограммы [3], представляющие собой одномерный массив размерности, равной числу строк растра N. Каждая ячейка гистограммы хранит количество чёрных пикселей в соответствующей строке изображения.

Пусть имеется бинарное растровое изображение P, размером N*M пикселей.

$$P[x,y] = egin{cases} 1, \, ecлu & nuксель & (x,y) - черный \ 0, \, ecлu & nuксель & (x,y) - белый \end{cases}$$


Пусть S(i,Q) – суммарное количество чёрных пикселей в строке растра с номером i при повороте исходного

изображения на угол Q:
$$s(i,Q) = \sum_{j=0}^{j=M(Q)} P(i,j)$$
 .

Вычисляем суммарную функцию угла наклона

Q:
$$s(Q) = \sum_{i=0}^{i=N(Q)} s^{2}(i,Q)$$

Пример нормированной по максимальному значению функции S(Q), полученной на реальном графическом документе, повернутом на угол около $10^{\frak{0}}$.

На базе разработанных алгоритмов создано оригинальное программное обеспечение.

В результате практической апробации созданного программного обеспечения было выявлено, что при горизонтальном расположении текста правильно распознается 96 — 98% символов, однако по мере увеличения угла поворота снижается до 90 — 93%.

Работа выполнена при финансовой поддержке РФФИ – проекты №13-07-00521 и № 13-07-12211

ССЫЛКИ

- 1. Васин Д.Ю., Васин Ю.Г., Громов В.П. Структурное описание растровых данных // Методы и средства обработки сложной графической информации: 6 Всероссийская конференция с участием стран СНГ, 25 27 сентября 2001 г. Н. Новгород С. 21 23.
- 2. Hull J. Document Image Skew Detection: Survey and Annotated Bibliography, Document Analysis Systems II, World Scientific, 1998. P. 40 64.
- 3. Dan S. Bloomberg, Gary E. Kopec and Lakshmi Dasari. Measuring document image skew and orientation. // Xerox Palo Alto Research Center. Режим доступа: http://www.leptonica.com/papers/skew-measurement.pdf, свободный.