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Abstract – A new method to describe the Voronoi diagram of a set 
of line segments is presented. We introduce a new description of a 
segment Voronoi diagram by a straight control graph of a set of 
elementary and rational Bezier curves of the first and second 
degree. Also, the distance between Voronoi edges and line 
segments called radial function is represented in the same 
manner by Bezier curves description.   

Keywords: Voronoi diagram, Voronoi edges, radial function, 
parabolic edges, Bezier curves, control graph 

I.  INTRODUCTION  
Voronoi diagram (VD) for line segments is a well-studied and 
widely used geometric structure (Aurenhammer, 1991, Held, 
2001, Karavelas, 2004). Particularly important is its application 
to the construction of skeletons of polygonal shapes, which is 
used in the image analysis and recognition (Drysdale, Lee, 
1978, Kirkpatrick, 1979). There are known effective 

 algorithms to construct VD for the general set of 
linear segments (Fortune, 1987, Yap, 1987) as well as for the 
sides of a simple polygon (Lee, 1982) or multiply-connected 
polygonal figures (Mestetskiy, Semenov, 2008). 
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Geometric construction of a segment VD is simple enough: it 
is a planar graph with straight-line and parabolic Voronoi 
edges (Fig. 1). Explicit expression of VD in the form of a 
geometric graph with coordinates of the vertices and curves of 
edges is required in many applications. In particular, it is used 
for the pruning of skeletons, or for the transformation of the 
object shape trough transforms of skeleton and radial function. 
However, many authors point to the disadvantage of parabolic 
edges of VD. Parabolic edges are often replaced by piecewise 
linear polyline. Parabolic edges problem generates the 
tendency to handle structures having linear edges only. This 
idea is implemented in the concept of straight skeleton 
(Aichholzer, Aurenhammer, 1996). Sometimes reluctant to 
work with such edges indicated the primary motivation for the 
use of the straight skeleton (Tănase, 2004). 

But the straight skeleton suffers from certain shortcomings, 
videlicet: complexity of mathematical definition, low 
computational efficiency, regularization complexity if noise 
effects are available.  

In this paper, we propose a simple and robust method for 
segment VD describing in the form of a graph with straight 
edges.  

1. The set of segment VD edges consists of the first and second 
order elementary and rational Bezier curves. This set we call 
the compound Bezier curve or Bezier curve graph. 

2. A compound Bezier curve is described by its straight control 
graph, which is obtained from the dual graph of VD.  The 
control graph consists of control polygons of Bezier curves. 

Thus, to describe the segment VD, a straight-line control graph 

is enough (Fig. 2). The set of control graph vertices consists of 
two subsets. The first subset is formed by Voronoi vertices of 
segment VD (they are depicted with red). And the second one 
consists of the certain control points called handles of Bezier 
curves (green). Straight edges of this graph are control 
polygons of Bezier curves. Some of them are described by the 
curve of the first degree (shown in red), and the other part - the 
curves of the second degree (green).  

Fig. 1. The set of segments (dotted line) and its Voronoi 
diagram 

Fig. 2. The control graph of the Voronoi diagram of line 
segments (dotted line): line Voronoi edges (red) and control 

polygin edges (green) 

Usually algorithms for VD form the dual graph explicitly or 
implicitly. We show how based on this graph you can build a 
control graph that represents VD. 

* The author is grateful to the Russian Foundation of Basic Researches, which 
has supported this work (grants 14-01-00716). 
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Fig. 4. Tangent circles for the triplets of 
sites Fig. 3. Dual graph of Voronoi diagram from Fig.1. Vertex-sites 

depict circles, and segment-sites depict small squares 

II. DEFINITIONS 

Let’s represent a set M  of line segments as a finit set  of 
sites – points and open line segments (called vertex-site and 
segment-site). Endpoints of segments from 

S

M  generate 
vertex-sites, and the segments without their endpoints generate 
segment-sites. Vertex-site and segment-site belonging to the 
same segment, called neighboring sites. 

Thus, we distinguish three types of Voronoi edges. The first 
type (straight line) is defined by the pair “vertex-vertex”, the 
second one (straight line) is defined by the pair “segment - 
segment” and the third one (parabola) is defined by the pair 
“vertex - segment”. Every point of VD lies on these lines. Let 
us use the following terminology for Voronoi edges. There are 
vv-bisectors, ss-bisectors and vs-bisectors for the pairs of sites 
“vertex - vertex”, “segment - segment” and “vertex - segment”, 
respectively. 

A radial function is determined at every point of VD. Radial 
function is equal to a euclidean distance between the point and 
its nearest site. The radial function at  Voronoi edge assigns 
“the width of coridor” between two sites associated with this 
edge. 

Adjacency graph or Delaunay graph (DG) of VD is an abstract 
graph whose set of vertices consists of the sites of VD, and the 
edge set contains all pairs of sites having adjacent Voronoi 
cells. DG is the dual graph of VD (Fig. 3). 

DG defines the topological structure of VD. Each face of DG 
determines the Voronoi vertex. Each edge of DG determines 
the Voronoi edge. For visualization of DG, which is an abstract 
graph, we use the representation of DG as a geometric graph in 
the plane (Fig. 3). 

We are going to build a representation of VD as a control graph 
(Fig. 2) based on the DG (Fig. 3), which is assumed to be 
known. 

III. VORONOI VERTICES 
The Voronoi vertices are equidistant to three or more sites. To 
find these vertices tangent circles can be constructed for the 
triplets of sites. Calculation of such circles involves a number 
of geometric tasks (Fig.4) related to the following 
combinations: 

• three vertex-sites (Fig. 4a); 

• two vertex-sites and one segment-site (Fig. 4 b,c); 

• two segment-sites and one vertex-site (Fig. 4 d,e); 

• three segment-sites (Fig. 4 f).  

The second and third combinations involve different cases 
depending on whether triplet includes neighboring sites. 

Assume that the tangent circle exists and the sequence of 
tangent points is defined. This condition holds for triples of 
vertices of each face of DG. Then the tangent circle is unique. 
To compute the center p  of the circle tangent three sites 

, the following system of equations is to be solved: 321 ,, sss
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In the cases in Fig. 4 a,c,e,f  both equations are linear. But in 
the cases in Fig. 4 b,d one equation is linear, and the other is 
quadratic. After expressing the Y-coordinate of the point p  
through the X-coordinate in the linear equation it become 
possible to reduce the second equation to the usual quadratic 
equation, which is easily solved. 

The obtained solution has to satisfy two auxiliary conditions, 
which are easily checked. The first condition requires the 
projections of p  onto the segment-sites to lie on these 
segments themselves. The second condition requires the 
tangent circle to lie inside the figure. This means the center of 
tangent circle is required to lie to the left of the segment-site. 

IV. VORONOI EDGES AS BEZIER CURVES 
Explicit description of the parametric curve 
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 provides handy tools to deal 
with parabolic Voronoi edges.  determines the edge with 
Voronoi vertices  and . Also, a parametric 
representation is convenient to describe the radial function. Pair 

)t
1(V0(V )

)(),( trtV  defines the edge of VD  and its "width" 

, which is a convenient form for medial representations of 
objects. 
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The basic idea is to represent the edges of VD and related 
radial function through conventional and rational Bezier 
curves. 

First, we consider the representation of linear edges, which are 
ss-bisector. These edges are described by Bézier curves of the 
first degree 
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Here points ,  denote endpoints of bisector. 

 and  are Bernstein polynomials. 
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Given the terminal points  and  of a linear ss-bisector 

together with radii  and  of the disks centered at  and 

, respectively, we can find the radius of the empty disk 

centered at any inner point of the edge . It is obvious that 

the radius of empty disk centered at the point  is  
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As shown in (Kim, 1995), a parabolic line could be represented 
as a quadratic Bezier curve  
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where , ,  are 
Bernstein polynomials. This curve is determined by its control 
triangle . The points  and  are called the 

endpoints, and the point  is handle point of the Bezier curve. 
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Using this idea we represent a parabolic bisector of VD as a 
quadratic Bezier curve.  Such a way of edge description is 
compact and easy-to-use since the only one handle point 
together with two endpoints defines every edge.  
Consequently, in order to obtain vs-bisector as the Bezier 
curve it is necessary to calculate tangent lines at the endpoints 
of bisector and to find the intersection of these lines. Let us 
consider the solution of this problem.  
Examine Voronoi edge  that is vs-bisector for the vertex-

site 
20VV

A  and the segment-site B  (Fig. 5). Let  and  denote 

the circle radii at the vertices  and . For definiteness, we 

assume that when driving on the bisector from  to  the  
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site A  is to the left and the site B  is to the right of the 
bisector. We choose a right-handed system, in which the axis 

Ox  is parallel to the segment-site B  and is equidistant from 
the sites A  and B , while the axis  runs through the site Oy

A  perpendicular to the site B . In this system, the following 
points have the coordinates , ),( 00 yx=0V ),( 222 yxV = , 

),0( cA = . The equation of the line on which B  lies is 
cy −= , and the equation of the parabola with focus 

),0( cA =  and directrix  has the form 
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Bisector is a segment of a parabola between the points 

 and . It is described as quadratic Bezier 

curve (2), where  and  are Voronoi vertices, and a handle 
point of Bezier curve V
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)2x+(
2
1

0x1x = , 201y =
4
1
c

xx ⋅

tr

. 

 

 

 

 

 

 

 

 

 

The radial function for vs-bisector can also be represented 
using parametric Bezier spline. In the local coordinate system 
(Fig. 5) we have simple relation between radii of disks and 
ordinates of the points of bisector cty +=)(

1) =

+ ctB )(2
22

⋅+ )( 2 Bcy
)(t

)

=)t

( . From the 

property  we obtain (2
2 tB

+ y
+)(2 t
2
2B⋅

)(2
1 ++ tB)(t

t(2
0

)(2 t

1y

r

2
0B

B0

⋅ 0B
(+

=+ tBy )() 2
11

⋅++ ()( 2
211 Bcy

)() 2
2
1 rtBc +⋅+

= y)
+ )0 cy

)(2
0 tB⋅

tr(
=(

0r= . 

If we set cy += 11  then  

Fig. 5. Parabolic curve for vs-bisector 
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The disk centered at the handle point  with radius  is 
called a handle disk. As it follows from geometric analysis 
(Fig. 5),  is equal to the distance from the point  to the 
segment  

1V 1r

1r 1V
B .  

Thus, equations (2) and (3) describe the shape and the radial 
function of vs-bisector. 

Now let us consider the vv-bisector. We see that the radial 
function can not be presented by Bezier spline of first degree. 
Therefore, we will use more complex splines called rational 
Bezier curves to describe vv-bisector and its radial function. 

Consider the edge  that is vv-bisector for a couple of 
vertex-sites 

20VV
A  and B . Let  and  the circle radii at the 

vertices  and . We choose a right-handed system, which 
coincides  with the axis  and a positive direction is 

0r
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2r
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V
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20VV  (Fig. 6a) . The axis Oy  passes through the sites . 
In this system, the following points have the coordinates 

, ,  and 

BA,

),0 c)0,0x(0V = )0,( 2x=2V )( ,0 cA = (B −= . 
If r  is the radius of the empty circle centered at the point x , 
then . In the coordinate system Oxr  this 
equation defines a hyperbola (Fig. 6b). We are interested only 
in the branch of the hyperbola, for which . As shown in 
(Kim, 1995) segment of the hyperbola between points  
and  is described by the parametric equations of a 
rational Bezier curve 
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Here is the control point of the Bezier curve, which is 
the intersection of the tangents to the hyperbola at the points 

 and , i.e. is determined by solving the system 
of equations 
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A weight coefficient  is calculated as 1w
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where ),,( 210 λλλ  - the barycentric coordinates of the point 

 of hyperbola in the triangle with vertices , 

, . The point  can be selected  

between  and , for example, as 
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These arguments show that on the basis of the computed 
parameters  vv-bisector can be represented as a 
rational Bezier curve 
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The corresponding radial function is defined as follows: 
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V. CONTROL GRAPH OF COMPOUND BEZIER CURVE  
Thus, VD is a union of Bezier curves of first and second order. 
These curves describe a connected geometrical graph. We call 
this graph the compound Bezier curve or Bezier curve graph. 
The segment VD can be represented by a straight-line 
geometric control graph of compound Bezier curve.  

Fig. 6. Hiperbolic curve for vs-bisector 
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The advantage of Bezier curve graph is the ability to describing 
Bezier curves by their control polygons. Thus compound 
Bezier curve can be described by a graph composed of 
polygons elementary Bezier curves. We call it the control 
graph of the segment VD. Fig.2 shows a representation of 
compound Bezier curve by the control graph. Control graph 
has straight line edges. The set of control graph vertices 
includes all Voronoi vertices and handle points of quadratic 
Bezier curves. 

The data structure describing control graph of VD includes 
feature for each edge type (ss-, vs-, vv-bisector). The edge vs-
bisector has kept additional parameters: coordinates and radius 
of control circle . The edge vv-bisector has kept 
parameters ( . 

),( 11 rV

VI. IMPLEMENTATION AND EXPERIMENTS 
The proposed method for representing of VD used in the 
program of constructing of continuous skeletons for binary 
images, developed by the author (Mestetskiy, 1999, 
Mestetskiy, Semenov, 2008). The example (Fig. 7) presents the 
application of the method for constructing VD for a set of 
polygon-sites. 

The source binary image has the size 1271×620 pixels and 
presents the Malay Archipelago. We need to construct a 
Voronoi diagram for the islands depicted on the map. First, we 
approximate this binary image by a multiply connected 
polygonal figure. We get the bounding box with 190 holes 
(islands) and 3728 vertices. Second, we get the Voronoi 
diagram for this polygonal shape and highlight its internal 
skeleton by pruning (Fig. 7a). And third, we cut all terminal 
branches of the skeleton and obtain the subgraph, which is VD 
of islands (Fig.7b). Some characteristics of this example are 

presented in the table. The total time for solving the problem, 
including the polygonal approximation, the construction of the 
skeleton and pruning is equal to 0.108 sec on the processor 
Intel 2.13 GHz. 

(a) 

Skeleton VD of islands
VD vertices 7822 4979
VD edges 8005 5162

ss-bisector 2822 1137
vs-bisector 3333 2479
vv-bisector 1850 1546

VII. CONCLUSIONS 
In this paper, we have presented a new approach to describe 
the segment VD by stright line control graph of compound 
Bezier curves. One major advantage is the simplicity of this 
description. Another advantage is the independence from the 
algorithm of VD construction. Proposed form of segment VD 
representation gives the tool for storing and processing VD in 
geographical databases, computer graphics, and image 
processing systems.  
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