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Abstract

We analyze the correspondence of points between

an arbitrary number of images, from an algebraic and
geometric point of view. We use the formalism of
the Grassmann-Cayley algebra as the simplest way to

make both geometric and algebraic statements in a
very synthetic and e�ective way (i.e. allowing actual

computation if needed). We propose a systematic way
to describe the algebraic relations which are satis�ed

by the coordinates of the images of a 3-D point.

They are of three types: bilinear relations arising
when we consider pairs of images among the N and

which are the well-known epipolar constraints, trilin-
ear relations arising when we consider triples of im-

ages among the N , and quadrilinear relations arising
when we consider four-tuples of images among the N .

Moreover, we show how two trilinear relations imply
the bilinear ones (i.e. the epipolar constraints). We
also show how these trilinear constraints can be used

to predict the image coordinates of a point in a third
image, given the coordinates of the images in the other

two images, even in cases where the prediction by the
epipolar constraints fails (points in the trifocal plane,
or optical centers aligned).

Finally, we show that the quadrilinear relations are
in the ideal generated by the bilinearities and trilinear-

ities, and do not bring in any new information. This
completes the algebraic description of correspondence

between any number of cameras.

Keywords: Invariants, Geometry, Geometry of N
cameras, Grassmann-Cayley algebra, Plücker rela-
tions, multiple cameras stereo.

1 Introduction
Understanding the geometry of the correspon-

dences between image primitives that arise from
the perspective projection of three-dimensional ob-
jects is fundamental for such applications as three-

dimensional reconstruction from multiple views, for
example stereo and motion, object recognition, image
synthesis, image coding. Recent theoretical e�orts di-
rected toward the development of such an understand-
ing have demonstrated the importance of projective
geometry as the language allowing the simplest de-
scription of the underlying phenomena.

In the case of two cameras, the theory is almost
complete, the main fact being that correspondences
between points in two images are completely described
by the epipolar geometry which can itself be summa-
rized algebraically in a 3 � 3 matrix of rank 2, the
fundamental matrix [10, 11, 12].

The case of three images or more has not been
studied as extensively as the case of two. Faugeras
and Robert [8] have shown that the knowledge of the
three fundamental matrixes of the three pairs of im-
ages could be used to predict correspondences in a
third image from correspondences in the other two by
a simple use of the epipolar geometry. We show in the
main body of this article that this method may fail in
some cases (see also [18]).

In this paper, we propose a systematic way of deriv-
ing the necessary and su�cient conditions for points
in each retinal plane to be in correspondence. By this
approach, we recover all the relations that appeared in
previous works (see [9], [13, 14], [16]). More precisely,
the set of N-tuples of corresponding points form an
algebraic variety that we describe completely by the
ideal of polynomial functions that vanish on it. We
show that the generators of this ideal are precisely the
relations introduced before and that for more than 4
cameras, this ideal is generated by the bilinearities and
trilinearities.

We complete this presentation by showing that tri-
linearities are more powerful that bilinearities in some
degenerate cases, closely connected to the previous
ideal. This is an extension of the work described in
[6, 7].



2 The model
We consider N cameras Ci in the 3-D space. They

are classically described by projections on a plane (the
retinal plane) from a point Oi (the center of projec-
tion). In order to have good geometrical behaviors,
we consider the 3-D space as embedded in a three-
dimensional projective space that we note P

3. A
pointM of P3 is represented by a 4-dimensional vector
M = (M1 : M2 : M3 : M4) (de�ned up to a non-zero
scalar).

Similarly, we embed the retinal plane in a projective
space P2 of dimension 2 and the imagesmi of the point
M in the cameraCi are represented by a 3-dimensional
vectormi = (xi : yi : zi). For each cameraCi, we have
the following map

Ci : P
3 ! P

2

M 7! mi � Ci:M

The i-th perspective projection matrix, noted Ci, is
a 3 � 4 matrix whose 3 row vectors will be denoted
by the digits 3 � (i� 1) + j, i = 1; � � � ; N; j = 1; 2; 3.
Thus, the perspective projection equation of the �rst
camera can be written as:

m1 � C1M =

2
4
1

2

3

3
5M;

or
(x1 : y1 : z1) � (1 �M : 2 �M : 3 �M) (1)

where for example 1 �M represents the usual inner
product of the row vector 1 with the column vector
M. By convention, bold letters indicate vectors or
matrixes.

Note that the projection is not de�ned at the center
of projection: Ci:Oi = 0.

The equation (1) is equivalent to the three equa-
tions

x12 �M� y11 �M = 0

y13 �M � z12 �M = 0 (2)

z11 �M � x13 �M = 0

We note that a linear combination of these equations
vanishes, so that only two of them are useful. In the
following, we will take the �rst two equations of this
type for each camera. Stacking them up into a matrix,
we obtain 2

666664

x1 2� y1 1

y1 3� z1 2

x2 5� y2 4

y2 6� z2 5
...

3
777775
M = 0: (3)

Let us denote by Ri the ith row of this matrix. As
M is a non-zero vector, any 4 rows of this matrix are
linearly dependent. Consequently

det(Ri1; Ri2 ; Ri3 ; Ri4) = 0

for all 1 � i1 < i2 < i3 < i4 � 3N . Conversely if this
matrix is of rank less than 3, then we can construct a
point M 2 P

3 satisfying the relations (3) and (1). In
other words, there exist a point M 2 P3 such that mi

(1 � i � N) is the image of M in the ith camera if

and only if the matrix (3) is of rank less than 3.
The 4�4minors of this matrix fall into three classes

� those involving only two cameras, with two rows
from each camera.

� those involving three cameras, with two rows from
the �rst camera, one row from the second and one
row from the third,

� those involving four cameras, with one row arising
from each camera.

In this paper, we are going to describe carefully these
relations. But �rst we need to introduce some math-
ematical notations.

3 Mathematical background
We denote by E = E

4 the vector spaces of di-
mension 4 over the reals R. The rows of the pro-
jection matrices belong to this space. They repre-
sent planes in P

3. If U = (U1; U2; U3; U4) is such a
vector, the plane associated to it, has the equation
U1M1 + U2M2 + U3M3 + U4M4 = 0. A non-zero
multiple of U represents the same plane so that the
set of planes P̂3 has naturally a structure of projective
space of dimension 3. It is called the dual space of P3.

In order to be able to manipulate subspaces of P3,
we need to introduce the exterior algebra ^E of E.
This algebra has an anticommutative product (noted
^) which satis�ed ei^(� ej+� ek) = � ei^ej+� ei^ek
for all �; � 2 R. Let e1; : : : ; e4 be the canonical basis
of E. Then ^E is a vector space of basis (ei1^� � �^eik)
with 1 � i1 < � � � < ik � 4.

For any vectors u1 = (u1;1; : : : ; u4;1), . . . , um =
(u1;m; : : : ; u4;m) of E, the coordinates of u1 ^ � � � ^

um in the basis (ei1 ^ � � � ^ eim)1�i1<���<im�4 of ^mE
are the corresponding determinants juik;j j1�i;k�m. So
u1^� � �^um = 0 if and only if the vectors fu1; : : : ; umg
are linearly dependent.

We associate naturally to an element u1 ^ � � � ^ um
the subspace of P3 corresponding to the intersection
of the hyperplane u1; : : : um. For instance u1 ^ u2 is
the line of intersection of the two planes u1; u2 and



u1 ^ u2 ^ u3 represents a point of P3. Conversely any
linear subspaceL of P3 can be represented by a unique
element u1^� � �^um (up to a non-zero scalar). We just
take any basis u1; : : : um of L. The elements which
represent linear subspace of P3 form a subvariety of
P(^E) called the Grassmannian.

We illustrate these notions in our context:

� x1 2 � y1 1; y1 3 � z1 2 are planes which contain

the optical center O1 (because C1:O1 = 0) and
the point M by construction.

� (x1 2� y1 1)^ (y1 3 � z1 2) = y1(z11 ^ 2� y11 ^

3+ x12 ^ 3); is the optical ray (O1;M).

� 1 ^ 2 ^ 3 is the intersection of the planes de�ned
by the rows of C1. It is the optical center O1 of
the �rst camera.

We check immediately that for any vectors
U1; : : : ;U4 of E, we have the properties (U1 � U2 ^

U3 ^U4) = [U1; : : : ;U4], where [U1; : : : ;U4] denotes
the 4 � 4 determinant of these vectors. In particu-
lar two lines (a ^ b), (c ^ d) intersect if and only if
[a;b; c;d] = 0 or equivalently (a ^ b) ^ (c ^ d) = 0.
As a ^ b ^ c ^ d = [a;b; c;d] e1 ^ e2 ^ e3 ^ e4, with a
slight abuse of notations we may identify a^b^ c^d
with [a;b; c;d].

A natural approach when dealing with intrinsic
quantities, is to consider the determinants of points
as variables [j1; : : : ; j4]. Therefore we have to manip-
ulate polynomials in these variables. Especially, we
want to be able to check when such a polynomial is
zero or not. This is not straightforward, for there ex-
ist relations between these variables. A fundamental
result in invariant theory says that these relations are
generated by the Plücker relations. This algebra
of determinants fall in the category of algebra with

straightening laws, for which there is an algorithmic
way to normalize any element. Moreover, the mono-
mials which are normalized can be described in terms
of a partial order on the variables (see for instance [4],
[5], or [15]). In this paper, the computations and tests
of equality to zero are based on this normalization
procedure that we have implemented in Maple.

More details about invariant theory, exterior calcu-
lus and the Grassmann-Cayley algebra can be found in
the classical book [17], or in the quite accessible book
by Sturmfels [15], and in the more advanced article by
Barnabei et al. [1]. A good introduction, targeted at
computer vision researchers, can also be found in [2].

4 Bilinear constraints
In this section, we consider the 4� 4 minors where

two rows Ri arise from two cameras. For instance, if

we take det(R1; R2; R3; R4), we obtain

y1y2F1;2(m1;m2) = y1y2
�
mT

2F1;2m1

�
= 0

where

F1;2(m1;m2) = (x12 ^ 3+ y13 ^ 1+ z11 ^ 2)

^ (x25 ^ 6+ y26 ^ 4+ z24 ^ 5)

Geometrically, we are just saying that the two optical
rays (O1;m1), (O2;m2) intersect.

Expanding this product, we obtain a bilinear form
in m1;m2 whose matrix is given by

F1;2 =

2
4

[2; 3; 5; 6] �[1; 3; 5; 6] [1; 2; 5; 6]
�[2; 3; 4; 6] [1; 3; 4; 6] �[1; 2; 4; 6]
[2; 3; 4; 5] �[1; 3; 4; 5] [1; 2; 4; 5]

3
5 :

This is the fundamental matrix between cameras 1 and
2.

The epipoles e1;2; e2;1 can also be described very
easily in terms of determinants. For instance e1;2 is
the image of O2 = 4 ^ 5 ^ 6 in the �rst camera:

e1;2 = ((1 �O2) : (2 �O2) : (3 �O2))

= ([1; 4; 5; 6] : [2; 4; 5; 6] : [3; 4; 5; 6]):

Similarly

e2;1 = ([1; 2; 3; 4] : [1; 2; 3; 5] : [1; 2; 3; 6]):

Using Plücker relations, we check that F1;2:e1;2 =
eT2;1F1;2 = 0.

Though this case is now well understood, it is
worthwhile going through this analysis because it
turns out that the way we approach it is rather dif-
ferent from the usual way and can be extended in a
straightforward fashion to the trilinear and quadrilin-
ear cases.

5 Trilinear constraints
In this section, we consider relations where two rows

Ri are arising from the �rst camera, one from the sec-
ond and one from the third. As these trilinearities are
not yet very widely used or understood, we will spend
a large section on them.

One can for instance take det(R1; R2; R3; R5) =
y1T1;2;3;5(m1;m2;m3) where

T1;2;3;5(m1;m2;m3)
= (x12 ^ 3+ y13 ^ 1+ z11 ^ 2) ^ (x25� y24)

^ (x38� y37)
= x1 x2 x3 [2; 3; 5; 8] � x1 x2 y3 [2; 3; 5; 7]

+ x1 y2 x3 [2; 4; 3; 8] � x1 y2 y3 [2; 4; 3; 7]
� y1 x2 x3 [1; 3; 5; 8] + y1 x2 y3 [1; 3; 5; 7]
� y1 x3 y2 [1; 4; 3; 8] + y1 y2 y3 [1; 4; 3; 7]
+ z1 x2 x3 [1; 2; 5; 8] � z1 x2 y3 [1; 2; 5; 7]
� z1 y2 x3 [1; 2; 4; 8] + z1 y2 y3 [1; 2; 4; 7]:



Geometrically, we are saying that the optical ray
(O1;m1), the plane through the line 4 ^ 5 and the
point m2, the plane through the line 7 ^ 8 and the
point m3 intersect.

We can construct 12 such relations with 3 cameras:

Group I

T1;2;3;5 = (x12 ^ 3+ y13 ^ 1+ z11 ^ 2) ^ (x25� y24)^

(x38� y37)

T1;2;4;5 = (x12 ^ 3+ y13 ^ 1+ z11 ^ 2) ^ (y26� z25)^

(x38� y37)

T1;2;3;6 = (x12 ^ 3+ y13 ^ 1+ z11 ^ 2) ^ (x25� y24)^

(y39� z38)

T1;2;4;6 = (x12 ^ 3+ y13 ^ 1+ z11 ^ 2) ^ (y26� z25)^

(y39� z38)

Group II

T1;3;4;5 = (x12� y11) ^ (x24 ^ 5+ y25 ^ 6+ z26 ^ 4)^

(x38� y37)

T2;3;4;5 = (y13� z12) ^ (x24 ^ 5+ y25 ^ 6+ z26 ^ 4)^

(x38� y37)

T1;3;4;6 = (x12� y11) ^ (x24 ^ 5+ y25 ^ 6+ z26 ^ 4)^

(y39� z38)

T2;3;4;6 = (y13� z12) ^ (x24 ^ 5+ y25 ^ 6+ z26 ^ 4)^

(y39� z38)

Group III

T1;3;5;6 = (x12� y11) ^ (x25� y24)^

(x37 ^ 8+ y38 ^ 9+ z39 ^ 7)

T1;4;5;6 = (x12� y11) ^ (y26� z25)^

(x37 ^ 8+ y38 ^ 9+ z39 ^ 7)

T2;3;5;6 = (y13� z12) ^ (x25� y24)^

(x37 ^ 8+ y38 ^ 9+ z39 ^ 7)

T2;4;5;6 = (y13� z12) ^ (y26� z25)^

(x37 ^ 8+ y38 ^ 9+ z39 ^ 7)

5.1 Reconstruction from trilinearities

Knowing these trilinearities, one can wonder if the
geometry of the 3 cameras can be recovered. By this
we mean their fundamental matrices and relative po-
sitions if they are calibrated. We are going to see that
in fact two trilinearities are enough to recover the 3
bilinearities.

By de�nition

T1235(m1;m2;m3) = (R1^R2)(m1)^R3(m2)^R5(m3)

with R5(m3) = x38� y37. So by Cramer's rule

R5(e31) = [1; 2; 3; 7]8 � [1; 2; 3; 8]7
= [1; 2; 7; 8]1 � [1; 3; 7; 8]2 + [2; 3; 7; 8]3

Substituting this relation in T1235(m1;m2; e31) yields

(x1[1; 2; 7; 8] + y1[1; 3; 7; 8] + z1[2; 3; 7; 8])

� (1 ^ 2 ^ 3 ^ (x25� y24))

= (x1[1; 2; 7; 8] + y1[1; 3; 7; 8] + z1[2; 3; 7; 8])

�(x2[1; 2; 3; 5] � y2[1; 2; 3; 4])

= (F1;3:m1)3 (m2 ^ e2;1)1;2

We denote the third coordinate of F1;3:m1 by
(F1;3:m1)3, and by (m2 ^ e2;1)1;2 the coe�cient of
e1 ^ e2 in its expansion in the canonical basis.

So we see that T (m1;m2; e3;1) is a product of two
linear forms. We can use this property to recover the
epipoles and the fundamental matrices.

Decomposing T1235 as a polynomial in x1; y1; z1 and
x2; y2 with coe�cients depending on m3, yields a ma-
trix

x2 z2
x1
y1
z1

2
4

c11(x3; y3) c12(x3; y3)
c21(x3; y3) c22(x3; y3)
c31(x3; y3) c32(x3; y3)

3
5 :

The bilinear form in m1;m2 is a product of two linear
forms if and only if this matrix is of rank 1. Indeed,
if this matrix is of rank 1, the �rst linear form cor-
responds (up to a scalar) to the �rst (or the second)
column of this matrix.

This fact can be used to determine the �rst two co-
ordinates of the epipole e3;1 (up to a scalar) as follows:

1. Compute the 2� 2 minors of this matrix :

d1;2 = [1; 2; 3; 8] [3; 4; 5; 8]x3
2

+(�2 [1; 2; 3; 7] [3; 4; 5; 8] + [1; 2; 3; 5] [3; 4; 7; 8]
� [1; 2; 3; 4] [3; 5; 7; 8]) x3 y3
+[1; 2; 3; 7] [3; 4; 5; 7] y3

2

d1;3 = �[1; 2; 3; 8] [2; 4; 5; 8]x3
2

+(2 [1; 2; 3; 7] [2; 4; 5; 8] � [1; 2; 3; 5] [2; 4; 7; 8]
+[1; 2; 3; 4] [2; 5; 7; 8]) x3 y3
�[1; 2; 3; 7] [2; 4; 5; 7] y3

2

d2;3 = [1; 2; 3; 8] [1; 4; 5; 8]x3
2

+(�2 [1; 2; 3; 7] [1; 4; 5; 8] + [1; 2; 3; 5] [1; 4; 7; 8]
�[1; 2; 3; 4] [1; 5; 7; 8]) x3 y3
+[1; 2; 3; 7] [1; 4; 5; 7] y3

2

2. Take their Greater Common Divisor which is a
polynomial of degree 1 in x3; y3. It yields the
�rst two coordinates of e3;1.

3. Use the factorization of T1;2;3;5(m1;m2; e31) to
recover the �rst two coordinates of e2;1 and the
last row of F1;3.

4. Apply the same process with m2 = e2;1 in order
to get the last row of F1;2.

5. Do it again for T1;2;4;6 in order to obtain the last
two coordinates of e2;1, the last two coordinates
of e3;1, the �rst row of F1;3, and F1;2.



To sum up, if we know T1;2;3;5 and T1;2;4;6, we also
know the epipoles e2;1; e3;1.

From the relations eT
2;1F12 = 0; eT

3;1F13 = 0, and
with the �rst and last rows of F1;2 and F1;3, we deduce
the second row of these matrices (the above relations
gives us the second coordinate with respect to the �rst
and last one). So we can also recover the matricesF1;2

and F3;1.
In order to determine F2;3, we proceed as follows:

1. Consider a point m2 and its epipolar line in the
�rst image, represented by F2;1 �m2.

2. Choose any point m1 di�erent from e1;2 on that
line and use the two trilinearities T1;2;3;5 and
T1;2;4;6 to predict m3 in the third image.

3. The point m3 must be on the epipolar line of m2

in the third retinal plane, represented by F2;3�m2.

4. When m1 moves along the previous epipolar line,
m3 moves on a locus which contains the epipolar
line of m2. This locus is a conic which splits into
two lines,

- the line of equation y3 = 0 and

- the line of equation mT
3F2;3m2.

Algebraically, we can take the determinant of the
following linear system in m1:

8<
:

F1;2(m1;m2) = 0;
T1;2;3;5(m1;m2;m3) = 0;
T1;2;4;6(m1;m2;m3) = 0

It is an equation of degree 2 in m3 which factors as

(y2e2;1[3] � z2e2;1[2])(y2e2;1[1] � x2e2;1[2])e1;2[3]
�y3 � (mT

3F2;3m2) = 0

(ei;j[k] is the k
th coordinate of ei;j). One of its factor

is precisely the bilinear form we seek.
Hence, we can also compute the last fundamental

matrix F2;3 from T1;2;3;5 and T1;2;4;6.
Consequently the geometry of the 3 cameras can be

recovered completely from those two trilinearities. By
symmetry, this also holds for the other groups.

5.2 The algebraic variety of points in cor-

respondence

We are now going to give a precise description of
the triples of points in correspondence for 3 cameras.
Those triples of points (m1;m2;m3) that correspond
to the images of a point M in P

3 form an algebraic
variety that we are going to describe. Our presenta-
tion is illustrated by explicit symbolic computations

(ie. Gröbner bases computations) on special con�gu-
rations of cameras. Proofs of the underlying theoreti-
cal results will be presented elsewhere.

Let call V3 this subset of P2 � P
2 � P

2. In order
to describe this variety, we give the ideal I3 of the
functions that vanish on V3. We already know some
of them, i.e. the bilinearities between two cameras
and the trilinearities of the previous section. These
functions are polynomial functions on P2 � P

2 � P
2,

which are homogeneous with respect to m1;m2;m3.
We denote by R[P2� P

2� P
2] this set of functions.

The ideal I3 is the kernel of the following map:

0! I3 ! R[P2�P
2�P

2]
�
! R[P3] ! 0

f(m1;m2;m3) 7! f(C1:M;C2:M;C3:M)

which substitutes (1:M) for the variable x1, (2:M) for
y1, . . . If f is homogeneous in m1;m2;m3, we obtain
a homogeneous polynomial in the coordinates of M,
belonging to R[P3].

In order to compute the kernel of this map, we
proceed as follows. We introduce new variables
(of homogeneity) a; b; c and work in the ring R =
R[xi; yi; zi;M1;M2;M3;M4; a; b; c]. Let us note ~I3 the
ideal inR, generated by x1�a (1:M); y1�a (2�M); z1�
a (3 �M); x2 � b (4 �M); : : : ; z3 � c (9 �M). Then the
polynomials in I3 are precisely the elements of S \ ~I3
where S = R[xi; yi; zi]. The substitution � can natu-
rally be extended to R (�xing on a; : : : ;M4), so that
8r 2 ~I3, �(r) = 0. We note that a polynomial f is in I3
if and only if each of its homogeneous components are
in I3. Therefore, let us consider a polynomial f 2 S

which is homogeneous of degree d1 in m1 (resp. d2 in
m2 , d3 in m3). As we have

f(m1;m2;m3) = f(a (C1M); b (C2M); a (C1M)) + r

= ad1bd2cd3�(f) + r

with r 2 ~I3, it is easy to check that �(f) = 0 if and
only if f 2 ~I3. So in order to get I3 = S \ ~I3, we com-
pute the Gröbner basis of ~I3 with a product order on
two blocks of variables: [x1; : : : ; z3], [a; : : : ;M4], which
�eliminates� the last set of variables. The polynomial
of S in this Gröbner basis form a Gröbner basis of the
ideal I3 (see [3]). This computation has been repeated
for several random con�gurations of cameras (we take
random matrices of projection), using the computer
algebra systems Macaulay and Maple. It yields an
ideal which is generated by the 3 bilinearities and one
trilinearity (for instance T1;2;3;5). More generally we
can prove the following results:

The ideal of functions that vanish on triples of
points (m1;m2;m3) in correspondence is generated by



� the three bilinearities F1;2; F1;3; F2;3,

� any of the trilinearities (ie. T1;2;3;5).

Computing the dimension of V3 yields 3 which is
also the dimension of P3.

One con-
sequence of this result is that any other trilinearity
that vanishes on the images is a linear combination of
x3F1;2; y3F1;2; z3F1;2; x2F1;3; : : : ; z1F2;3; T1;2;3;5. This
is true, in particular of the trilinearities reported by
Hartley [9] and Shashua [13]. We can in fact show that
the trilinearities introduced by Hartley, noted THSi;l,
are precisely (up to a sign) some of our previous tri-
linearities Ti;a;b;c.

Let J be the ideal of S generated by the bilinear
polynomials F1;2; F1;3; F2;3. Let f(m1;m2;m3) 2 I3
be a homogeneous polynomial of degree d1 inm1 (resp.
d2 in m2 , d3 in m3). We can also rewrite it as (L �m1)
where L is 3-dimensional vector, whose coe�cients are
homogeneous of degree d1 � 1 in m1, d2 in m2 , d3 in
m3. Similarly, we denote F1;2(m1;m2) = (L2 �m1),
F1;3(m1;m3) = (L3 �m1), where L2 (resp. L3) is a 3-
dimensional vector linear inm2 (resp. m3). As f 2 I3,
the system 8<

:
(L �m1) = 0
(L2 �m1) = 0
(L3 �m1) = 0

has a solution in V3. Consequently, the determinant
D = det(L;L2;L3) vanishes in V3. Let U be any 3-
dimensional vector. By Cramer's rule, we have

det(L;L2;L3) (U �m1)� det(L;L2;U) (L3 �m1)+
det(L;L3;U) (L2 �m1) + det(L2;L3;U) (L �m1) = 0

Let us denote by � the ideal generated by the co-
e�cients of U in det(L2;L3;U). According to the
previous relation, we have

� � f 2 (F1;2; F1;3;D):

If d1 = 1, then D depends only on (m2;m3) and van-
ishes for points in correspondence. Hence, it must be
divisible by F2;3. By induction, we can prove that

�d1 � f 2 (F1;2; F1;3; F2;3)

Consequently, if we are outside the variety de�ned
by � (ie. if F1;2 � m2 and F1;3 � m3 are not lin-
early dependent) then (m1;m2;m3) 2 V3 if and only if
F1;2(m1;m2) = F1;3(m1;m3) = F2;3(m2;m3) = 0. If
the cameras are generic (optical centers not collinear),
then the epipolar lines F1;2 � m2 and F1;3 � m3 are
linearly dependent if and only if M is in the trifocal

plane. Apart from this degenerate case, V3 can be
de�ned by the bilinearities F1;2; F1;3; F2;3.

However, the trilinearities are necessary to describe
completely the variety V3, precisely in the degenerate
cases.

5.3 Applications

If the trilinearities were only useful to recover the
epipolar geometry, then one may wonder why bother.
We show now how they are in fact more powerful than
the fundamental matrixes:
M in the trifocal plane

In this case, the images m1;m2;m3 are the trifocal
lines (ei;i+1; ei;i+2); i = 1; 2; 3. Consequently, the
epipolar m1 and m2 are identical in the third cam-
era. They cannot be used to predict m3.

O3

O1

O2

e1;2

e1;3

e2;1

e2;3

e3;1

e3;2

M

However, substituting m1 = a1 e1;2 + b1 e1;3, m2 =
a2 e2;1 + b2 e2;3, m3 = a3 e3;1 + b3 e3;2 in the trilin-
earity T1;2;3;5 yields a non-zero trilinear polynomial in
(a1; b1); : : : ; (a3; b3). This polynomial can be used to
construct the point m3 knowing m1;m2.

In this case, we are in an analog situation than
in the previous sections, except that we projection a
point of the trifocal plane on lines in the retinal planes
(it corresponds to a map from P

2 to P1 � P
1 � P

1).
By symbolic computation, we can show that the ideal
de�ning V3 when M is in the trifocal plane is gen-
erated by one equation (the corresponding variety is
of codimension 1), which arises from a trilinearity of
P
2 � P

2 � P
2. Therefore, any trilinearity is �equiva-

lent� on this degenerate con�guration to the trilinear-
ity T1;2;3;5, for example. This explains why the ideal
I3 is generated by the bilinearities and only one trilin-
earity.
The optical centers aligned

In this con�guration, the epipoles ei;i�1 and ei;i+1 are
identical and the epipolar lines of two corresponding
points m1 and m2 in the third image are always iden-
tical. The corresponding point m3 is thus unde�ned
on this epipolar line.



O1

O2

O3

This con�guration is equivalent to a con�guration
where the planes 1;4;7 are linearly dependent. Just
as in the previous case, substituting 7 = u1+ v 4, we
check that the trilinear relations are not identically 0
and can be used to compute the position of m3 with
m1 and m3.

6 Quadrilinear constraints
In this section, we consider 4 cameras and relations

where one row Ri is arising from each camera. This
yields 16 quadrilinear relations. One of them built
from the �rst, third, �fth, and seventh rows, which
we note Q1;3;5;7, in agreement with our notation for
trilinearities, is given by the following expression:

x1 x2 x3 x4 [2; 5; 8; 11] � x1 x2 x3 y4 [2; 5; 8; 10]

� x1 x2 y3 x4 [2; 5; 7; 11] + x1 x2 y3 y4 [2; 5; 7; 10]

� x1 y2 x3 x4 [2; 4; 8; 11] + x1 y2 x3 y4 [2; 4; 8; 10]

+ x1 y2 y3 x4 [2; 4; 7; 11] � x1 y2 y3 y4 [2; 4; 7; 10]

� y1 x2 x3 x4 [1; 5; 8; 11] + y1 x2 x3 y4 [1; 5; 8; 10]

+ y1 x2 y3 x4 [1; 5; 7; 11] � y1 x2 y3 y4 [1; 5; 7; 10]

+ y1 y2 x3 x4 [1; 4; 8; 11] � y1 y2 x3 y4 [1; 4; 8; 10]

� y1 y2 y3 x4 [1; 4; 7; 11] + y1 y2 y3 y4 [1; 4; 7; 10]

Other examples of quadrilinear relations have been
reported by Triggs [16]. The geometrical interpre-
tation of this computation is as follows: x12 � y11,
. . . represent lines in the images, which are the inter-
sections of the retinal planes with planes through the
optical centers of the cameras in P3. The vanishing of
the quadrilinear polynomial is just the condition that
these four planes have a common point in P3.

Here again, we can consider the quadruples of
points (m1; : : : ;m4) which correspond to the image
of a same point M 2 P3. This set of quadruples V4 is
an algebraic variety that we describe by ideal the I4 of
functions in R[xi; yi; zi] that vanish on V4. An explicit
computation (done for a random con�guration of cam-
eras) shows that the ideal I4 de�ning V4 is generated
by

� the 6 bilinearities corresponding to pairs of cam-
eras,

� the 4 trilinearities corresponding to triples of cam-

eras.

A surprising fact is that no quadrilinearity is needed
for the description of V4. In other words, the quadri-
linearities are linear combinations of quadrilinearities
obtain from the bilinearities and the trilinearities. If
we have 4 cameras or more, no more information will

be available than if we consider any subset of 3 cam-
eras among them

The variety V4 is also of dimension 3, as expected.

7 Conclusions
We have shown that the correspondences between

the images of a single 3-D point in N cameras can be
described by three types of relations between the co-
ordinates of the image points. These relations fall into
three classes of which only the �rst two are su�cient
since all elements in the third one are algebraically de-
pendent of elements in the �rst two. The coe�cients
of these relations are intrinsic quantities, independent
of the referential. They have been shown to be 4 � 4
determinants of the row vectors of the perspective pro-
jection matrixes of the cameras.

We have shown how two trilinear relations allow
us to recover the fundamental matrices and that the
trilinear relations are useful in some degenerate cases
of practical importance where the bilinear relations
cannot be used for prediction.

For 3 cameras, we focus on the algebraic variety V3
of points (m1;m2; : : :) in correspondence and give an
explicit description of the ideal I3 de�ning V3. More
precisely, we show that this ideal is generated by the
3 bilinearities and one trilinearity T1;2;3;5. This trilin-
earity is necessary to handle correctly the degenerated
cases. This approach also applies to 4 cameras. How-
ever, the ideal de�ning the quadruples in correspon-
dence is de�ned by the bilinearities and the trilinear-
ities. No quadrilinearity is required. This shows that
no more information will be available if we consider 4
cameras or more.

This has been achieved by symbolic computations
in projective geometry using the Grassmann-Cayley
algebra formalism, showing the advantage of using
such tools for problems in Computer Vision.
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