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Abstract

We present a simple yet powerful method to perform point-to-

point matching between two images. The method uses an evidence

measure, whose value for a given displacement reects both the sim-

ilarity between two locations and the con�dence in a correct match.

The measure is based on the gradient �elds of the images, and can be

computed quickly and in parallel. Accumulating the evidence mea-

sure for di�erent displacements allows (1) stable computation of cor-

respondences without smoothing across motion boundaries, and (2)

detection of dominant motions, which can serve as attention cues in

active vision systems. The method works well both on highly tex-

tured images and on images containing regions of uniform intensities,

and can be used for a variety of applications, including stereo vision,

motion segmentation, and object tracking.
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1 Introduction

A fundamental problem in computer vision is the so-called correspondence

problem, that is, to establish point-to-point correspondences across a pair of

images. Solving this problem is important for a large number of subsequent

tasks, including computation of visual motion, recovering depth from stereo,

and object tracking. Most algorithms for computing correspondence have the

following point-oriented control strategy: For each location in one image, �nd

the displacement that aligns this location with the best matching location in

the other image.

The method presented in this paper uses a di�erent approach: Given a
certain displacement, �nd all the locations that match well. That is, we pro-
pose a displacement-oriented control strategy. Under the assumption that
the visual motion between two images can be locally approximated by pure

translation, near points corresponding to the same object have similar dis-
placements. By accumulating evidence for matches under a given displace-
ment, dominant motions can be detected, which can serve as attention cues
in active vision systems.

Comparing locations in two images involves a matching criterion: a mea-
sure of goodness of a proposed match. A key observation in this paper is that
most methods for computing correspondences have two underlying criteria:

� a similarity criterion that reects how well two locations in the two
images resemble each other;

� a con�dence criterion that reects the likelihood that a match is correct.

Existing methods often treat these two criteria separately. Our method

uses a single measure, which | given a certain displacement | gives a

(strong) positive response where points match with (high) con�dence, a neg-

ative response where there is a clear mismatch, and zero response in regions
where there is neither evidence for a match nor evidence against a match.

The measure is based on comparing the gradient �elds of the images.
This approach has the following advantages:

� The evidence measure, which is only based on the local gradients, can

be computed quickly and in parallel.
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� For a given displacement, the measure can be accumulated by aver-

aging over a larger area. The average value represents evidence for

or against a match, thus enabling the use of a displacement-oriented

control strategy.

� Finding maxima in the accumulated measure is a stable way of com-

puting correspondences without smoothing across motion boundaries.

We will discuss each of these properties in more detail later.

1.1 Related Work

A vast amount of work has been done on computing correspondences, and

we will only list a few examples here. Generally, one can distinguish between
feature-based and area-based approaches [Barnard and Fischler, 1982], which
utilize the concepts of similarity and con�dence in a di�erent order.

Feature-based methods extract distinctive features (e.g., by doing edge

detection) before the matching process and thereby try to decide o�-line
which locations in the image can be matched with high con�dence. All other
locations are ignored in the actual matching process, resulting in a sparse
output. The measure of similarity used during matching is usually based

on attributes of the features; for example, if the extracted features are the
intensity edges, one could compare their orientation, length, and contrast.
Grimson [1985] describes a feature-based stereo matcher. For examples of
feature-based object tracking methods, see Huttenlocher et al. [1993] and

Koller et al. [1993].
Area-based methods try to match all locations in the image, and the de-

sired output is a dense �eld of displacement vectors. In order to cope with
locations of little intensity change, small windows, or areas | which hope-

fully are not completely uniform | are matched as a whole. Usually, some

kind of correlation measure (or the sum of squared di�erences) of the inten-
sities is used to reect the similarity of two windows. Anandan [1989] gives

a good overview of area-based systems for motion computation. An example

for an area-based method used for object tracking is described by Wood�ll

and Zabih [1991]. Cochran and Medioni [1992] describe a stereo matcher

that uses a combination of an area-based and a feature-based method.
Comparing windows instead of single points allows matching with higher

con�dence, but is prone to problems if an object changes shape too much
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from one image to another, or if the window contains motion boundaries.

Some area-based methods (e.g., Anandan [1989]) also compute the con�-

dence associated with each match explicitly and use this information in a

subsequent smoothing step of the computed displacements.

Assuming only Gaussian noise, using intensity di�erences as a cost to

minimize is optimal [Anandan, 1989; Matthies et al., 1989; Simoncelli et al.,

1991]. However, this assumption is easily violated: two cameras can di�er

in bias and gain, and intensities can depend on the position in the image

due to vignetting . The gradient-based method presented in this paper is less

sensitive to these problems. Non-parametric measures as used by Zabih and
Wood�ll [1994] are a di�erent way of addressing these problems. Seitz [1989]

uses local gradients for object recognition.

Aligning two images pixel by pixel is also referred to as image registration;
a typical application in this area is the computation of elevation maps from
a pair of satellite images, which is a central problem in photogrammetry
[Mo�tt and Mikhail, 1980]. Emphasis is placed on high accuracy, often on

a sub-pixel level [Tian and Huhns, 1986], and matches are usually computed
with an area-based method using correlation.

The idea of a control strategy that collects support for given displace-
ments bears some similarity to Marr's model of the human stereo system

involving a set of disparity pools [Marr, 1982]. Prazdny [1985] describes a
stereo matching algorithm that collects support for di�erent disparity hy-
potheses in a manner similar to the accumulation step in our method. His
algorithm, however, requires an initial set of possible disparity hypotheses

collected by explicit feature matching.
Coombs and Brown [1993] describe an active stereo vision system that

�nds points at the depth of �xation (the so-called horopter) by means of
a feature-based zero-disparity �lter (see also Coombs et al. [1992]). Olson

and Lockwood [1992] describe a di�erent way of disparity �ltering using

a multi-scale correlation method to extract points at zero disparity. Both
approaches di�er from the one described in this paper in that they do not

return a measure that reects the evidence for a match at a certain position.

A short version of this paper appears in ICPR '94 [Scharstein, 1994].
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2 Measuring Evidence for Matches

In this section, we will describe the proposed method of comparing gradient

�elds in more detail. The particular measure we introduce has proven to

work quite well, and is an example of a measure that can be used in a

displacement-oriented control strategy. Possible other methods are discussed

in section 6.

In the following, we will treat an image as a continuous intensity function

I(x; y); we will discuss dealing with discrete images in section 2.3.

2.1 Comparing Two Gradient Vectors

As mentioned above, our method combines the notions of similarity and
con�dence (or distinctiveness) into a single measure of evidence for or against
a match at a certain location under a certain displacement, based on the two

gradients at this location. In particular, if gL, gR are the two gradient
vectors to be compared, we use the average magnitude of the two gradients
m = (jgLj + jgRj)=2 at a certain point to represent con�dence, and the
(negated) magnitude of the di�erence of the two gradients �d = �jgL � gRj
to represent similarity. We de�ne the evidence for a match to be the weighted
sum of these two terms:

e = m� �d:

It turns out that � = 1 is a reasonable choice for the weight parameter,

since it yields a symmetric range [�m;m] of values for e for the case of
comparing two vectors of length m. (Evidence e = m if the two vectors have
the same direction, and e = �m if the two vectors have opposite directions.)

See Figure 1 for an illustration of di�erent values of e for pairs of gradient

vectors of length m and 0.

If both gradients are zero, one can't tell whether or not they match, and
consequently e = 0. (This measure ignores the original intensities, although

one can argue that they provide additional information. However, comparing

absolute intensities has proven to be not very stable in practice.) Note that e
can also be zero for two non-zero gradient vectors, for example, in the case of
two vectors of equal length de�ning an angle of 60�. Intuitively, this reects

the situation where the directions of gradients are too di�erent to consider it

a match, but not di�erent enough to count it as a mismatch. Of course, the
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Figure 1: Value of evidence measure e = m� d for di�erent pairs of gradient

vectors

right value for this \angle of zero evidence" might depend on the application,
in particular on how much rotation is possible in the motion between two
images. By choosing a higher weight � for the gradient di�erence, one can

reduce the angle for which e = 0, but our experiments indicate that changing
the weight is not critical, and that � = 1 is a reasonable general choice.

To display what values e takes on for di�erent pairs of vectors, Figure 2

shows a contour plot of e for comparing any vector (x; y) to the unit vector

(1; 0). The contour lines are the locations of the endpoints of all vectors that
yield the same value e.
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Figure 2: Contour lines of the evidence measure e for a match with the vector

(1; 0). The unit vector of angle 60� is shown as an example; note that its

endpoint lies on the e = 0 curve.
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2.2 Comparing Gradient Fields

We now extend the measure to entire images. Let IL(x; y), IR(x; y) be the

two images, and let GL, GR be their gradient vector �elds1. That is,

GL =

0
@

@IL
@x

@IL
@y

1
A ;GR =

0
@

@IR
@x

@IR
@y

1
A :

For a given displacement � = (�x; �y) the evidence E� for a match at (x; y)

under this displacement is

E�(x; y) =
jGL(x; y)j + jGR(x+ �x; y + �y)j

2
�jGL(x; y)�GR(x+�x; y+�y)j:

In this paper we only deal with displacements that are pure translations,

constant at every point in the image. It is also possible to use more complex
transformations, especially in situations where the possible motions between
the two images are constrained. For example, in the case of a stereo setup
with known calibration parameters, it would be useful to make � a continuous

transformation that keeps epipolar lines aligned.

2.3 Dealing with discrete images

In order to apply the method to real, discrete images, we approximate the
gradients by di�erences. After an initial smoothing step with a Gaussian

�lter to compensate for quantization error and noise, the gradients in the x

and y directions are computed by convolution with simple stencils [�1 0 1]
and [�1 0 1]T . In the experiments reported here, we used a Gaussian �lter

with � = 0:5 pixels. Also, we only consider displacements � = (�x; �y) whose

components are multiples of whole pixels, although it is possible to compute
E� for non-integer displacements by interpolating the gradients.

It should be noted that, for a given displacement �, E� can be computed
very fast, since only a few oating point operations and a single square root is

needed at each pixel. The square root is necessary to compute the magnitude

of the gradient di�erences; the two magnitudes of gradients jGLj and jGRj,
1L and R stand for left and right, suggesting a stereo vision application. Of course,

the two images could also be taken by a single camera, either moving itself or observing a

moving environment.
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which do not depend on the displacement �, only need to be computed once.

The local nature of the computations makes the method ideally suited for a

parallel implementation.

A sequential implementation on a Sparc station takes less than one second

to compute E� for a 256� 256 pixel image. In section 5 we will discuss ways

to make the computation even faster.

3 Accumulating results

To �nd the best match for an isolated point, all we can do is to maximize
E� at this point for all � under consideration. Doing so independently for
every point is not very stable and might produce a noisy and inconsistent
displacement �eld.

To deal with this problem, motion computation methods usually make
the assumption that nearby points have similar displacements, based on the
observation that motion in real scenes varies smoothly almost everywhere.

Furthermore, it is often assumed that motion can be described locally by pure
translation, i.e., rotational components and e�ects of perspective foreshorten-
ing are small enough. Many point-oriented methods utilize the assumption of
a smooth motion �eld after computing initial matches by smoothing the dis-

placement �eld, often employing some con�dence measure associated with
each match to constrain the smoothing process [Horn and Schunck, 1981;
Anandan, 1989]. The problem is that this tends to smooth over motion dis-
continuities, which contain important information about the scene geometry.

In contrast, our displacement-oriented method uses the assumption of a
smooth motion �eld while �nding the matches. The idea is that if a certain

displacement � aligns two matching objects, E� will have a strong positive

response at the location of the match. By accumulating E� over a certain area

(i.e., computing the average or smoothing with a Gaussian �lter), dominant

motions can be detected. That is, only the correct displacement E� will yield
support for a match over a larger area, thereby creating a maximum among

all � under consideration.

Note that our method does not smooth over motion boundaries, since
it is not assumed that all close pixels have the same disparity. A point
on a motion boundary will give rise to a positive response for two di�erent

displacements, corresponding to the two di�erent motions. If necessary, the
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local response at that point can help to break the tie.

In our implementation we found that, in order to accumulateE�, it worked

best to use convolution with a Gaussian for a weighted average rather than

just averaging over a rectangular window.

3.1 Finding interesting displacement ranges

It is also possible to accumulate E� over very large areas, such as a quarter

of the image or even the entire image, to �nd an initial set of interesting

displacements. Most displacements will only align a small subset of features,
yielding a negative value for the accumulated E�. Only the displacements
that align larger parts of the image will yield an above-average response,
which can serve to select an initial set of displacements, for which the match-

ing with smaller windows is undertaken. A scale-space approach could be
used to speed up the initial selection of interesting displacements.

Peaks in the accumulated E� as a function of � can also serve as attention
cues for active vision systems.

4 Experiments

A striking experiment is to just observe E� for di�erent displacements �. As
test data we use a stereo pair from the street image sequence2, depicting a

woman crossing a street. This image pair is an interesting example in that
it contains large regions with little texture. Also, the absolute intensities
are quite di�erent between the two images. To illustrate the power of using
maxima in the accumulated measure E� as attention cues, we have selected

the displacements that yield the strongest response (maximal
P

E�) in each

quadrant of the image. Figure 3 shows the original image pair and plots

of E� for the resulting four displacements �. Gray corresponds to a value

of 0, light to positive values, and dark to negative values. Note that these

displacements align the dominant features in each quadrant. One can also
see that the measure is not sensitive to the brightness di�erence between the

original images.

2The street images were provided by Wilfried Enkelmann, Fraunhofer Institut f�ur In-

formations- und Datenverarbeitung IITB, Karlsruhe, Germany.
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Figure 3: The street image pair and gray level plots ofE� for the four displace-
ments � that maximize

P
E� in each of the four quadrants. Gray corresponds

to a value of 0, light to positive values, and dark to negative values.
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4.1 Stereo

We implemented a simple stereo matcher that uses the evidence measure to

select matches. After smoothing the image pair with a Gaussian with � = :5,

we compute E� for a range of di�erent �. The measure is then accumulated by

smoothing each E� with a Gaussian with � = 2. The disparity at each point

is taken to be the displacement that maximizes the accumulated measure at

this point.

In the �rst experiment we ran the matcher on two highly textured im-

ages from the Stanford tree sequence3, depicting an outdoor scene. The
considered range of disparities is �x = 0 : : : 12. Simply picking maxima in the
accumulated measure already gives surprisingly good results. Figure 4 shows
the original image pair and a gray level plot of the computed disparities.

Lighter shades of gray correspond to closer points, darker shades correspond
to points farther away.

The second experiment shows how con�dence can be incorporated in the
matcher to be able to deal with images with less texture, where it is harder

to �nd clear maxima in the evidence measure. An advantage of the measure
we use is that the value of the achieved maximum is related to the gradient
magnitude at that point, and thus represents the con�dence for the match
being correct. To demonstrate this, we will use the street image pair de-

scribed above. Unreliable matches can be suppressed by setting a threshold
for the actual achieved maximum at each point. Figure 5 shows two gray
level plots of the computed disparities; in the image at the bottom all unre-
liable matches are displayed in black. The considered range of disparities is

�x = �3 : : : 21. Note that while feature-based matchers try to decide before-
hand which locations to match, our method allows the selection of reliable

points after the matching process.

4.2 General motion

To test the method on general motion, we used two images from the cat

sequence4. This sequence depicts a cat walking on a lawn in front of some
bushes. We use frames 1 and 5 of this sequence. The camera follows the cat,

3The tree images were provided by SRI; we used images number 18 and 24 as right and

left images respectively.
4The cat images were provided by John Wood�ll.
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Figure 4: Disparities of the tree image pair. Gray levels correspond to dis-

parities: lighter is closer, darker is farther away. The original image pair is

shown at the top.
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