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Abstract

This paper describes a new algorithm for solv-
ing the N-camera stereo correspondence problem by
transforming it into a maximum-ow problem. Once
solved, the minimum-cut associated to the maximum-
ow yields a disparity surface for the whole image at
once. This global approach to stereo analysis provides
a more accurate and coherent depth map than the tra-
ditional line-by-line stereo. Moreover, the optimality
of the depth surface is guaranteed and can be shown to
be a generalization of the dynamic programming ap-
proach that is widely used in standard stereo. Results
show improved depth estimation as well as better han-
dling of depth discontinuities. While the worst case
running time is O(n2d2log(nd)), the observed average

running time is O(n1:2 d1:3) for an image size of n
pixels and depth resolution d.

1 Introduction
It is well known that depth related displacements

in stereo pairs always occur along lines associated to
the camera motion, the epipolar lines. These lines
reduce the stereo correspondence problem to one di-
mension and the ordering constraint allows dynamic
programming to be applied [1{4]. However, it is clear
that this reduction to 1-d is an oversimpli�cation of
the problem that is primarily necessary for computa-
tional e�ciency. The solutions obtained on consec-
utive epipolar lines can vary signi�cantly and create
artifacts across epipolar lines, especially a�ecting ob-
ject boundaries that are perpendicular to the epipolar
lines (e.g. vertical boundary with horizontal epipolar
lines).

In this paper, we address the full 2-d problem, re-
placing the traditional ordering constraint with the
more general local coherence constraint. To perform
the global 2-d optimization, we cast the stereo cor-
respondence problem as a maximum-ow problem in
a graph and show how the associated minimum-cut
can be interpreted as a disparity surface. While the
theoretical computational complexity is signi�cantly
higher for maximum-ow than dynamic programming,
in practice, the average case performance is similar.
We also show how this new paradigm can support both
binocular and N -camera stereo con�gurations.
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There have been several earlier attempts to relate
the solutions of consecutive epipolar lines matched
with dynamic programming. In [2], dynamic pro-
gramming is used to �rst match epipolar lines and
then iteratively improve the solutions obtained by us-
ing vertical edges as reference. In [3], a probabilistic
approach is used to relate the individual matchings ob-
tained by dynamic programming to improve the depth
map quality. As a �rst approach, the current line
matching uses the previous epipolar line solution to
improve its own solution. However, this introduces a
non-desirable vertical asymmetry. A second approach
is to iteratively improve each epipolar line solutions
with its neighboring lines solution. While this local
approach is not globally optimal, it provides an e�-
cient way to introduce smoothness constraint across
epipolar lines. In [5], a Bayesian approach to the
stereo correspondence problem is described. The re-
sulting optimization problem can be solved e�ciently
by using dynamic programming along epipolar lines,
resulting in the same problem as [2, 3] of relating the
independent solutions. It proposes a heuristic method
called iterated stochastic dynamic programming that
uses previously computed adjacent epipolar line so-
lutions to iteratively improve randomly selected solu-
tions. This approach is not optimal and further more
introduce a large amount of smoothness that tends to
blur depth discontinuities.

Some multiple camera algorithms have been pre-
sented (see [4, 6{8]). In [6], a pair of camera is used as
a reference or base pair. Other cameras provide ex-
tra information to enrich the matching cost function
of the reference camera pair. The matching then pro-
ceed using dynamic programming as in [3]. In [7] and
[8], a multiple-camera real-time stereo system is pre-
sented. They use a single reference camera to perform
the matching. All the other cameras provide the in-
formation pertinent to each possible depth of points in
the reference image. While each pixel is independently
solved for depth, an implicit smoothness constraint is
enforced by smoothing the images before processing
them.

Section 2 describes a general N -camera stereo
framework to be used with multiple images from arbi-
trary viewpoints. In Section 3, the stereo problem is
extended from matching single epipolar lines to solv-
ing for a full disparity map. The generalization of
the ordering constraint to local coherence constraint is
also described there. In Section 4, the stereo match-
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ing problem is formulated as a maximum-ow prob-
lem. Details of the maximum-ow algorithm and per-
formance issues are presented in Section 4.3. Exper-
iments on both classic two-image and multiple-image
stereo sequence are presented and discussed in Sec-
tion 5.

2 Stereo Framework
In this section, we present a general framework to

handle stereo in the context of multiple images taken
under arbitrary camera geometries. It naturally ex-
tends the traditional two-image, single-baseline frame-
work for stereo.

A set of n inspection cameras C1; : : : ; Cn provides
n images I1; : : : ; In of a scene, as depicted in Figure 1
(with n = 3). A base camera C0 provides the view
for which we wish to compute the disparity map (or
equivalently depth map) for every image point. The
base camera does not have to provide an image; only
the inspection cameras do. In the case of Figure 1,
the base camera C0 is identical to inspection camera
C1. A 3d point Pw expressed in the world coordinate
system with homogeneous coordinates

Pw = [ xw yw zw 1 ]
T

can be transformed to the homogeneous point Pi in
the coordinate system of camera i by the relation

Pi =Wi Pw

where

Wi =

�
Ri Ti

0T 1

�
and Ri and Ti are, respectively, the rotation and
translation matrices de�ning the position and orienta-
tion of camera i. Assuming the pinhole camera model,

a point Pi is projected onto the image plane into the
projective point pi by the relation

pi =

"
xi
yi
zi

#
= J Pi

where J is the projection matrix de�ned as

J =

"
1 0 0 0
0 1 0 0
0 0 1 0

#

From a transformed and projected point pi, the
corresponding image coordinates p0i are obtained from
the relation

p0i = H(pi)

where H is an homogenizing function

H(

"
x
y
h

#
) =

�
x=h
y=h

�

During the process of stereo matching, each point
p00 of image I0 is attributed a depth z or equivalently a
disparity d (de�ned as d = 1=z) and can be expressed
as

P0 =

"
p00
z
1
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in the base coordinate system C0. While these two
formulations are equivalent, using the disparity for-
mulation allows one to express naturally points that
reach an in�nite depth. Therefore, we use disparity d
instead of depth z.

From this point P0, it is possible to project back
to any camera image p0i using the previously de�ned
equations as

p0i = H(pi)

= H(J Pi)

= H(J Wi Pw)

= H(J Wi W
�1
0 P0)�

x0i
y0i

�
= H(J Wi W
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and therefore obtain pixel intensity information from
inspection cameras in order to perform the matching.

During the stereo matching, each base image point
p00 = [x00; y

0

0]
T and its disparity value d generates a set

of reprojected pixel values that form a pixel intensity
vector v de�ned as

v(p00; d) = fIi(H(J Wi W
�1
0

"
p00
1
d

#
))g;8i 2 [1; : : : ; n]

(1)
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Figure 2: Epipolar Matching. Left, grid of all possi-
ble matches between line A and B. Right, equivalent
formulation of the problem, where B does not appear
directly.

This vector contains all the pixel intensity information
from the inspection cameras for a particular match.

In order to perform the actual stereo matching, a
matching cost function is required. Ideally, it is mini-
mum for a likely match and large for an unlikely one.
Deriving a meaningful matching cost is a non trivial
task. Since this is not the primary purpose of this
paper, we will use the simple form described next.

If we assume that surfaces are Lambertian (i.e.
their intensity is independent of viewing direction)
then the pixel intensity values of v(p00; d) should be
identical when (p00; d) is on the surface of an object and
thus a valid match. Then, we can de�ne the matching
cost cost(p00; d) as the variance of the pixel intensity
vector v(p00; d) as

cost(p00; d) =
1

n

X
(v(p00; d)� v(p00; d))

2 (2)

2.1 Epipolar geometry and Matching

It is a well known fact that for a given camera ge-
ometry, each image point is restricted to move along a
single line called the epipolar line [4]. This reduces the
matching process to a 1-D search along corresponding
epipolar lines.

A very important additional constraint is the or-
dering constraint. It states that the order of points
along corresponding epipolar lines is preserved. In
fact, this corresponds to enforcing a smoothness con-
straint along epipolar lines (also noted in [4]).

In the traditional approach to stereo matching, a
single epipolar line A is matched with its correspond-
ing epipolar line B in the other image. The established
matching between the two lines is a path in the grid
of all possible matches (a; b), as shown on the left of
Figure 2. The allowed starting and ending positions of
the path are shown as thick black lines. By assuming
that the ordering constraint is satis�ed along epipo-
lar lines, it is possible to solve this path problem very
e�ciently via dynamic programming [1{4].

In order to be able to use multiple cameras, the
matching grid between lines A and B can be trans-
formed into the equivalent formulation on the right of
Figure 2, where only line A appears directly. For that
case, each potential match has the form (a; d), where

d epipolar
lines

a l
(a,l,d)

Figure 3: Matching whole images. All epipolar lines
l are stacked together so that the whole image A is
matched with disparity range d. A point has depth d
and position a along epipolar line l.

a is a position along line A and d is its associated
disparity. The coordinates in image B corresponding
to the match (a; d) are easy to compute from Eq. 1,
while the cost function is directly obtained from Eq. 2.
Given a match (a; d) or (a; b), it is straightforward to
map it to any number of cameras with known geome-
tries and therefore use extra information from multiple
cameras. However, the representation using (a; d) is
favored over one using (a; b) because we do need two
base camera (A and B) as in [6] but only one (A).

3 Recovering a full disparity map
A natural extension to matching a single pair of

epipolar lines at a time would be to extend it to
the whole image at once, as depicted in Figure 3,
by matching all pairs of epipolar lines simultaneously.
Every minimum-cost path de�ning the matching of
a single epipolar line are now assembled into a sin-
gle minimum-cost surface. This surface contains all
the disparity information of the base image. The goal
of this construction is to take advantage of one very
important property of disparity �elds, local coherence,
suggesting that disparities tend to be locally very sim-
ilar, in any and all directions. As discussed previously,
this property is exploited along epipolar lines by en-
forcing the ordering constraint. However, local coher-
ence occurs in all directions and thus across epipolar
lines. By putting all the epipolar lines together and
solving globally for a disparity surface, it becomes pos-
sible to take full advantage of local coherence and im-
prove the resulting depth map.

Note that each potential match (a; l; d) in Figure 3
is four-connected since it is part of a 2-D matching
grid as presented in Figure 2. To take full advantage
of local coherence, they have to be be six-connected to
relate each individual epipolar line. Unfortunately, do-
ing this makes dynamic programming unusable since
there is no strict order for building the solution sur-
face.

Many solutions for global disparity surface match-
ing have been proposed [2, 5, 6]. Typically, these algo-
rithm propose an iterative approach in which a solu-
tion is improved by using the previous matching ob-
tained for neighboring epipolar lines. While this can
sometimes work in practice, these solutions are not
very e�cient and not optimal.
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3.1 Avoiding direct use of epipolar geom-
etry

An important distinction has to be made between
the stereo matching problems depicted in Figures 3
and 4. In the �rst case, the epipolar lines are simply
stacked up one after the other. While this might work
for binocular stereo, it does not extend well to the
case of multiple image stereo since the epipolar lines
are speci�c to a single pair of cameras and arbitrary
camera geometries will yield arbitrary set of epipolar
lines.

To alleviate this problem, we discard the ordering
constraint altogether, replacing it with the local coher-
ence property mentioned in Section 3, which is similar
but more general. In this new formulation, we can pick
any set of lines in the image to be stacked together.
The obvious choice is to take the set of horizontal lines
since this is the natural image layout. This explains
why we can refer to a point in Figure 4 by its image
coordinates (x0; y0) instead of the epipolar line index l
and position a in Figure 3.

The epipolar geometry is now only indirectly used
in computing the matching cost for points with given
disparity values (in Equation 1) but does not con-
tribute as an explicit constraint to the matching pro-
cess.

4 Stereo matching as a Maximum Flow
problem

We propose to solve globally for the disparity sur-
face by adding a source and a sink to the formula-
tion of Figure 3, and treat it as a ow problem in a
graph, as depicted in Figure 4. Consider the graph
G = (V;E) forming a 3-D mesh as in Figure 4. The
vertex set V is de�ned as

V = V � [ fs; tg

where s is the source, t is the sink, and V � is the 3d
mesh

V � = f(x0; y0; d) : x0 2 [0 : : : x0max];

y0 2 [0 : : : y0max]; d 2 [0 : : : dmax]g

where (x0max +1; y0max+1) is the base image size and
dmax + 1 is the depth resolution. Internally the mesh

is six-connected and the source s connects to the front
plane while the back plane is connected to the sink t.
We have

E =

(
(u; v) 2 V � � V � : ku� vk = 1
( s ; (x0; y0; 0) )
( (x0; y0; dmax) ; t )

:
x0 2 [0 : : : x0max]
y0 2 [0 : : : y0max]

Being six-connected instead of four-connected, each
vertex of the new problem is not only connected to its
neighbors along the epipolar line (in depth), but also
across adjacent epipolar lines (see Figure 4). Since dy-
namic programming is not possible in this situation,
we can instead compute the maximum-ow between
the source and sink. The set of edges that are satu-
rated by the maximum-ow represent a minimum-cut
of the graph. This cut separates the source and sink
and e�ectively represents the disparity surface sought.

We de�ne the edge capacities in the graph in a
straightforward way. The matching cost is used di-
rectly as a capacity. Since a likely match has a low
matching cost, the corresponding edge capacity will
be low and that edge is likely to be saturated by the
maximum-ow. Inversely, a high matching cost yields
a high capacity edge which is unlikely to be saturated.

Since a vertex in the graph correspond to a poten-
tial match, we can use Equation 2 to derive its match-
ing cost. The capacity of an edge is derived from the
matching cost of the two vertices that it links. We ar-
bitrarily de�ne the edge capacity function c(u; v) be-
tween vertices u and v from Equation 2 as

c(u; v) =
cost(u) + cost(v)

2
(3)

where cost(u) is used for simplicity instead of
cost(p00; d) since u is a match and de�ned by its as-
sociated point p00 and disparity d. In fact, since an
edge links to vertices that each represent a speci�c
3-D match, it corresponds itself to a line segment
in each inspection image. The obvious improvement
to the edge capacity function is to derive it directly
from these line segments. The average of two vertices
matching cost is just a heuristic that works quite well
in practice.

4.1 Expressing smoothness through edge
capacity

In order to control the level of smoothness of the
disparity map, it is important to di�erentiate between
two kind of edges. As depicted in Figure 5, an edge
oriented along the disparity axis is called a disparity
edge while all other edge orientation are called occlu-
sion edge. It will be shown later that the capacity of
occlusion edges directly controls the level of smooth-
ness. Edges adjacent to the source or sink are not
classi�ed and have in�nite capacities. We have

c(u; v) =

8><
>:

0 if (u; v) =2 E
1 if u = s or v = t
cdisp(u; v) if (u� v) = (0; 0;�d)
cocc(u; v) if (u� v) = (�x;�y; 0)

where cdisp(u; v) is the capacity of a disparity edge (
oriented along the d axis ) while cocc(u; v) is an occlu-
sion edge (oriented along the x or y axis). In Figure 5,
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ues. k = 0, maximal discontinuity. k = 1, intermedi-
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the darker edges (connecting the black vertices) are
occlusion edge while lighter edges disparity edges. We
de�ne these costs from Equation 3 as

cdisp(u; v) = cost(u)+cost(v)

2
cocc(u; v) = k cdisp(u; v) (0 � k � 1)

where k is a smoothness parameter. A higher occlu-
sion cost (i.e. larger k) increases the smoothness of
recovered surfaces while, inversely, a lower occlusion
cost facilitate depth discontinuities.

To illustrate the e�ect of the smoothness parameter
k, we created an example 2-D problems with a sim-
ple cost function, as shown in Figure 6. For reference
purposes, a minimum-cost path linking the left and
right sides of the graph was computed using standard
dynamic programming and is displayed as a chain of
white dots. The maximum-ow was computed in this
graph for smoothness values 0, 1, and 1 and the cor-
responding minimum-cut are displayed as sets of thick
black edges. These extreme values of the smooth-
ness parameter k have intuitive consequences. When

k = 1, the resulting disparity surface is at (max-
imally smooth) and features a single disparity value
for the whole image. Setting k = 0, each column of
the graph is independently given a disparity, therefore
achieving maximal discontinuity in the disparity sur-
face. For k = 1, at the top of Figure 6, a balance is
reached and the minimum-cut corresponds very well
to the minimum-cost path computed by dynamic pro-
gramming.

4.2 From a cut to a disparity surface

It is well known that once the maximum ow is
found, a minimum-cut C separates the source and sink
in such a way that the sum of edge capacities of C
is minimized. This cut is therefore the optimal way
to separate the source and the sink for the particular
cost function. Since the source is connected to the
closest points while the sink is connected to the deepest
points, the cut e�ectively separates the view volume
into a foreground and background and yields the depth
map of the scene. The minimum cut is also guaranteed
to provides a depth estimate for each image point, as
demonstrated by Property 1.

Property 1 (cut as a depth map)
Consider a cut C associated with some ow in the
graph G = (V;E). For all (x; y), there exist at least
one d such that the edge (x; y; d)� (x; y; d+1) is part
of C.

Proof. For any (x; y), there is a path s ; t in G of
the form

s! (x; y; 0)! (x; y; 1)! : : :! (x; y; dmax)! t

therefore containing the set of edges(
s! (x; y; 0)
(x; y; d)! (x; y; d+ 1) d 2 [0; dmax � 1]
(x; y; dmax)! t

)

Any cut of G must break this path and thus contain
at least one edge of the form (x; y; d) � (x; y; d + 1)
since the edges s! (x; y; 0) and (x; y; dmax)! t have
in�nite capacities. 2

According to property 1, a depth map can be con-
structed from the minimum-cut C of graph G as fol-
low. For each point (x; y), the disparity is the largest
d such that the edge (x; y; d)� (x; y; d+1) belongs to
C. This results in the desired global disparity surface.

4.3 Solving the Maximum Flow problem

There is an abundant literature on algorithms
to solve the maximum-ow problem [9, 10]. For
this paper, we implemented a well known algorithm,
preow-push lift-to-front (see [9]). Currently, the best
maximum-ow algorithm is presented in [10] and is
particularly well suited for sparse graphs like the ones
built for stereo matching.

The number of vertices v in the graph is equal to the
number of image pixels multiplied by the depth reso-
lution. For an image of size n pixels, i.e. of dimension
approximately

p
n �

p
n, and a depth resolution of d
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Figure 7: A) Performance as a function of image size
n in pixels, for �xed depth resolution. B) Performance
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steps, we have v = nd. Since the graph is a three-
dimensional mesh where each vertex is six-connected,
the number of edge e is e = O(V ) = nd.

This implies that the preow-push algorithm used,
with a running time

O(ve log(v2=e))

yields a running time of

O(n2d2 log(nd))

The new best bound [10] runs in

O(e
3

2 log(v2=e) log(U))

where U is the largest edge capacity, yields a running
time of

O(n1:5d1:5 log(nd) log(U))

The dynamic programming approach on separate
epipolar lines [3] requires a total running time of
�(nd), which might seem much better than the
maximum-ow algorithm. However, the topology of
the graph, the position of the source and sink, and the
structure of edge capacities all tend to make the prob-
lem easier to solve, making the average running time
much better than the worst case analysis. Figure 7
shows the typical performance as a function of total
image size n (in pixels) and depth resolution d. The
average running time is O(n1:2 d1:3), which is almost
linear with respect to image size n (in pixels) and com-
pares favorably with the dynamic programming ap-
proach. The typical running time for 256�256 images
is anywhere between 1 to 30 minutes, on a 160Mhz
pentium machine, depending on the depth resolution
used. While this is considerably slower than [3], the
algorithm was not optimized for speed. Performance
improvement are expected in the future.

5 Experiments and results
In this sections, results of binocular and N -camera

stereoscopic matching from maximum-ow are pre-
sented and compared with two other algorithms.

maximum−flow

standard stereo

MLMH+V

(32 disparity steps) (128 disparity steps) (~20 disparity steps)

shrub−15

Figure 8: Disparity maps for the Shrub a two preci-
sion level (32 and 128 disparity steps). On top, the
maximum-ow and MLMH+V results. At bottom, the
original image shrub-15 and results for standard stereo.

First, the algorithm referred to as standard stereo
uses line-by-line dynamic programming on N -camera
with variable depth resolutions. It di�ers from the
maximum-ow algorithm only in the way it solve the
disparity surface. They are otherwise identical and
their results use the same disparity scale and are not
equalized.

Second, the algorithm referred to as MLMH+V is
the e�cient dynamic programming implementation
from [3] (for the binocular version) and from [6] (for
the N -camera version). It performs an iterative opti-
mization of its disparity solution to enforce smooth-
ness across disparity lines. It should be noted that
the results from this algorithm use a di�erent dispar-
ity scale (gray levels) than maximum-ow or standard
stereo and are equalized to improve their contrast.

Shrub

Figure 8 shows one image of a pair of the Shrub image
sequence (courtesy of T. Kanade and T. Nakahara of
CMU), along with some matching results. These re-
sults show how maximum-ow tends to extract sharp
and precise depth discontinuities, while standard stereo
and MLMH+V produce many artifacts along vertical
depth discontinuities. Two level of depth resolutions
are shown (32 and 128 steps) with di�erent level of
smoothness. It is notable that even at high smooth-
ness levels, maximum-ow does not produce spurious
horizontal links across the gap between the two larger
shrubs. The results of multiple-camera analysis is
shown in Figure 9. All the images of this sequence
share a common horizontal baseline. Even if the al-
gorithms use di�erent number of images (4 and 7),
the total spanned camera displacement is the same
and therefore provide about the same depth discrim-
ination. Some image normalization is performed for
MLMH+V prior to matching. None was used for the
other two algorithms.



maximum−flow MLMH+V

4 images
(64 disparity steps) 7 images

Figure 9: Disparity maps for the 4 and 7 images Shrub
sequence. Both sequences span the same total hori-
zontal displacement and should yield similar results.
White points on the right denote detected occlusions.

maximum−flow standard stereo

MLMH+V

(32 disparity steps)

pentagon

Figure 10: Disparity maps for the Pentagon stereo
pair.

Pentagon

The left image of the stereo pair Pentagon is shown
in Figure 10, along with the matching results. This
stereo pair presents some challenge since the true
camera motion is not exactly horizontal and contain
some rotation, creating image motions that violates
the epipolar constraint. Fortunately, algorithms like
MLMH+V resist better to these misalignment since
they allow negative disparities as well as positive. This
explains how the highway structures at the top left
are well recovered for MLMH+V while the other algo-
rithms produced some noticeable spurious mismatch.
A predicted, maximum-ow does produce a more sym-
metric result, with less spurious horizontal streaks.

Park meter

The image sequence Park meter shown in Figure 11
was analyzed for di�erent number of images. Here a
number of vertical objects put in evidence the di�cul-

maximum−flow standard stereo

MLMH+V

pm−2 2 images

4 images

Figure 11: Disparity maps for the Park meter sequence.
Results are shown for 2 and 4 image sequence. The
MLMH+V result is shown for 2 images.

maximum−flow
(7 images)

MLMH+V
(13 images)

castle−0

Figure 12: Disparity maps for the Roof sequence. Re-
sults are shown for 7 and 13 images, respectively.
White points on the right denote detected occlusions.

ties that standard stereo and MLMH+V have to relate
horizontal epipolar lines solutions together. No hori-
zontal streaks are present in maximum-ow. Using 4
images (horizontally displaced along a single baseline),
the results at the bottom of Figure 11 improve sensi-
bly from those at the top. No results were available
for MLMH+V.

Roof

The image sequence "Roof" (courtesy of T. Kanade
and E. Kawamura of CMU) is shown on the left of Fig-
ure 12. It contains 13 images featuring either horizon-
tal or vertical translations. The results for maximum-
ow and MLMH+V are presented at the right. The
disparity map obtained by maximum-ow is very de-
tailed. In particular, the structure of the roof is well
reconstructed. Note that only 7 horizontally separated
images were used by maximum-ow because the exact
amount of vertical displacement of the remaining 6
images was not available.

Castle

The sequence Castle from CMU is shown on the left of
Figure 13 and contains 11 images with various com-
binations of horizontal, vertical and forward camera
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Figure 13: The Castle image stereo sequence. On the
left, one of the 11 images. On the right, the resulting
maximum-ow disparity map.

k = 1 k = 1/10 k = 0

Figure 14: Disparity maps for the Shrub sequence
for 3 smoothness levels. On the left, k = 1 enforce
high smoothness. In the middle, k = 1=10 is medium
smoothness. On the right, k = 0 enforce no smooth-
ness.

motion. The 11 images were used to create the dis-
parity map shown on the right. A high level of detail
and very few spurious matches are present. Notice
that the white background is recovered correctly re-
gardless of its lack of texture.

It is important to note that this sequence represent
a challenge since the actual disparity range, i.e. the
di�erence in disparity between the closest and the far-
thest object, is only 2.7 pixels. Performed at a depth
resolution of 96 steps, this implies that the disparity
precision achieved is 0.03 pixels.

5.1 Level of Smoothness

In this section, we wish to illustrate how the level
of smoothness, represented by the parameter k of Sec-
tion 4.1, can a�ect the quality of the disparity map
recovered. Figure 14 illustrates this for three level of
smoothness, namely k = 1, k = 1=10 and k = 0.
For k = 0, the capacity of occlusion edges is zero and
therefore each pixel is given a disparity independently
of its neighbors. It is essentially equivalent to �nding
the best disparity by correlation over a single pixel
window (on the right of Figure 14).

As expected, lowering the occlusion capacities
favors depth discontinuities and therefore creates
sharper object edges, at the expense of surface
smoothness.

It is observed that large depth discontinuities tend
to stay sharp as the level of smoothness increases. This
is probably due to the fact that the smoothness is ex-
pressed in all direction instead of only along epipolar
line. This result di�ers strongly frommost other meth-
ods where a high level of smoothness induces blurred
or missing depth discontinuities.

6 Conclusion
We presented a new algorithm for establishing N -

camera stereo correspondence, based on a reformu-
lation of the stereo matching problem to �nding the
maximum-ow in a graph. Representing a generaliza-
tion of dynamic programming along epipolar lines to
the global matching space, it is able to solve optimally
for the full disparity surface in a single step, there-
fore avoiding the usual disparity inconsistencies across
neighboring epipolar lines. The ordering constraint,
required for dynamic programming, is replaced with a
more general local coherence property that applies in
all directions instead of along epipolar lines. The new
stereo problem formulation naturally supports mul-
tiple arbitrary cameras and can estimate depth for
an arbitrary virtual camera. For any desired level of
smoothness, depth discontinuities are well preserved
since smoothness is applied in all directions instead of
only along epipolar lines.

As for future research, there are many avenues open
to improve the maximum-ow formulation proposed in
this paper. In particular, a multi-resolution approach
as well as local smoothness variations could be directly
embedded in the graph, improving performance and
depth map quality. The edge capacity computation
can also be improved (as discussed at then end of Sec-
tion 4) by directly comparing image line segments in-
stead of single pixels.
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