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Abstract

The constant image brightness (CIB) assumption assumes that the intensities of corre-

sponding points (or planar patches) in two (or more) images are equal. This assumption

is central to bodies of work in optical ow estimation, motion and structure, stereo and

recognition based on color histograms. However, surprisingly little work has been performed

to support this assumption, despite the fact the many of these algorithms are very sensitive

to deviations from CIB. While it is commonly believed that the image brightness assump-

tion is false, it is usually assumed that this deviation can be modelled by a simple global

spatially-invariant additive constant and/or a global spatially-invariant scaling of the image

intensities (contrast).

An examination of the images contained in the SRI JISCT stereo database revealed that

the constant image brightness assumption is indeed often false. Moreover, the simple additive

and linear models do not adequately represent the observed deviations. A comprehensive

physical model of the observed deviations is di�cult to develop. However, many potential

sources of deviations might be represented by a non-linear monotonically increasing function

of intensities. Under these conditions, we believe that an expansion/contraction matching of

the intensity histograms represents the best method to both measure the degree of validity

of constant image brightness assumption and correct for it. The dynamic histogram warping

(DHW) is performed via dynamic programming and is closely related to histogram speci�-

cation. However, while histogram speci�cation produces good matches, the local matching

of cumulative histograms introduces artifacts (spikes in the matched histograms) because

matching errors propogate and accumulate and must periodically be corrected. This prob-

lem does not occur with dynamic histogram warping, in which a global minimum is found.

Experimental results show that image histograms are closely matched after DHW. A

further reason for this is that while histogram speci�cation only modi�es one histogram

DHW can modify both histograms simulatenously. This is especially useful when expansion

of an intensity bin of one histogram is not possible but a corresponding compression of

the other histogram is. DHW is also capable of removing simple constant additive and

multiplicative biases without derivative operations, thereby avoiding ampli�cation of high

frequency noise.
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1 Introduction

The constant image brightness assumption assumes that the intensities of corresponding points

(or planar patches) in two (or more) images are equal. This assumption is central to bodies

of work in optical ow estimation, motion and structure, stereo and recognition based on color

histograms [14, 9, 5]. However, surprisingly little experimental work has been performed to

support this hypothesis, despite the fact the many of these algorithms are very sensitive to

deviations from this assumption.

While it is widely believed that the image brightness assumption is seldom true, it is usually

assumed that this deviation can be modelled by a simple global spatially-invariant additive

constant, i.e. IA = IB + � where IA and IB are the intensities of corresponding points in a

pair of images. In this case, image contrast is conserved and the DC bias is usually removed by

applying a �rst derivative operation to both images. Any derivative operation does, of course,

amplify high frequency noise and this can pose a problem for noisy images.

For pixel-based stereo, Gennert [7] provided a detailed model of the intensity relationship

between corresponding pixels, showing that corresponding intensities in the left and right images

di�er by a spatially varying multiplicative factor due to surface orientation and reectance

models. Later work by Cox et al [4, 3], however, suggested that this relationship was over

shadowed by global changes in illumination conditions and di�erences in camera responses that

were probably the principal source of errors to the constant image brightness assumption. These

changes in illumination and or camera responses were modeled by constant multiplicative and

additive factors, i.e. IA = �IB+�, that were automatically estimated by a simple analysis of the

image histograms. Negahdaripour and Yu [12] have recently proposed a \generalized brightness

change" model for optical ow in which the additive and multiplicative terms are spatially

varying. This is a very general model for optical ow in which both the x; y ow �eld and the

additive and multiplicative intensity relationships must be estimated at every pixel. The work

described here is simpler but restricted to the case where a global, spatially invariant, non-linear,

monotonically increasing relationship exists between the intensities of the two images.

This paper �rst examines the images contained in the SRI JISCT stereo database [2]. Sec-

tion (2) reveals that the constant image brightness assumption is often false. Moreover, neither

a DC bias nor a linear model adequately represents the observed relationships. A comprehensive
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physical model of the observed deviations is di�cult to develop. In fact, it is unlikely that a single

model will explain all such relationships, particularly if much of the deviations are attributable

to highly nonlinear automatic gain controls common to most manufacturers' cameras.

Clearly, when the CIB assumption is valid, the intensity histograms for a pair of stereo

or motion sequence images should be identical, ignoring noise and occlusion a�ects. How-

ever, if corresponding intensities are related by an unknown non-linear monotonically increasing

relationship then the intensity histograms will su�er corresponding distortions. We propose

to estimate and correct for the unknown non-linear distortion by searching for an optimum

non-linear warping of one histogram to the other, that minimizes a cost function de�ned in

Section (3). Such a warping should consist entirely of expansion/contraction of the intensity

levels in a manner analagous to the dynamic time warping of speech waveforms [11]. These algo-

rithms are related to the dynamic programming algorithms for stereo [1], but di�er by replacing

deletions/occlusions with expansion/contractions that allow non-unique matches. Section (3)

develops what we have called the dynamic histogram warping.

The work described here is very closely related to work in histogram speci�cation [8]. Tra-

ditionally, this has been a two step process in which the two histograms are �rst equalized.

The �nal mapping is computed by mapping intensities in the �rst histogram to their equalized

value and then inverse mapping from the equalized value to the corresponding intensity value

of the second histogram. Yang et al [15] point out that because of quantization errors, this

two-step algorithm can produce contouring artifacts. Instead, they propose a direct method

that matches the pair of histograms such that each intensity level i is mapped to a correspond-

ing intensity j that minimizes
���HA

i �HB
j

���, where Hi is the cumulative histogram for the �st i

intensities. This approach signi�cantly reduces artifacts due to contouring. Zhang [16] showed

that the direct method (called SML) can produce poor results because each source intensity is

independently mapped to a destination intensity. Zhang suggested modifying the cost function

to
���HA

f(j) �HB
j

���, where f(j) is a monotonic mapping function, to take advantage of the fact that
in general the destination histogram contains less intensities than the source histogram. This

method for histogram speci�cation (called GML) produces good matches and the computation

is simple. However, the local search for matches introduces artifacts (spikes in the matched

histograms) because matching errors accumulate. The simple example of Figure (1) illustrates
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Figure 1: Incorrect histogram speci�cation. A) Original histogram. B) Speci�ed histogram.

A0) Resulting histogram using SML histogram speci�cation as in [16]. Using GML also gives

erroneous results for this case.

the e�ect. Here, intensity values 1 through 4 occur more frequently in image A while intensity

values 7 through 10 occur more frequently in image B. Clearly though, the mapping should

be one to one, i.e. IAi = IBi . However, the matching of IA1;2 with IB1;2 results in a cumulative

error of 0:02, which is subsequently reduced by matching IA3;4 to IB4 , as shown in histograms

A0,B of Figure (1). By matching histogram values directly and performing a global optimization

via dynamic programming, this problem is avoided and better matching is thereby achieved. A

further distinction betwwen the two procedures is that while histogram speci�cation only alters

one histogram, DHW allows both histograms to be simultaneously modi�ed. The bene�t of

this is obvious when an intensity bin in one histogram needs to be expanded to many bins in

the other. In practice, this is not possible. However, an expansion of one histogram implies

a corresponding compression of the other histogram, which is easily accomplished when both

histograms are allowed to be modi�ed.

Section (4) describes experimental results of applying the DHW to image histograms. Very

close matching is achieved. These results are compared with those achieved through histogram

speci�cation and it is clearly shown that DHW produces closer matches and fewer large errors
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that appear as spikes.

2 The Constant Image Brightness Assumption and the JISCT

Database

The SRI JISCT database is a collection of 49 stereo pairs from �ve sites: JPL, INRIA, SRI,

CMU and Teleos. To determine the accuracy of the CIB assumption, we examined corresponding

intensity histograms for each of the stereo pairs, since if the CIB assumption is valid, their

intensity histograms should be almost identical. Figures (2-5) show that for 15 cases, the CIB

assumption was clearly not valid. Vertical lines have been drawn between corresponding

points in each pair of histograms: the longer the line, the bigger the di�erence between the

histograms at that pont. The di�erences between corresponding histograms reveals that a DC

bias, i.e. IA = IB + �, is not an accurate model of the intensity relationship. This is clear

from the histograms of \J2" in Figure (4) in which the dark intensity portion of the histogram

is well matched but progressively greater deviations are apparent for brighter intensities. Also,

the histograms of the the \ARROYO" pair of Figure (2) are clearly structurally di�erent.

To determine the validity of the constant additive and multiplicative model, i.e. IA = �IB+�,

the derivative of each image was �rst taken to remove the DC bias. Then, the histograms of the

logs of the magnitude of the image derivatives were computed. If this were an accurate model,

then corresponding histograms of the log of absolute derivatives should be shifted versions of

one another. Figures (6-9) clearly show that this is not the case. In particular, several of the

�gures appear to be scaled versions of one another, see Figure (9) for example, indicating that

some form of power law relationship may be present.

This analysis shows that not only is the constant image brightness assumption often invalid,

but also that the simple constant or linear models for the deviation do not adequately represent

the imaging process. The analysis suggests that an alternative model for the relationship between

the two sets of intensities might be a non-linear model of the form IA = �I

B + �.

3 Dynamic Histogram Warping (DHW)

There are a number of possible reasons why a pair of images might deviate from the CIB

assumption for some scenes, assuming that the image content remains the same. These include

(1) variations in illumination, (2) variations in camera signal response and (3) the time-varying
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Figure 2: Intensity histograms for JISCT images pairs. Vertical lines have been drawn between

corresponding points in each pair of histograms: the longer the line, the bigger the di�erence

between the histograms at that point.
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Figure 3: Intensity histograms for JISCT images pairs. Vertical lines have been drawn between

corresponding points in each pair of histograms: the longer the line, the bigger the di�erence

between the histograms at that point.
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Figure 4: Intensity histograms for JISCT images pairs. Vertical lines have been drawn between

corresponding points in each pair of histograms: the longer the line, the bigger the di�erence

between the histograms at that point.
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Figure 5: Intensity histograms for JISCT images pairs. Vertical lines have been drawn between

corresponding points in each pair of histograms: the longer the line, the bigger the di�erence

between the histograms at that point.
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Figure 6: Normalized log derivative intensity histograms for sample JISCT images pairs.
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Figure 7: Normalized log derivative intensity histograms for sample JISCT images pairs.
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Figure 8: Normalized log derivative intensity histograms for sample JISCT images pairs.
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Figure 9: Normalized log derivative intensity histograms for sample JISCT images pairs.
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Figure 10: Histogram matching. Legal matches (A) always join only one intensity to one or

more others. Illegal matches (B) join many intensities to many others.

non-linear automatic gain control of the cameras. If it is assumed that these factors can be

lumped together and represented as an arbitrary non-linear monotonically increasing function

that uniquely maps intensity values in image A to intensity values in image B, then errors in the

constant image brightness assumption can be corrected, or at least reduced, by matching the

intensity histograms of the two images. Such a comparison and correction is strongly related to

work in sequence comparison [13] and especially to dynamic time warping (DTW), commonly

used in speech recognition to minimize variations in the rate of speech between speakers [11].

In dynamic time warping, two speech signals are compressed and/or expanded to best match

one another. Signal samples can be matched one-to-one, one-to-many (expansion) or many-

to-one (contraction), as illustrated in Figure (10a). However, the many-to-many mappings of

Figure (10b) are illegal.

Because of quantization error, for example, we initially considered allowing many-to-many

mappings. However, while the di�erences in the resulting histograms were reduced with such

mappings, the original shape of the histograms was often lost. We felt that it was desirable

to retain the original shape as much as possible and therefore decided to follow DTW and not

allow many-to-many mappings.

To specify the cost of a matching, let hAm and hBn represent the frequency of occurrence of

the mth and nth intensity values in images A and B respectively. Let HA
m and HB

n represent the

cumulative frequency of occurence such that HA
m =

Pm
i=1 h

A
i andHB

n =
Pn

i=1 h
B
i . Then the usual

cost of matching intensity IAm of image A with intensity IBn in image B is simply
���hAm � hBn

���. This
is appropriate for a one-to-one mapping. However, for histograms the quantities being compared

are the number of occurrences of intensity values. Thus, for a one-to-two mapping, for example,
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the cost should be
���hAm � (hBn + hBn�1)

��� and for a one-to-k mapping
���hAm �

Pk�1
i=0 h

B
n�i

���. The fact
that the cost of matching hAm+1 to hBn depends on whether or not hAm was matched to hBn ,

complicates the dynamic programming. However, since the maximum size of a compression or

expansion is always �nite1, then such a cost function can be accomodated [6]. In general, the

cost of a k-to-l mapping is

dk;l(m;n) =

������
k�1X
i=0

hAm�i �

l�1X
j=0

hBn�j

������
=
���(HA

m �HA
m�k)� (HB

n �HB
n�l)
���

Finally then, it is necessary to de�ne the total cost of a matching. This cost is de�ned recursively

as

D(0; 0) = 0

D(i; j) =1 (i � 0; j � 0; (i; j) 6= (0; 0))

D(m;n) =Min [D(m� k; n� l) + dk;l(m;n)]

1 � k �M

1 � l � N

(k � 1)(l � 1) = 0

whereM and N represent the maximum allowable compression of the respective histograms and

the constraint that (k � 1)(l � 1) = 0 prevents many-to-many mappings. The cost function can

be e�ciently minimized via dynamic programming.

Traditional histogram speci�cation assumes one histogram has a �xed reference. DHW is

also capable of such constructions but is also more exible since it is possible to simultaneously

warp both histograms, replacing expansions of one histogram by corresponging compressions of

the other. The experimental results reported next simultaneously warp both histograms.

4 Experimental results using DHW

The dynamic histogram warping algorithm was applied to the images whose original histograms

were shown in Figures (2-5). Figures (11-14) shows the resulting histograms after image match-

ing. It is clear that very close matching has been achieved.

In comparison, Figures (15-18) show the results of applying a conventional histogram spec-

i�cation (GML) algorithm to match intensity histograms. Although reasonably good matching

is achieved, spurious matches, in the form of spikes, are clearly visible.

The di�erence between resulting histograms, measured as a sum of squared di�erences (e =
qP

i (h
0A
i � h0Bi )2), is shown in Figure (19) for three methods applied to the 15 test image

1
In the limit one-to-N , where N is the range of intensity values.
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Figure 11: Intensity histograms for JISCT images pairs after dynamic histogram warping.
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Figure 12: Intensity histograms for JISCT images pairs after dynamic histogram warping.
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Figure 13: Intensity histograms for JISCT images pairs after dynamic histogram warping.
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Figure 14: Intensity histograms for JISCT images pairs after dynamic histogram warping.

19



0 100 200
0

1000

2000

3000

4000

Intensity

F
re

q

Arroyo

0 100 200
0

2000

4000

6000

8000

10000

Intensity

F
re

q

Ball1

0 100 200
0

5000

10000

15000

Intensity

F
re

q

Hmmwv1

0 100 200
0

5000

10000

15000

Intensity

F
re

q

Hmmwv2

Figure 15: Intensity histograms for JISCT images pairs after histogram speci�cation.
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Figure 16: Intensity histograms for JISCT images pairs after histogram speci�cation.
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Figure 17: Intensity histograms for JISCT images pairs after histogram speci�cation.
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Figure 18: Intensity histograms for JISCT images pairs after histogram speci�cation.
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Figure 19: Sum of square di�erences. Black: Dynamic Histogram Warping. Dark gray: regular

normalisation (GML). Light gray: regular histogram speci�cation (GML)

pairs. The dynamic histogram warping (in black) always yield a smaller error then regular

normalisation or speci�cation.

As an example of the type of correction achieved, Figure (20) shows the original pair of

images, \IROAD2", from the JISCT database. We applied a stereo algorithm [4, 3] to this

pair (1) with no correction, (2) correction using a linear model of the intensity relationship, (3)

correction using regular histogram speci�cation and (4) correction using dynamic histograms

warping. The corresponding disparity maps are shown in Figure (21).

With no histogram correction, the disparity map is extremely poor. While the linear model

substantially improves the disparity output, some artifacts are present, mostly on the upper left

portion of the road. Both histogram speci�cation and DHW remove this artifact but histogram

speci�cation introduces some additional error in the left foreground of the road.

Optical ow estimation can also bene�t from dynamic histogram warping. Figure (22) shows

the image of an o�ce ceiling, courtesy of S. Negahdaripour. \After the �rst image was taken,

the camera aperture was increased before taking the second image" [12].

The optical ow obtained using the method of Horn & Schunk [10] is shown in Figure (23a)

and is heavily corrupted because the constant brightness assumption is not satis�ed. After

correcting the images with DHW, the resulting ow shown in Figure (23b) is very close to the

real ow, which should be zero everywhere.
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Figure 20: The \IROAD2" stereo pair, included in the SRI JISCT database.

Figure 21: Disparity maps for the \IROAD2" stereogram. Upper left: No correction. Up-

per right: Linear correction model. Lower left: regular histogram speci�cation. Lower right:

Dynamic Histogram Warping.
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Figure 22: O�ce ceiling image pair. Courtesy of S. Negahdaripour

C
normal dhw

Figure 23: Optical ow. A) Flow obtained for original image pair. B) Flow obtained after using

DHW
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5 Conclusion

Despite the fact that the constant image brightness (CIB) assumption is common to many

branches of computer vision, very little work has been directed to testing this hypothesis. Forty

nine image pairs from the SRI JISCT stereo database were examined and it was empirically

demonstrated that the CIB assumption is often erroneous. Inspection of corresponding his-

togram pairs revealed that the common additive (DC bias) and linear (IA = �IB + �) models

are not good models of the intensity relationship between the two images.

The deviation from constant image brightness is probably due to several factors including

variations in illumination, camera responses and non-linear automatic gain controls. If these

factors are lumped together and represented as an arbitrary non-linear monotonically increasing

function that uniquely maps intensity values in image A to intensity values in image B, then

errors in the constant image brightness assumption can be corrected, or at least reduced, by

matching the intensity histograms of the two images.

Conventional histogram speci�cation based on local matching corresponding cumulative his-

tograms was shown to be problematic since errors propogate and accumulate and must then be

anulled by spurious intensity matches. Instead, a dynamic histogram warping is proposed, anal-

ogous to dynamic time warping, that works directly on the intensity histograms by expanding

or compressing intensity bins. One-to-one and one-to-many mappings are allowed.

Dynamic histogram warping was applied to 14 image pairs from the SRI JISCT database

that had previously been identi�ed as not meeting the CIB assumption. An examination of the

corrected histograms indicated very close matchings that were superior to those achievable by

conventional histogram speci�cation.

DHW was designed as a front-end preprocessing stage to computer vision algorithms that

assume constant image brightness. We demonstrated this by applying a maximum likelihood

stereo algorithm to an image pair that originally deviated signi�cantly from the CIB assumption.

The experimental results showed that the while the original disparity map contained many

errors, a reduction in errors was achieved by �rst normalizing the images using DHW. A similar

experiment was performed for optical ow estimation. The results clearly show that the accuracy

of the resulting ow is greatly improved.

The constant image brightness assumption is central to many computer vision algorithms
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and the dynamic histogram warping algorithm developed here provides a powerful method for

measuring the validity of the CIB assumption and correcting for deviations. Moreover, because

DHW does not require image derivatives, it does not amplify high frequency noise. As a result,

one may be able to apply existing stereo, optical ow and color indexing algorithms to noisier

imagery than was previously possible. It is hoped that the dynamic histogram warping will

become a standard preprocessing stage for algorithms that assume constant image brightness.
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