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Abstract

This paper presents a new intensity-based stereo algorithm using cooperative bi-

directional matching with a hierarchical multilevel structure. Based on a new model

of piecewise smooth depth �elds and the consistency constraint, the algorithm is able

to estimate the 3-D structure and detect its discontinuities and the occlusion reliably

with low computational costs. In order to �nd the global optimal estimates, we utilize

a multiresolution two-stage algorithm minimizing nonconvex cost functions, which is

equivalent to the MAP estimation. This basic framework computing the 3-D structure

from binocular stereo images has been extended to the trinocular stereo vision for a

further improvement of the performance. A few examples for the binocular and trino-

cular stereo problems are given to illustrate the performance of the new algorithms.

Keywords: binocular and trinocular stereo, cooperative bidirectional matching, dis-

continuity and occlusion, MAP estimation and multiresolution.

1 Introduction

Stereo vision is a fundamental technique to obtain the 3-D structure of a scene from 2-D
images, which has been extensively studied in the past by many researchers. The methods
for stereo matching can be grouped into three major categories: area-based [21], feature-
based [20] [12] and intensity-based approaches [15] [10]. Usually the feature-based methods
are preferably used in many publications, because sparse features can be reliably located and
their matching is relatively simple. In contrast the intensity-based methods have long been
overlooked as a potential method to cope with di�erent intensities of stereo image pairs.
These methods, however, have some advantages over feature-based methods: one directly
can get a dense depth �eld estimate by matching algorithms and the performance of the
algorithms does not rely on more or less reliable features. Extracting robust features in na-
tural scenes can sometimes be very di�cult and time consuming. Moreover, the algorithms
can use the whole information of the images without loss through image preprocessing. The
main causes for di�erent intensity images that lead to di�cult matching in intensity-based
methods include photometric e�ects, occlusions, sensor and discretization noise. The pro-
blem with occlusion exists commonly in all three matching methods and will be discussed
later. The last cause (mainly noise) can be partially overcome by statistical optimal esti-
mations, for example, MAP methods [8] [24] [4] which are well suited to solve in general
ill-posed problems in low level vision. Photometric e�ects can partly be eliminated by some
adequate techniques, such as using a spatial coherent multiplier in the matching process
[10]. Thus the intensity-based methods are also e�cient and useful compared with other
methods. Recently some works integrating both intensity-based and feature-based methods
have been reported [6] [27], which, however, have a high computational complexity.

Although the stereo techniques have achieved a great progress, some problems have not
yet been satisfactorily solved. One of the most important reasons is that discontinuities
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and occlusions are often not explicitly treated in many matching algorithms. Often stereo
algorithms utilize the constraints of uniqueness, smoothness and ordering to simplify the
matching process which, however, are invalid assumptions in occluded regions. If occluded
areas are not detected explicitly, they may incorrectly match adjacent parts and interfere
with the correct matching in the neighborhood of occluded regions. Thus a matching pro-
cess taking into account occlusions is necessary to accurately recover the 3-D structure from
2-D stereo images. Recently several authors [27] [14] [6] [5] [19] proposed some new com-
putational frameworks for stereo matching incorporating occlusion information. A common
characteristic among these methods is that two matching processes (L to R and R to L) run
separately and bene�t little from each other.

A way for further improvement of stereo vision is to decrease the ambiguities of stereo
matching by an additional triangulation geometry constraint with trinocular stereo (recently
[13] [23]). It turns out that trinocular stereo vision overcomes many of the problems in
binocular stereo accompanied with greater computational complexity. Besides eliminating
the ambiguous matching, trinocular stereo techniques also provide a better performance in
occluded regions and their adjacent regions.

Our contribution in this paper is to put forward a new intensity-based computational
framework for stereo vision, which uses the mechanism of cooperative bidirectional stereo
matching to estimate the depth �elds and to detect the occluded regions on the stereo pairs
reliably. Based on well known models, i.e. a deterministic structure model from imagery tri-
angulation and a statistic model for image acquisition and a new Markov random �eld model
for depth �elds and occlusions, the a posteriori probability distribution or cost function of
piecewise smooth depth �elds is introduced in a similar way to general intensity-based regula-
rization methods ([15] [10] etc.). But in contrast to existing solutions the discontinuities and
occlusions are explicitly taken into account in our new cost function. Instead of simulated
annealing methods or the graduated non-convexity algorithm for minimizing this noncon-
vex function, we simply use a deterministic relaxation algorithm of two stages handling the
discontinuities of depth �elds. Implementing it in a hierarchical multilevel structure, we get
with high probability the global optimal depth estimates and simultaneously the occlusion
maps for both stereo images with a rapid convergence. This algorithm which computes
dense depth �elds and occlusions in a uni�ed framework is di�erent from feature-based or
correlation-based methods where the matching and interpolation (although in the later step
it is also possible to preserve discontinuities) must separately be performed. In [9] it is tried
to model occlusions and combine it into a Bayesian approach for stereo matching. But due
to the high computational complexity only lateral spatial coherence is considered in their
algorithm. Our framework is rather di�erent and can easily be implemented.

We have directly extended this method to the case of trinocular stereo to reduce even
further the remaining ambiguities.

Compared with the strategy of estimating a single depth �eld and computing occlusions
from it, our algorithm using two dependent maps has a higher complexity. But the co-
operative bidirectional matching can help each other for overcoming some wrong relaxation
and increases the reliability and stability of the depth estimation, which is important for
intensity-based methods to estimate a dense depth map. The detection and utilization of a
reliable occlusion information is then simpli�ed as well.

This paper is organized as following: in the next section we analyze occlusions in detail,
give various models for MAP estimation and derive an objective cost function. In section
3 and 4 an algorithm minimizing the objective cost function for the depth estimation and
the related hierarchical multilevel implementation are put forward. Section 5 provides some
experimental results of this binocular stereo matching method by a few examples. In section
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6 the algorithm is extended into the trinocular stereo matching, and the improvement of
the depth estimation is shown with a real example, and then a conclusion follows.

2 The Bayesian model and occlusions

As shown in Fig. 1, we assume a general epipolar camera model throughout the context of the
whole paper, where two coplanar images gl(x; y) and gr(x; y) are formed by the perspective
projection with the focal length F , and with parallel optical axes Zl and Zr separated by the
baseline length B. Non-parallel axis stereo images can easily be reprojected into parallel axis
stereo images by recti�cation [13], which can be treated according to the simpler epipolar
constraint. Rather than estimating a disparity �eld as usually, we estimate the depth �eld
directly. In trinocular stereo it has the advantage that there are identical estimates for the
horizontal and vertical matching.

Figure 1: The camera geometry of the binocular stereo vision

Structure and observation models from the triangulation According to the trian-
gulation geometry, we can know the corresponding points of the stereo images, and derive
the relationship between their intensity values gl(x; y) and gr(x; y) with the knowledge of
depth values Zl(x; y) or Zr(x; y) in image coordinate systems, i.e.

gl(x; y)� gr(xr; y) = n1(x; y) (1)

or
gr(x; y)� gl(xl; y) = n2(x; y) (2)

with the abbreviations xr = x � BF

Zl(x;y)
and xl = x + BF

Zr(x;y)
, where n1(x; y) and n2(x; y)

are random terms due to sensor and discretization noise. To emphasize our main goal, we
neglect photometric e�ects here. If necessary, however, a spatial coherent multiplier due to
photometric e�ects can easily be introduced into the above equations (1) and (2) (see [10]).

The above equations are valid only when neither of the corresponding points on both
images is occluded by others. Under this condition both the depth maps in di�erent image
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coordinate systems have the relationship as following, which means that both maps represent
a consistent 3-D physical structure:

Zl(x; y) = Zr(xr; y) (3)

or
Zl(xl; y) = Zr(x; y) (4)

with the same abbreviations xr and xl as above.

Occlusions The problem with occlusions plays an important role in stereo matching, be-
cause some basic assumptions, for example uniqueness and smoothness, and the fundamental
triangulation geometry are invalid in occluded regions. Occlusion occurs when a part of the
scene that is visible in one of the views is hidden in the other view or is beyond the other
view. The past stereo approaches without taking into account this problem usually have
some troubles in the neighborhood of occluded regions, which often lead to some wrong
matches.

A constraint from the occlusion geometry is then necessary for further signi�cant impro-
vements. On the other hand, the matching processes using the information about occluded
regions can help to determine the associated depth discontinuities disambiguously. For bino-
cular stereo matching two kinds of occlusions must separately be considered: left occluded
regions and right occluded regions. The left occluded regions are visible only in the left
stereo image and have no corresponding points in the right image and vice versa. Therefore
any matching in these occluded regions must be false.

From a simple geometric analysis, the occluded regions in one stereo image must cor-
respond to discontinuities of the depth map in another stereo image coordinate system.
The location of occluded regions in both stereo images can be represented by two binary
occlusion maps Ol(x; y) and Or(x; y):

Os(x; y) =

�
1 : (x; y) 62 occluded regions of s�image
0 : (x; y) 2 occluded regions of s�image

(5)

where s stands for l(eft) or r(ight) (or b(ase), u(pper) in the whole paper).
The occlusion map Ol(x; y) can directly be derived from the accurate depth map Zr(x; y)

in the other system (but not easily from Zl(x; y)), and similarly Or(x; y) from Zl(x; y):

f(x; y)jOl(x; y) = 1; (x; y) 2 Bg = f(xl; y)jxl = x+
BF

Zr(x; y)
; (x; y) 2 Bg (6)

f(x; y)jOr(x; y) = 1; (x; y) 2 Bg = f(xr; y)jxr = x�
BF

Zl(x; y)
; (x; y) 2 Bg (7)

where B is the whole region of an image. In the discrete case, we can calculate the occlusion
map Or(x; y) as follows, when Zl(x; y) has already been obtained (Similarly for the dual
process):

The right occlusion map Or(x; y) is initialized to zero. By the triangulation geometry,
every pixel (x,y) of the left image is reprojected into a subpixel-point (xr; y) of the right
image with the a priori knowledge of Zl(x; y), such that the occlusion map Or(bxrc; y) and
Or(bxrc+ 1; y) at the two nearest pixels of (xr; y) are accumulated with the factors, which
are equal to the distance from the subpixel to another nearest pixel, where xr = (x� BF

Zl(x;y)
).

After applying all the above operations through the whole left image this occlusion map
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is �ltered by a 3 � 3 lowpass average �lter and then thresholded with a value, e.g. 0.65,
so as to remove some small occluded regions and noise. We represent this process as a
transformation OT :

Or(x; y) = OT LR(Zl(x; y)) (8)

Ol(x; y) = OT RL(Zr(x; y)) (9)

When the depth maps are accurately estimated, then the occlusion maps are also accurately
obtained.

A priori model of the depth �eld The probability distribution of a Markov random
�eld (MRF) process depends only on a �nite neighborhood. Consequently it can be used
to model the depth �eld that has certain local spatial coherent properties, e.g. piecewise
smoothness. With the help of the equivalence between the MRF and Gibbs distribution,
we can obtain the a priori probability distribution of the depth �eld in an explicit form (see
[8]):

P (Zs) =
1

Cs

exp(�
U(Zs)

T
) (10)

where T is a constant (temperature of the model), Cs is a normalization constant (partition
function) and does not depend on Zs. The energy function U(Zs) can be written as a sum
of local potential functions:

U(Zs) =
X

(x;y)2B

Vx;y(Zs) (11)

where B is the set of all pixels (x; y) within the image and each potential function Vx;y(Zs)
depends only on a certain neighborhood.

The choice of the potential function Vc(Zs) can directly reect how to model the local
properties of the 3-D surface. For the assumption about the global smoothness of 3-D
surfaces, we can choose a simple quadratic function of neighboring di�erence on the 4-
connected neighborhood of each pixel as potential function (the standard a-priori smooth
model):

Vc(Zs) = (Zs(x+ 1; y)� Zs(x; y))
2 + (Zs(x; y + 1) � Zs(x; y))

2 (12)

This assumption about the global smoothness of 3-D surfaces, however, often contradicts
real scenes. The assumption of a piecewise smoothness is much better suited to reect the
conditions of real scenes. Thus various models are put forward to describe the piecewise
smoothness [8] [26] [2], where an additional line variable �eld represents the discontinuity
process. However, the line �eld, which plays an important part in these models, complicates
the associated algorithms of the optimal estimation.

In this paper we use a simple form of potential function modeling the local properties of
piecewise smooth 3-D surfaces, which takes into account discontinuities implicitly. There-
fore, a probability distribution or energy function of the depth �eld only (without the line
�eld for discontinuities) should be de�ned.

It is well known, that the median �ltering is a nonlinear local operation on neighborhoods.
A piecewise smooth �eld is continuous almost everywhere. It means that all neighbors of
each pixel on the �eld are strongly correlated, unless there are discontinuities between them.
Even the pixels near discontinuities are still strongly correlated with most of their respective
neighbors. Like a low-pass �ltering, a median �ltering smoothes an image in at regions
and, therefore, is useful to preserve the smoothness and to reduce noise. Unlike a low-pass
�ltering, a median �ltering can preserve discontinuities on a piecewise smooth image without
explicitly detecting them and, moreover, removes impulsive or salt-and-pepper noise without
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a�ecting other pixels. These properties are interesting and essential for preserving both the
strong correlation and discontinuities of a piecewise smooth depth �eld. Based on this, we
can de�ne the following local potential function of weak smooth depth �elds to model their
local interaction, which involves only local operations:

Vc(Zs) = (Zs(x; y)� Z�

s (x; y))
2 (13)

where Z�
s (x; y) = median(x0;y0)2Wx;y

(Zs(x0; y0)) and the window Wx;y is a relative large neigh-
borhood of the pixel (x,y), e.g. a 5� 5 window.

For example, suppose a piecewise smooth depth �eld without noise. The median �ltering
would tend to preserve edges and smooth regions without degradation, such that the above
local potential function at each pixel of the whole �eld tends to be low or zero. If this �eld
is not in a state of piecewise smoothness and corrupted by noise, the median �lter usually
removes this noise, so that the �ltered �eld di�ers from the original �eld at these noisy
pixels and there the local potential functions have high values. Therefore, only piecewise
smooth �elds have a high probability according to this local potential function, and the
other possible �elds have a low probability. This is only a simple explanation about the
validity of Eq. (13) as the potential function of a weak smooth �eld.

It is di�cult to prove theoretically the properties of this model, but the empirical re-
sults indicate that this model reects the local properties of a piecewise smooth surface
satisfactorily.

Bayesian model { MAP estimation Assuming that both the stereo images gl(x; y)
and gr(x; y) are given, we need to estimate the optimal depth �eld Zs(x; y). The optimal
depth �eld Zs(x; y) should have the maximal a posteriori probability over all possibilities:

maxZs
P (Zsjgl;gr) (14)

From Eq. (1), we can derive the conditional probability of gr given gl and Zl and Ol as

P (grjgl;Zl) =
1

C
exp(�

1

2�2

X
Ol(x; y)(gl(x; y)� gr(xr; y))

2) (15)

with a normalization constant C under the assumption of Gaussian noise.
According to the Bayesian rule, we can derive the a posteriori probability of Zl(x; y)

from Eqs. (10) and (15) as follows:

P (Zljgl;gr) =
P (grjZl;gl)P (Zl)

P (grjgl)
=

1

Cpl

exp(�
Upl(Zl)

T
) (16)

where Cpl is a normalization constant and the a posteriori energy function is given by:

Upl(Zl) = �
X

(x;y)2B

Ol(x; y)(gl(x; y)� gr(xr; y))
2 +
X

(x;y)2B

Vx;y(Zl); (17)

with � = T=2�2. Eq. (16) holds because the depth �eld and only a single image are
statistically independent. Similarly, one can derive the other a posteriori energy function
Upr(Zr):

Upr(Zr) = �
X

(x;y)2B

Or(x; y)(gl(xl; y)� gr(x; y))
2 +
X

(x;y)2B

Vx;y(Zr) (18)
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Obviously one can convert the original MAP estimation alternatively into the problem
of minimizing these (a posteriori) cost energy functions (s=l and r):

minZs
Ups(Zs) (19)

One can see that these two MAP estimation processes (19) (s=l and r) are dependent
through the consistent constraints (3) (4) and the transformations (8) (9). Thus in order to
estimate the optimal depth �elds simultaneously taking into account occlusions, we need to
solve the following problem:

minZl;Zr
(Upl(Zl) + Upr(Zr)) (20)

with the constraints (3), (4), (8) and (9).
So far we have established a complete mathematical model of the depth estimation. In

the next section we give a solution.

3 The new algorithm

Solving the problem described in the previous section is not simple, because the cost energy
functions are usually nonconvex and there exist many complicated constraints. In order
to solve the constraint optimization problem, we utilize an iterative method, where within
each step the depth �elds are relaxed to optimize the cost energy function (20) incorporating
the constraints of consistency (3) and (4), and in cascade the occlusion �elds are refreshed
according to Eq. (8) and (9).

At �rst we consider the methods to optimize the cost energy functions. The cost energy
function described by (20) under the assumption of a piecewise smooth surface may have
many local minimal solutions, i.e. it may be nonconvex. This means that the simple gradient
descent will fall into a local minimum rather than into the global minimum, depending
strongly on the chosen initial point.

There exists a commonly known statistical method to �nd the global optimum of a
nonconvex cost function, which calls simulated annealing (see [8]). Despite its great suc-
cess to nonconvex problems, however, the simulated annealing method has the following
disadvantages in realistic applications. The algorithm converges very slowly, especially in
our problem which has a huge number of state variables. Secondly the standard algorithm
handles only a discrete problem and is di�cult to get subpixel accuracy.

An alternative method, namely the graduated non-convexity algorithm, is provided to
minimize a nonconvex function for the visual reconstruction in a special case [2]. The kernel
of the algorithm includes two main steps: The �rst is to construct a convex approximation
to the non-convex function and then to �nd its minimum. The second step is to construct
a sequence of functions, controlled by a parameter and ending with the true nonconvex
function, and to use a deterministic relaxation method with the searching history descending
on them in cascade. And each process provides a nearly global optimum for the next. The
authors claim that the algorithm is very e�ective for problems with weak continuities and
converges in a few steps, although there is no theoretical proof.

Inspired by the above work [2] that is not appropriate for our model, we construct a
framework of two-stage algorithm, where only a simple function approximating the true
nonconvex function is used. At �rst we optimize the approximate function with a determi-
nistic relaxation method. The optimal result of minimizing this function provides a good
initial guess for further optimizing the original nonconvex objective function, which lies in a
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convex neighborhood of the global minimum. Beginning with this initial point, we continue
to minimize the true nonconvex function also with the deterministic relaxation method in
order to �nd the global optimum. Here due to the absence of a smooth transition between
the two functions, it is not guaranteed that the initial point lies near enough to the global
optimal point. To avoid possible local minima near the global minimum, we allow some
small uctuations during the descent process without strictly restricting the criteria to a
monotonic decrease.

In order to �nd the global optimal estimate under the assumption of the piecewise
smoothness tied with (13), we �rst minimize an approximate objective function under the
assumption of the global smoothness tied with (12). Although this reconstructed global
smooth �eld di�ers greatly from the true �eld near discontinuities, these regions, namely
edges of the objects, are relatively sparse in the whole �eld. Otherwhere, both models
are qualitatively consistent and this global smooth estimate should be rather accurate.
Therefore this smooth estimate can provide a good initial point near the global minimum
for optimizing the true objective function (20) with (13). If the stereo images are smooth
enough, we can take the approximate function tied with (12) to be convex, because the
images with low frequencies are almost linear in a large enough neighborhood. It means
that we can obtain a single optimal solution for this cost function at a coarse resolution,
which gives us an approximation of the true global solution.

The deterministic relaxation process can be derived from the discrete approximation of
the Euler equation in the continuous case, or the discrete version of the objective function
is directly minimized by di�erentiation:

Zk+1
l (x; y) = �Zk

l (x; y) + �Ok
l (x; y)(gl(x; y)� gr(xr; y))grx(xr; y)

BF

(Zk
l (x; y))

2
(21)

Zk+1
r (x; y) = �Zk

r (x; y) + �Ok
r (x; y)(gl(xl; y)� gr(x; y))glx(xl; y)

BF

(Zk
r (x; y))

2
(22)

with the abbreviations xr = x � BF

Zk
l
(x;y)

, xl = x + BF

Zk
r (x;y)

and gsx(x; y) = @gs(x; y)=@x.

�Zk
s (x; y) is the �ltered �eld of Zk

s (x; y) which is divided into two cases: if global smooth
surfaces with (12) are assumed, �Zk

s (x; y) is the local average of Zk
s (x; y), e.g. on the 4-

connected neighborhood we get:

�Zk
s (x; y) =

1

4
(Zk

s (x� 1; y) + Zk
s (x; y � 1) + Zk

s (x+ 1; y) + Zk
s (x; y + 1)) (23)

if piecewise smooth surfaces with (13) are assumed, �Zk
s (x; y) is the local median value of

Zk
s (x; y) in a neighborhood, e.g. a 5� 5 window:

�Zk
s (x; y) = median(x0;y0)2Wx;y

(Zs(x
0; y0)) (24)

where a simple approximation is assumed, i.e. (not in a strict mathematical sense):

@

@Zs(x0; y0)
(median(x0;y0)2Wx;y

Zs(x
0; y0)) � 0; (25)

because an impulse corrupting a single variable has almost no inuence on the median value.
Of course we must utilize a simpli�ed fast implementation for such a 5� 5 median �lter in
our stereo vision algorithm.
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In order to improve the stability of the algorithm, we can rewrite the update equations
(21) and (22) into the following form:

Zk+1
l (x; y) = �Zk+

l (x; y) + �Ok
l (x; y)(gl(x; y)� gr(x

+
r ; y))grx(x

+
r ; y)

BF

( �Zk+
l (x; y))2

(26)

Zk+1
r (x; y) = �Zk+

r (x; y) + �Ok
r (x; y)(gl(x

+
l ; y)� gr(x; y))glx(x

+
l ; y)

BF

( �Zk+
r (x; y))2

(27)

with the abbreviations x+r = x� BF
�Zk+

l
(x;y)

and x+l = x+ BF
�Zk+
r (x;y)

, where

Ok
l (x; y) = OT RL( �Z

k
r (x; y)) (28)

Ok
r (x; y) = OT LR( �Z

k
l (x; y)) (29)

�Zk+
l (x; y) =

�Zk
l (x; y) +

�Zk
r (xr; y)O

k
r (xr; y)

1 +Ok
r (xr; y)

(30)

�Zk+
r (x; y) =

�Zk
r (x; y) + �Zk

l (xl; y)O
k
l (xl; y)

1 +Ok
l (xl; y)

(31)

with the abbreviations xr = x� BF
�Zk
l
(x;y)

and xl = x+ BF
�Zk
r (x;y)

, where the Eqs. (30) and (31)

enforce both depth �elds Zr(x; y) and Zl(x; y) representing a consistent 3-D structure with
a weighted averaging according to the constraints (3) and (4).

The equations (26) to (31) provide a complete iterative step of the relaxation algorithm
estimating the optimal depth �elds with simultaneous detection of the occlusion maps. No-
ticing the two-stage process, we begin to calculate the expected �ltered depth �elds �Zk

s (x; y)
using Eq. (23) in the iterative steps at �rst until the objective cost function converges very
slowly or uctuates, then switch to the model of piecewise smooth surfaces and utilize
Eq. (24) to compute �Zk

s (x; y) until no further improvement is expected in further steps.
In this section we have given the relaxation algorithm for an intensity-based stereo vision.

If one has good initial approximating estimates for the depth �elds and occlusion maps, then
better estimates for them would be achieved by the relaxation steps described above. Once
the estimates don't fall into local minima, the estimation will continue to be improved until
approaching the global minimum nearly. Because the energy function of stereo vision is
more complicate than that of the surface interpolation in [2] and [8], our energy function
even with the global smooth model (12) is often still nonconvex too. Although this two-
stage algorithm can greatly help avoiding many local minima of the energy function, it isn't
guaranteed to obtain the global optimum.

The remaining problems are how we get a better initial estimate that can lead to the
global optimum easily, and accelerate the convergence of the algorithm. This can be solved
satisfactorily by a hierarchical multilevel structure in the implementation that is described
in the next section.

4 The multilevel implementation

The relaxation algorithm given in the previous section needs a good initial estimate, espe-
cially if large disparities in the stereo image pairs exist. An inadequate initial point would
cause the changes of the estimates into a wrong direction due to the local properties of inten-
sity variations, and lock them in wrong matches. To reduce the e�ect of the local properties,
it is necessary to smooth and blur the images by removing high frequency components and
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intensify the global structure in a coarse level using only low frequency components. It
motivates us to represent the data structure and implement the algorithm by the hierarchi-
cal multilevel technique [22]. Besides its most obvious advantages of greatly reducing the
computational cost of various algorithms, the multilevel structure provides a useful tool of
converting global properties into local properties.

Some biological researchers [20] show that there exist spatially tuned binocular channels
in the human vision system, and the interaction across channels eliminates the ambiguities of
matching, where the perception in low frequency channels provides a better initial estimate
for searching in high frequency channels. Hierarchical multilevel structures have extensively
been used in various problems of low-level computer vision [25] [11] [7] [1] [10] [27] [4] and
have proved to be a very e�cient in saving computational costs and overcome errors due to
local properties. The fast convergence of a multilevel relaxation algorithm is based on the
mechanism that high-frequency errors are quickly smoothed and the low-frequency errors
resist to a decrease in contrast. The low-frequency components in a �ner level remain
in the relatively higher frequencies in a coarser level. The whole error from low to high
frequencies can progressively be eliminated quickly from the coarsest to the �nest level.
Thus we also utilize the multilevel structure to implement our algorithm. In the coarse
levels the algorithm can more globally �nd rough matchings between the smoothed images.
Then the rough estimates are propagated into the �ne levels, which provide a good initial
value for the relaxation there. As discussed in the previous section, our approximate energy
function tied with the global smooth model (12) is believed to be convex at a coarse enough
level, so that only a unique estimate for the rough optimal matching can be found there,
which is used for further global optimization.

The hierarchical multilevel structure for implementing our algorithm is shown in Fig. 2.
At �rst we produce the Gaussian pyramids for both stereo images, in which the image in the
coarse level (t) is the subsample of a low-pass �ltered image in the next �ner level (t� 1).
Let the �nest level (0) have the original resolution and the coarsest level be M (here M=2,
only the 3 levels are shown). Then for 1 � t �M we have (see [3]):

gs;t(x; y) =
XX+2

m;n=�2
w(m;n)gs;t�1(2x+m; 2y + n) (32)

where w() is a Gaussian kernel.
Let's initialize the whole depth �elds Zs;M (x; y) with a reasonable constant, e.g. in the

range from half to ten times as large as an approximate true depth, and the whole occlusion
maps Os;M (x; y) as value 1 (no occluded regions are assumed) in the coarsest level M. Then
we carry out the relaxation algorithm from the coarsest level M to the �nest level 0. The
optimal estimates of the depth �elds Zs;t(x; y) and the occlusion maps Os;t(x; y) at the
level t are propagated into the next �ner level (t� 1) as good initial estimates through an
interpolation process:

Zs;t(x; y) = 4
XX+2

m;n=�2
w(m;n)Zs;t+1(

x+m

2
;
y + n

2
) (33)

Os;t(x; y) = bfunc(4
XX+2

m;n=�2
w(m;n)Os;t+1(

x+m

2
;
y + n

2
)) (34)

where bfunc(x) = u(x� 0:5) is a thresholding function with threshold 0:5 (u(x) is the unit
step function), and x+m

2
and y+n

2
are integer division operations.

One relaxation step in each level utilizes the equations from (26) to (31) with (23) or
(24) to get better occlusion maps and depth �elds, in which two parallel relaxation processes
for Zl;t(x; y) and Ol;t(x; y), and Zr;t(x; y) and Or;t(x; y) receive the results of another process
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Figure 2: The multilevel implementation of the binocular stereo algorithm

and are dependently carried out. This framework has some advantages. At �rst, it provides
the consistent results for depth �elds and occlusion maps in the left and right di�erent
image coordinate systems. Secondly, the algorithm converges faster and more stable than a
simple matching in one direction, because both relaxation processes use more information
about the better refreshed depth �elds and occlusion maps in due time from each other
and overcome some wrong relaxation. The two-stage algorithm at each level guarantees the
accurate detection of discontinuities and occlusions.

Whereas for a single resolution the convergence rate is strongly inuenced by the initial
estimates and their error characteristics and is very slow for low-frequency components, the
multigrid methods have a rather good convergence rate, which is less dependent on the
initial values. Normally, this multigrid algorithm converges in tens of relaxation steps all
together. The complexity of one relaxation step is only proportional to the number of pixels
of the image. Suppose the quantity \WU" (working unit) as the computational cost of one
relaxation step at the �nest level. Then one \WU" hat O(N) scalar operations, where N
is the size of the image at the �nest level. Therefore, the total cost of the algorithm is less
than 4

3
lWU, where l is the number of relaxation steps at each level and equal to about 10

or little more.

5 Experimental results

From the above discussion in the previous section one can see that our cooperative bidi-
rectional stereo matching with multilevel structure shown in Fig. 2 can provide accurate
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and stable results with moderate computational costs. In order to further illustrate the
performance of the algorithm, a few examples estimating the depth �elds and detecting the
occlusions from synthetic and real stereo image pairs are given in the following:
Synthetic stereo image pairs:

In the top-right of Fig. 3 (a) and (b) two images (left and right) gl(x; y) and gl(x; y) of
a synthetic stereo pair are separately shown. Assuming a focal length of F = 225 pixels
and a baseline length of B = 2cm, the images are digitally simulated, where the scene
contains a square planar object of size 20cm � 20cm size with a distance of 75cm and a
uniform background with the distance of 150cm from the viewer. The estimated depth �elds
Zl(x; y) and Zr(x; y) of the original resolution in the left and right image coordinate systems
are separately shown in the bottom-left of Fig. 3 (a) and (b) (the brightest stand for 255 cm,
and the darkest for 0 cm). Similarly the detected occlusion maps Ol(x; y) and Or(x; y) of
the original resolution are individually shown in the bottom-right of Fig. 3 (a) and (b) (the
darkest represent occluded regions). The intermediate results in the coarsest and the middle
levels are shown in the top-left of Fig. 3 (a) and (b) similarly only in a smaller size. Our
algorithm has obtained very good results. The average relative error of the whole estimated
depth �eld outside the occluded regions is only 0:283%. The occluded regions are almost
exactly detected, although there exist ragged edges due to some discretization e�ect and
small errors.

Four subpictures in Fig. 4 represent the results Zl(x; y) (top-left), Ol(x; y) (top-right),
Zr(x; y) (bottom-left) and Or(x; y) (bottom-right) of the original resolution, when a Gaus-
sian noise is added to the original synthetic images with a signal to noise ratio of 20dB. The
algorithm shows a good robustness against noise. The average relative error of the whole
estimated depth �eld outside the occluded regions is only 1:05%. The occluded regions are
still satisfactorily detected.
Real stereo image pair:

In the same way as in Fig. 3, the �gures from Fig. 5 to 9 show the estimated results
individually from �ve pairs of real stereo images, which are grabbed with CCD cameras.
The original image format was 512 � 512 pixels which then was averaged and subsampled
into a format of 128 � 128 pixels. The internal parameters of the stereo cameras in all cases
are the same as in the synthetic example, i.e. the focal length F = 8mm= 225pixels. In the
�rst three examples (Fig. 5 to 7) the external parameters of the stereo cameras are also the
same as in the synthetic example, i.e. the baseline length B = 2cm, whereas the baseline
length B = 4cm (double) and B = 1cm (half) are respectively used in the fourth example
(Fig. 8) and in the �fth example (Fig. 9).

The scene in the �rst pair of stereo images (Fig. 5) contains a poster as background,
a Mickey mouse and a cup as objects, which are respectively 121cm, 50cm and 82cm far
away from the cameras. The results of this stereo pair with our algorithm are also shown
in Fig. 5, which are satisfactory. The occluded regions are qualitatively correct detected.
In most of the area, the depth �elds are well estimated. Only in the background at the
lower-left corner and between the Mickey mouse and the cup there exist large errors of the
depth �elds because of the absence of horizontal intensity variations. The average relative
error of the depth �eld within the objects and the background is 4:6%.

The scene in the second pair of the stereo images (Fig. 6) contains the wall as background,
a monitor and an oscillometer etc. as objects. The wall is 220cm far away from the cameras,
and the monitor and the oscillometer respectively 70cm and 130cm. The results of the depth
and occlusion estimation are shown in Fig. 6. All the occluded regions have been detected.
The depth �elds and their discontinuities are also well estimated except at the bottom of
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(a) the left view

255cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 3: The results for a noise-free synthetic stereo image pair
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255cm

0cm

upper left: the left depth �eld
upper right: the left occlusion map
lower left: the right depth �eld

lower right: the right occlusion map

Figure 4: The results for a synthetic stereo image pair with additive noise

and above the monitor. There is the same reason for errors, i.e. absence of horizontal
intensity variations in these both regions.

The scene in the third pair of stereo images (Fig. 7) contains the wall and a number
of books on the table as background, a toy on the table as object, which are respectively
175cm, 130cm and 82cm far away from the cameras. From the results in Fig. 7 one can
see that our algorithm is e�cient and robust. The depth �elds of almost the whole scene
are satisfactorily estimated. Their discontinuities and the corresponding occluded regions
of the real scene are qualitatively well detected.

In the scene of the forth stereo image pair (Fig. 8) the wall, posters and a book-shelf
etc. are considered as background, which have the distance of 360� 390cm to the cameras.
A person was sitting in the chair on the ground and his chest is 170cm far away from the
cameras. Fig. 8 shows the estimated results of the depth �elds and occlusions. All the
occluded regions including the occlusions caused by the person are satisfactorily detected.
The depth �elds of the whole scene except within and above the head are well estimated.
The error on the background above the head was caused by the smoothing e�ect because of
no horizontal intensity variations. The small motion of the head leads to some error on it.

The scene in the �fth pair of stereo images (Fig. 9) is composed by two toy-houses
standing on a table in front of a background-poster. These two houses and the poster are
respectively 24cm, 50cm and 77cm far away from the cameras. With the new algorithm we
obtain the depth estimates and the detected occlusion maps shown in Fig. 9. Most occluded
regions of the scene are found, and the whole depth �elds except a small background-region
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(a) the left view

255cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 5: The results for the real stereo image pair 1 with the binocular approach
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(a) the left view

255cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 6: The results for the real stereo image pair 2 with the binocular approach
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(a) the left view

255cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 7: The results for the real stereo image pair 3 with the binocular approach
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(a) the left view

510cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 8: The results for the real stereo image pair 4 with the binocular approach
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(a) the left view

127.5cm

0cm

(b) the right view
upper right: the original image

lower left: the depth �eld
lower right: the occlusion map

upper left: the results with reduced resolutions

Figure 9: The results for the real stereo image pair 5 with the binocular approach
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right to the foreground-house are satisfactorily estimated. The depth discontinuities are
kept, although some of them produce no occlusions.

Experiments show that almost all of the discontinuities of depth �elds have been blurred
and no occlusions have been found from these synthetic and real stereo image pairs, if
only the standard a priori smooth model tied with (12) is used instead of our new a priori
piecewise smooth model and the two-stage algorithm. Thus, the second stage using the new
a priori model with the median �lter is very important to preserve discontinuities and to
detect occlusions. For saving the space, these blurred estimates are not given here.

All of the above �ve real examples demonstrate the e�ciency and robustness of our
algorithm estimating depth �elds and detecting discontinuities and occlusions from binocular
stereo image pairs of real scenes. The occluded regions of these �ve scenes are e�ectively
detected. The average relative errors of the depth �elds within the objects and background
outside the occluded regions are below 5%. In most areas the depth �elds are satisfactorily
estimated. Actually, the performance of this algorithm handling discontinuities depends
on the horizontal intensity variations of the areas near these discontinuities and occluded
regions. If there are such obvious intensity variations, the discontinuities, whose intervals
are not smaller than the size of the median �lter window, can be handled. But due to
discretization errors, some occluded regions that are not wider than two pixels can be
neglected, although the discontinuities of estimated depth �elds exist. In the absence of
horizontal intensity variations, the triangulation geometry of binocular stereo vision can
not detect the accurate disparities on such regions, and the relaxation algorithm can only
assign approximate values of their neighborhoods to them, so that the discontinuities may
easily be neglected. A further improvement to this problem is discussed in the next section.

6 The trinocular stereo vision: a further improve-

ment

Sometimes there exist large ambiguities for the binocular matching between both stereo
images due to the absence of intensity variations on the epipolar lines, e.g. the examples
of the real scenes in the previous section. In such a situation, it is di�cult to estimate
the real depth �eld from the spatial coherence only by the binocular stereo vision, unless
concrete models for objects are assumed. One potential alternative to improve the optimal
depth estimation is trinocular stereo techniques using an additional third camera. The
basic advantage of trinocular techniques is that the third camera provides an extra epipolar
geometry constraint to the stereo matching, such that the ambiguities during the local
binocular matching are largely eliminated.

Recently trinocular stereo techniques have been extensively studied [13] [23]. But almost
current trinocular approaches are feature-based, and only the features that are sparsely
extracted can be considered for matching, where a dense depth map must be obtained
later in a following process of the surface reconstruction. However, the new intensity-based
binocular approach that was discussed in the previous sections can easily be extended to a
intensity-based trinocular approach, where the dense depth map can directly be estimated
within a relaxation process. The camera geometry, which is shown in Fig. 10, involves a
base camera and two other cameras: right and upper camera displacing the horizontal and
vertical direction respectively, and all having axes parallel to each other.

The trinocular approach shows many advantages over the binocular approach: At �rst,
the algorithm does not depend only on the intensity variations on one epipolar line direction
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and overcomes the di�culty of the matching in the regions having intensity changes only
along other directions. Secondly, the algorithm has a better performance against noise,
because the relaxation is carried out to match in two directions. Thirdly, the algorithm
can eliminate some ambiguities of matching due to some nearly periodical intensity texture.
Finally, it is also important to eliminate some di�culties to match in partly occluded regions.
The area of occluded regions of the base image with respect to both other images are greatly
decreased, and the algorithm can provide an accurate depth estimate in the regions that
are occluded in only one image by matching the base image with another image. The new
trinocular algorithm and its implementation are given as follows.

Figure 10: The camera geometry of the trinocular stereo vision

At �rst we give some notations used below: gb(x; y), gr(x; y) and gu(x; y) stand for the
base, right and upper images of a stereo pair respectively, and Zb(x; y), Zr(x; y) and Zu(x; y)
for the depth �elds in the di�erent image coordinate systems. Obr(x; y) and Obu(x; y) stand
for the occlusion maps of the base system respectively to the right and upper image, and
Or(x; y) and Ou(x; y) for the occlusion maps of the right or upper system to the base image.
For convenience, it is assumed that the vertical and horizontal baseline lengths are equal, i.e.
Bh = Bv = B. We match the base image simultaneously to the right and upper images to
estimate Zb(x; y), whereas the matchings of the two others back to the base image produce
the two other depth �elds.

According to the consistent constraint and the piecewise smooth model of depth �elds,
we can derive the relaxation algorithm of the cooperative bidirectional matching between
the three trinocular stereo images, which is similar to the derivation in the binocular case:

Zk+1
b (x; y) = �Zk+

b (x; y) + �Ok
br(x; y)(gb(x; y)� gr(x

+
r ; y))grx(x

+
r ; y)

BF

( �Zk+
b (x; y))2

+

�Ok
bu(x; y)(gb(x; y)� gu(x; y

+
u ))guy(x; y

+
u )

BF

( �Zk+
b (x; y))2

(35)

Zk+1
r (x; y) = �Zk+

r (x; y) + �Ok
r (x; y)(gb(x

+
b ; y)� gr(x; y))gbx(x

+
b ; y)

BF

( �Zk+
r (x; y))2

(36)

Zk+1
u (x; y) = �Zk+

u (x; y) + �Ok
u(x; y)(gb(x; y

+
b )� gu(x; y))gby(x; y

+
b )

BF

( �Zk+
u (x; y))2

(37)
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with the abbreviations x+r = x � BF
�Zk+

b
(x;y)

, y+u = y � BF
�Zk+

b
(x;y)

, x+b = x + BF
�Zk+
r (x;y)

and y+b =

y + BF
�Zk+
u (x;y)

, where

Figure 11: The multilevel implementation of the trinocular stereo algorithm
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where �Zk
s (x; y) are computed according to (23) at the �rst steps or according to (24) later.

In the algorithm three relaxation processes are cooperatively and dependently carried
out. Its implementation with the hierarchical multilevel structure is shown in Fig. 11. The
Gaussian pyramids of three stereo images are progressively produced by Eq. (32). The
relaxation processes are also progressively carried out from the coarsest level to the �nest
level, and both the global smooth model (12) and the new piecewise smooth model (13)
are successively used at each level. The optimal results in a coarser level provide the good
initial estimates for the relaxation in the next �ner level by the interpolation processes with
Eq. (33) and (34). Initializing the whole depth �eld with a reasonable constant, e.g. in the
range from half to ten times as large as an approximate true depth, and occlusion maps with
\1", the algorithm can converge fast to the nearly global optimal estimates of the depth
�elds and occlusion maps for original stereo scenes in tens of relaxation steps altogether.
Experimental results with the trinocular algorithm

Here we give a real example to illustrate the performance of the new trinocular stereo
algorithm. In the image acquisition, the focal length of the stereo cameras with the baseline
length of B = Bh = Bv = 2cm is the same as in the real examples of section 5, i.e.
f = 8mm = 225pixels. In Fig. 12 (a), (c) and (d) the three stereo images gu(x; y), gb(x; y)
and gr(x; y) of the original resolution are shown respectively. The scene contains a poster as
background, a Mickey mouse and a book as objects, which are respectively 125cm, 50cm and
95cm far away from the cameras. The corresponding results of the depth �elds Zu(x; y),
Zb(x; y) and Zr(x; y) with our trinocular algorithm are given in Fig. 12 (e), (g) and (h)
individually, and the occlusion maps Ou(x; y), Or(x; y), Obu(x; y) and Obr(x; y) respectively
in Fig. 12 (b), (f), (i) and (j) (in the original resolution of the �nest level). We can see
that the estimates of the depth �elds are almost completely consistent with the true 3-D
structure, and the discontinuities and occlusions of the 3-D structure are very satisfactorily
detected. The average relative error of this estimated depth �eld within the background
and objects is only 3:6%, whereas the error of the estimate that is obtained from the two
of the same stereo images with the binocular algorithm is 4:9% (the dense representation
of this binocular estimate is omitted here). In Fig. 13 two pro�les of depth �elds Zb(x; y�)
and Zl(x; y�) with a certain y = y� in 2

5
height of the �eld are given, which are respectively

obtained with the trinocular and binocular algorithm. The examples show that the new
trinocular stereo algorithm gives great improvements over the binocular stereo algorithm to
estimate the 3-D structure of real scenes, but of course, at the expense of higher (but still
reasonable) computational costs.

7 Conclusion

In this paper we �rst discuss the existing problems in stereo vision due to discontinuities and
occlusions, and modify the probabilistic model of piecewise smooth depth �elds. Then we
put forward a two-stage relaxation method to minimize our nonconvex a posteriori energy
function derived from the triangulation geometry, the observation model and the new depth
�eld model, which is equivalent to the MAP estimation. Incorporating the consistent cons-
traint of depth �elds in di�erent viewer systems, we solve binocular stereo vision problems
by a new cooperative bidirectional matching algorithm, which is implemented with a hierar-
chical multilevel structure. The examples of synthetic and real scenes show that the depth
�eld can reliably be estimated with simultaneous detection of discontinuities and occlusion
by our algorithm with low computational costs. To improve the estimation of 3-D structures
further, we extend the new algorithm to the trinocular approach, and satisfactory results
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255cm

0cm

Figure 12: The results of a real trinocular stereo image pair with the trinocular approach
(a)-(j) (from left to right then from top to bottom): (a) the original upper image, (b) the
occluded regions of the upper image to the base, (c) the base image, (d) the right image,
(e) the upper depth �eld, (f) the right occlusion to the base, (g) the base depth �eld, (h)
the right depth �eld, (i) the base occlusion to the upper, (j) the base occlusion to the right.
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Figure 13: Pro�les of both the estimated depth �elds Zb(x; y) and Zl(x; y), which are
obtained respectively with the trinocular (real line) and binocular (dotted line) algorithms,
in 2

5
height of the �eld (Fig. 12 (g))

are obtained. This computational framework proved to be e�cient and robust in stereo
problems, and could easily be extended to other problems in low-level vision [18] e.g. optical
ow computation [16] and shape from shading [17].
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