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Abstract

This paper presents a new algorithm for estimating the 3-D motion and structure

from stereo image sequences. In order to overcome the inherent ambiguities of the

motion and structure estimation from a monocular image sequence and to improve

the performance of the binocular stereo methods, both the intensity-based methods

are directly integrated. Being di�erent from other methods computing the structure

from stereo and motion, this method does not need to match separate monocular

optical 
ows, so that the high complexity of the algorithm is avoided. Instead of

simpli�ed models that are often unreasonable, new models for 3-D piecewise smooth

structure and occlusion are put forward for Bayesian estimation. The experiments

show that the algorithm is e�ective and robust to improve the 3-D motion and

structure estimation.

Keywords: shape from motion, stereo and integration, motion estimation, piece-

wise smooth model of 3-D surfaces and Bayesian estimation

1 Introduction

The information about 3-D structure and motion is very important to many visual tasks,
e.g. 3-D object recognition and robot navigation. 3-D structures can be estimated from
stereo image pairs by a stereo matching method, or from image sequences by a method
of \shape from motion" (SFM), whereas the cues of 3-D motion must be extracted from
an image sequence, i.e. by SFM methods [Luo93].

The 3-D depth estimation from binocular stereo image pairs has been extensively
studied in the past and is an essential technique of 3-D computer vision. In [LB92] an
intensity-based stereo method is presented with simultaneous detection of discontinuities
and occlusion. It has many advantages, i.e. direct dense depth estimation from grey
images, and elimination of errors caused by occlusion and over-smoothening. As there
discussed, however, there still exist large ambiguities for all binocular methods with mat-
ching between both stereo images somewhere due to the absence of intensity variations
on the epipolar line. This can be solved only by using more visual cues.

Generally, the 3-D structure and motion estimation using feature-based or intensity-
based SFM methods are divided into two steps, i.e. �rst computing the optical 
ow
of an image sequence and then extracting the structure and motion parameters from it
[Adi89]. Various methods about the optical 
ow estimation are put forward by many
researchers. A method in [LB93] can estimate both the optical 
ow with discontinuities
and the related occlusion e�ectively, where the main error sources of computing the optical

ow can be satisfactorily eliminated. From the estimated optical 
ow or only few point-
correspondences one can further get the 3-D structure and motion [AN88]. Feature-based
methods [Ull79, TH84] estimate the 3-D motion by matching as few points or lines as
possible, which need the accurate locations of features and their matches, and thus is
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sensitive to noise in real scenes. In intensity-based methods various a priori assumptions
about 3-D surfaces are used for simplifying the 3-D estimation [LHP80, WKS84, Sub89,
DB86, NH87], where surfaces are assumed as smooth and even high-order di�erentiable or
planar, or only a pure rotational or translational motion is assumed. Besides, the motion
estimation from noisy optical 
ows (especially near occluded regions and discontinuities)
is inherently ambiguous for a real scene. Moreover, no absolute solution of 3-D motion
and structure can be obtained from a monocular image sequence by any above method.

In order to avoid scalar ambiguities and improve the estimation performance, the
dynamic stereo is thus introduced by the integration of stereo and SFM methods [Mit84,
Ric85, WS86, WD86]. However, they need matching two monocular optical 
ows, which
is very complex.

In this paper we develop a new algorithm which integrates the methods of stereo and
SFM, where monocular optical 
ows are not needed to match and the above di�culties of
the integration are avoided. The 3-D structure estimate that is obtained by a binocular
method can greatly simplify the complexity of 3-D motion estimation. Using this initial
information of the structure, the complete motion parameters can be obtained without a
scalar ambiguity by a direct closed solution. In this method the strict assumptions about
3-D motion, optical 
ow and 3-D surface are not needed, where only a reasonable model
for the piecewise smooth depth �eld and optical 
ow is used for their estimation. The
new methods in [LB92, LB93] guarantee a satisfactory solution of estimating the depth
�eld and optical 
ow with occlusion information, such that accurate motion parameters
can be estimated. After obtaining the motion parameters, the initial depth estimates can
be further greatly improved by the integration of binocular and motion stereo, which are
much better than that of these both individual methods. In the integration a new a priori
piecewise smooth model and a similar method to the trinocular stereo vision of [LB92] are
applied, where the �rst stereo pair and one image of the second pair are used. The other
image of the second pair is not used, because in spite of higher complexity no obvious
improvement is obtained, as discussed in [Aya91]. In the new algorithm estimating 3-
D structure and motion from a binocular image sequence the occlusion information is
especially considered to be detected and used. The algorithm has a moderate complexity
and is also easy to parallel implement.

This paper is organized as following: After introducing some motion models and
models of the depth �eld and occlusion in next section, a closed solution of estimating
the motion parameters from binocular image sequences is �rst given in section 3 and an
improvement of the depth estimate by the integration of binocular and motion stereo in
section 4. Then follows a conclusion.

2 Models of motion, depth �eld and occlusion

Using a usual viewer centered coordinate system, the optical 
ow �eld exists due to an
arbitrary camera motion relative to a rigid scene (the original form in [LHP80]):

u(x) =
1

Z(x; y)
P(x)T+Q(x)W (1)

with

P(x) =

�
�f 0 x

0 �f y

�
and Q(x) =

�
xy=f �f � x2=f y

f + y2=f �xy=f �x

�
(2)

where f is the focal length of a camera, u, Z, x = (x; y)T , T = (TX; TY ; TZ)T and
W = (WX;WY ;WZ)T are the optical 
ow, depth, image coordinate, translational and
rotational motion parameters relative to a camera system.
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Based on the works in [LB92] a new a priori model of Markov's random �elds with the
following local potential function can be satisfactorily used for a piecewise smooth depth
�eld or optical 
ow, where Z(med)(x) is the local median value of a neighborhood of Z(x):

Vx(Z) = (Z(x)� Z(med)(x))
2 (3)

Suppose that g1(x) and g2(x) are the �rst and second image of a sequence. If x is
outside occluded regions of g1(x), i.e. the occlusion map O1(x) = 1, then we get:

g2(x+P(x)T=Z1(x) +Q(x)W)� g1(x) = n1(x): (4)

and a similar constraint exists also, if x is outside occluded regions of g2(x), i.e. the
occlusion map O2(x) = 1:

g1(x+P(x)T
0=Z2(x) +Q(x)W

0)� g2(x) = n2(x) (5)

where T0 = �T�W�T andW0 = �W are the parameters of the virtual inverse motion
process from g2(x) to g1(x).

Both the depth maps Z1(x) and Z2(x) in di�erent camera systems should represent a
consistent 3-D structure of a scene with the following constraints:

Z2(x+P(x)T=Z1(x) +Q(x)W) = �TZ + (1 + (xWY � yWX)=f)Z1(x) (6)

or Z1(x+P(x)T
0=Z2(x) +Q(x)W

0) = �T 0

Z + (1 + (xW 0

Y � yW 0

X)=f)Z2(x) (7)

with the help of a simple relation �Z = �TZ +XWY � YWX .
In order to compute the occlusion maps from the estimated depth information, we

present a transformation OT , e.g. O1(x) = OT T 0W 0(Z2(x)) and O2(x) = OT TW (Z1(x))
with known motion parameters:

fx0jO1(x
0) = 1;x0 2 Bg = fx0jx0 = x+P(x)T0=Z2(x) +Q(x)W

0;x 2 Bg (8)

and fx0jO2(x
0) = 1;x0 2 Bg = fx0jx0 = x+P(x)T=Z1(x) +Q(x)W;x 2 Bg: (9)

One must notice that the occlusion information can easily be obtained only from the
depth map in the other camera system.

About the intensity constraints of a stereo image pair and the consistent constraints of
the depth maps in individual stereo systems one can �nd similar results in [LB92], where
the similar transformations Or(x) = OT LR(Zl(x)) and Ol(x) = OT RL(Zr(x)) can also
be obtained. Actually, it is a special example of the above models with T = (B; 0; 0)T

and W = (0; 0; 0)T . Here B is the baseline length of stereo cameras.

3 Estimation of motion parameters by dynamic stereo

The new method of directly estimating the 3-D motion of cameras from a stereo image
sequence is composed of two steps:

1. Computing the depth maps of the related camera systems from the �rst stereo
image pair with the binocular stereo method [LB92] and the associated optical

ows between the �rst and second frame from both individual monocular image
sequences of the stereo image sequence with the new method in [LB93].

2. Solving a linear equation system to further estimate the motion parameters of the
cameras from the results of the �rst step based on the criteria of the least mean
square (LMS) error of optical 
ows.
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From the �rst stereo image pair g1l and g1r one can estimate the depth maps Z1l

and Z1r with simultaneous detection of the occlusion maps Ol and Or in the associated
coordinate systems by using the intensity-based cooperative bidirectional stereo matching
[LB92]. Besides, the optical 
ows ul from g1l to g2l and ur from g1r to g2r can be
respectively obtained by the new algorithm of computing optical 
ow [LB93], where the
occlusions O1l and O1r relative to the next images are detected also.

Suppose that the left camera moves with parametersT andW. Then the right camera
of an epipolar system with a known baseline of B has the motion parameter:

Tr = T+W �B~i = T+ SW and Wr =W (10)

with ~i = (1; 0; 0)T and

S =

0
@ 0 0 0

0 0 B

0 �B 0

1
A : (11)

According to the criteria of the least mean square error one can apply the following
object function through Eqs. (1) and (10) to estimate the motion parameter:

E(T;W) =
X
x

(O1l(x)Ol(x)(ul(x)�
1

Z1l(x)
P(x)T�Q(x)W)2 +O1r(x)

Or(x)(ur(x)�
1

Z1r(x)
P(x)(T+ SW)�Q(x)W)2) (12)

For decreasing the complexity, one can only estimate a optical 
ow ul from the left
monocular sequence and use it in the above object function with O1r(x) = 0 for all x.

Because this object function is quadrant and its minimum has a zero di�erentiation
value, we can obtain the optimal estimate of the motion parameters by solving a linear
equation system:

H1T+H2W = H3

H4T+H5W = H6 (13)

with the matricesH1 to H6 that can easily be obtained directly from the estimated depth
�elds, optical 
ows and the related occlusions.

With the above algorithm one get the estimate of motion parameters directly from
the monocular optical 
ows and depth maps without correspondence. As the occluded
regions are detected, the wrong estimates there can be avoided to use. Beside the property
of weak smoothness, no more strict assumptions for the estimated �elds are necessary to
use in the algorithm.

For illustrating the e�ectiveness of this algorithm we give a example as follows. Fig. 1
shows a stereo image sequence, where actually the cameras with the focal length of f =
8mm = 225pixels and the baseline length of B = 2cm have a known motion of T =
(1:0; 1:65;�1:8)T cm andW = (0:029;�0:016; 0:0)T between the neighboring frames. We
can use the new algorithm to estimate the motion parameters of cameras only from the
grey stereo image sequence of Fig. 1. At �rst we directly estimate the necessary depth
maps and optical 
ows with the methods in [LB92, LB93]. Based on them the following
estimates of motion parameters are obtained by solving the above linear equation system:

T = (1:0222; 1:4982;�1:7899)T cm and W = (0:0290;�0:0168; 0:0009)T

From this results one can see that the motion parameters have been well estimated by
the new algorithm, which are almost consistent to the actual motion.
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4 Improvement of 3-D depth estimation by dynamic stereo

As in [LB92] discussed, there still exist large ambiguities for all binocular methods with
matching between both stereo images somewhere due to the absence of intensity variations
on the epipolar lines. There the triangulation geometry of binocular stereo fails to detect
accurate disparities and only smooth values of their neighborhoods can be assigned to
them. In order to further improve the depth estimates of binocular stereo and to decrease
their ambiguities, one can integrate the motion stereo and static binocular stereo with
dynamic stereo methods, where more epipolar geometry constraints can be used. The
motion parameters are known or can be estimated as in the previous section.

Based on the new a-priori Bayesian model of piecewise smooth �elds (3) and the
triangulation geometry of grey images g1l, g1r and g2l, one can get the a-posteriori energy
functions of the depth �elds in the individual coordinate systems:

Up1l(Z1l) =
X
x

(Ol(x)(g1r(xr)� g1l(x))
2 +O1l(x)(g2l(x2)� g1l(x))

2 + �Vx(Z1l))

Up1r(Z1r) =
X
x

(Or(x)(g1l(x+Bf=Z1r(x); y)� g1r(x))
2 + �Vx(Z1r))

Up2l(Z2l) =
X
x

(O2l(x)(g1l(x+P(x)T
0=Z2l(x) +Q(x)W

0)� g2l(x))
2 + �Vx(Z2l))

with xr = x�Bf=Z1l(x), yr = y, x2 = x+P(x)T=Z1l(x) +Q(x)W,
occlusions Ol(x) = OT RL(Z1r(x)), O1l(x) = OT T 0W 0(Z2l(x)), Or(x) = OT LR(Z1l(x))
and O2l(x) = OT TW (Z1l(x)).

Similarly to the trinocular method in [LB92], one can minimize all the three a posteriori
energy functions with the consistent constraints of depth maps simultaneously. Based on
a two-stage algorithm, the convex approximations with Vx(Z) = (Z2

x(x)+Z2
y (x)) are �rst

minimized by the descent method. Beginning with these estimates as initial value, the
global optimal estimates are then obtained by using a descent method to minimize the
original non-convex functions:

Zk+1
1l (x) = Zk�

1l (x) +
Ol(x)

�
(g1r(x

+
r )� g1l(x))

�Bfg1rx(x+r )

(Zk�
1l (x))

2
+

O1l(x)

�
(g2l(x

+
2 )� g1l(x))

(P(x)T)T � rg2l(x
+
2 )

(Zk�
1l (x))

2
(14)

Zk+1
1r (x) = Zk�

1r (x) +
Or(x)

�
(g1l(x

+
l )� g1r(x))

Bfg1lx(x
+
l )

(Zk�
1r (x))

2
(15)

Zk+1
2l (x) = Zk�

2l (x) +
O2l(x)

�
(g1l(x

+
1 )� g2l(x))

(A(x)T0)T � rg1l(x
+
1 )

(Zk�
2l (x))

2
(16)

with x+r = x�Bf=Zk�
1l (x); x

+
l = x+Bf=Zk�

1r (x) and y
+
r = y+l = y,

x+2 = x+P(x)T=Zk�
1l (x) +Q(x)W and x+1 = x+P(x)T0=Z

�(n)

2l (x) +Q(x)W0,
where the following predicted values are used, such that the stability of the algorithm is
improved and all depth maps are enforced to represent a consistent 3-D structure:

Ol(x) = OT RL(Z1r(op)(x)) (17)

O1l(x) = OT T 0W 0(Z2l(op)(x)) (18)

Or(x) = OT LR(Z1l(op)(x)) (19)

O2l(x) = OT TW (Z1l(op)(x)) (20)
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Z�

1l(x) =
Z1l(op)(x) +Or(xr)Z1r(op)(xr) +O2l(x2)

Z2l(op)(x2)+TZ

1+(xWY�yWX )=f

1 +Or(xr) +O2l(x2)
(21)

Z�

1r(x) =
Z1r(op)(x) +Ol(xl)Z1l(op)(xl)

1 +Ol(xl)
(22)

Z�

2l(x) =
Z2l(op)(x) +O1l(x1)(Z1l(op)(x1) + T 0

Z)=(1 + (xW 0

Y � yW 0

X)=f)

1 +O1l(x1)
(23)

with the abbreviations xr = x �Bf=Z1l(op)(x), xl = x + Bf=Z1r(op)(x) and yr = yl = y,
x2 = x+P(x)T=Z1l(op)(x) +Q(x)W and x1 = x+P(x)T0=Z2l(op)(x) +Q(x)W

0. In the
two-stage optimizing process, (op) = (ave) is used in the �rst steps and then (op) = (med).

This algorithm is implemented with the hierarchical multilevel structure. The coope-
rative bidirectional relaxation processes are progressively carried out from the coarsest to
the �nest level, and the optimal results in a coarser level provide the good initial estima-
tes for the �ner level, such that local optimal estimates the local properties of intensity
variations lead to are best avoided and the global optimal estimates are guaranteed with
the greatest possibility.

To illustrate the improvement of depth estimates using this integration algorithm, a
example is given also with the stereo image sequence in Fig. 1 as follows. The scene
contains a poster as background, a carton and a cup as objects, which are respectively
122cm, 82cm and 52cm far away from the camera at the beginning. One can estimate the
depth �eld from the �rst stereo pair by the binocular stereo or from the left monocular
sequence by the motion stereo with the known camera motion, and the pro�les of both
estimated depth �elds are shown in Fig. 2. When the motion parameters are unknown,
we can estimate them by the method in the previous section. With these estimated
parameters T = (1:0222; 1:4982;�1:7899)T cm and W = (0:0290;�0:0168; 0:0009)T , we
further apply the integration algorithm to estimate the 3-D structure of a scene. The
estimated results of Z1l, Z1r, Ol, Or, O1l, O2l and Z2l in di�erent coordinate systems
are shown in Fig. 3. The estimated 3-D structure is almost completely consistent with
the actual scene. All occluded regions are qualitatively well detected and die absolutely
occluded regions are greatly decreased. In order to directly compare with the other
methods, the corresponding pro�le of this estimate is also shown in Fig. 2, which is much
better. The average relative error of the depth map within the background and objects
is only 3.5%, whereas the errors of the estimated depth maps with binocular or motion
stereo is ca. 5%.

5 Conclusion

In this paper a new dynamic stereo algorithm for the 3-D motion and structure estima-
tion is put forward, which directly integrates the stereo and SFM methods, such that the
associated estimation ambiguities of the individual methods are greatly eliminated. Being
di�erent from other dynamic stereo methods, this method does not need the correspon-
dence of separate monocular optical 
ows and other simpli�ed unreasonable assumptions
beside the piecewise smoothness. The absolute motion parameter can be well estimated
by solving a linear equation system. Besides, the direct depth estimates from a grey
stereo sequence using the Bayesian method and occlusion detection are strongly impro-
ved by the integration, because the absolutely occluded regions are greatly decreased,
and outside these regions one can use more grey information and more epipolar lines as
matching constraints [Luo93]. This intensity-based method of integration has a moderate
complexity and can be easily parallel implemented.
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Figure 1: A stereo image sequence with
known parameters of T = (1:0; 1:65;�1:8)T

cm and W = (0:029;�0:016; 0:0)T : (a) and
(b): left and right image of the second ste-
reo pair, (c) and (d): left and right image of
the �rst stereo pair
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Figure 2: Pro�les of three depth estima-
tes Z1l, which are obtained respectively
with the Integration (real line), motion ste-
reo (thick dotted line) and binocular stereo
(thin dotted line),in 2

5
height of the �eld

Figure 3: The results from the real ste-
reo image sequence in Fig. 1 with the
estimated motion parameters of T =
(1:0222; 1:4982;�1:7899)T cm and W =
(0:0290;�0:0168; 0:0009)T : (a) Z1l and (b)
Z1r, (c) Ol and (d) Or, (e) O1l, (f) O2l and
(g) Z2l
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