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Abstract

We propose a new rectification method for aligning epipo-
lar lines of a pair of stereo images taken under any camera
geometry. It effectively remaps both images onto the surface
of a cylinder instead of a plane, which is used in common
rectification methods. For a large set of camera motions,
remapping to a plane has the drawback of creating rectified
images that are potentially infinitely large and presents a
loss of pixel information along epipolar lines. In contrast,
cylindrical rectification guarantees that the rectified images
are bounded for all possible camera motions and minimizes
the loss of pixel information along epipolar line. The pro-
cesses (eg. stereo matching, etc..) subsequently applied
to the rectified images are thus more accurate and general
since they can accommodate any camera geometry.

1 Introduction
Rectification is a necessary step of stereoscopic analysis.

The process extracts epipolar lines and realigns them hori-
zontally into a new rectified image. This allows subsequent
stereoscopic analysis algorithms to easily take advantage of
the epipolar constraint and reduce the search space to one
dimension, along the horizontal rows of the rectified images.

For different camera motions, the set of matching epipo-
lar lines varies considerably and extracting those lines for
the purpose of depth estimation can be quite difficult. The
difficulty does not reside in the equations themselves; for a
given point, it is straightforward to locate the epipolar line
containing that point. The problem is to find a set of epipo-
lar lines that will cover the whole image and introduces a
minimum of distortion, for arbitrary camera motions. Since
subsequent stereo matching occurs along epipolar lines, it is
important that no pixel information is lost along these lines
in order to efficiently and accurately recover depth.

Fig. 1 depicts the rectification process. A scene S is
observed by two cameras to create images I1 and I2. In
order to align the epipolar lines of this stereo pair, some
image transformation must be applied. The most common of
such transformations, proposed by Ayache [1] and referred
to as planar rectification, is a remapping of the original
images onto a single plane that is parallel to the line joining
the two cameras optical centers (see Fig. 1, images P1 and
P2). This is accomplished by using a linear transformation
in projective space applied to each image pixels.

The new rectification method presented in this paper,
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Figure 1: Rectification. Stereo images (I1; I2) of
scene S shown with planar rectification (P1; P2)

and cylindrical rectification (C1; C2)

referred to as cylindrical rectification, proposes a transfor-
mation that remaps the images onto the surface of a cylin-
der whose principal axis goes through both cameras optical
centers (see Fig. 1, images C1 and C2). The actual images
related for Fig. 1 are shown in Fig. 2.

The line joining the optical centers of the cameras (see
Fig. 1) defines the focus of expansion (foe). All epipolar
lines intersect the focus of expansion. The rectification
process applied to an epipolar line always makes that line
parallel to the foe. This allows the creation of a rectified
image where the epipolar lines do not intersect and can be
placed as separate rows. Obviously, both plane and cylinder
remapping satisfy the alignment requirement with the foe.

Planar rectification, while being simple and efficient, suf-
fers from a major drawback: it fails for some camera motion,
as demonstrated in Sec. 2. As the forward motion compo-
nent becomes more significant, the image distortion induced
by the transformation becomes progressively worse until the
image is effectively unbounded. The image distortion in-
duces a loss of pixel information that can only be partly
compensated for by making the rectified image size larger1.
Consequently, this method is useful only for motions with
a small forward component, thus lowering the risk of un-
bounded rectified images. One benefit of planar rectification
is that it preserves straight lines, which is an important con-

1See Sec. 3.6 for a detailled discussion



sideration if stereo matching is to be performed on edges or
lines.

On the other hand, cylindrical rectification is guaranteed
to provide a bounded rectified image and significantly re-
duce pixel distortion, for all possible camera motions. This
transformation also preserves epipolar line length. For ex-
ample, an epipolar line 100 pixels long will always be recti-
fied to a line 100 pixels long. This insures a minimal loss of
pixel information when resampling the epipolar lines from
the original images. However, arbitrary straight lines are
no longer preserved, though this may only be a concern for
edge based stereo.

Planar rectification uses a single linear transformation
matrix applied to the image, making it quite efficient. Cylin-
drical rectification uses one such linear transformation ma-
trix for each epipolar line. In many cases, these matrices
can be precomputed so that a similar level of performance
can be achieved.

Although it is assumed throughout this paper that inter-
nal camera parameters are known, cylindrical rectification
works as well with unknown internal parameters, as it is the
case when only the Fundamental matrix (described in [2])
is available (See Sec. 3.5).

Many variants of the planar rectification scheme have
been proposed [1, 3, 4]. A detailed description based on the
essential matrix is given in [5]. In [6], a hardware implemen-
tation is proposed. In [7], the camera motion is restricted to
a vergent stereo geometry to simplify computations. It also
presents a faster way to compute the transformation by ap-
proximating it with a non-projective linear transformation.
This eliminates the risk of unbounded images at the expense
of potentially severe distortion. In [8], a measure of image
distortion is introduced to evaluate the performance of the
rectification method. This strictly geometric measure, based
on edge orientations, does not address the problem of pixel
information loss induced by interpolation (see Sec. 3.6).

Sec. 2 describes planar rectification in more details. The
cylindrical rectification method is then presented in Sec. 3.
It describes the transformation matrix whose three compo-
nents are explicitly detailed in Sec. 3.3, 3.2 and 3.1. Sec. 3.4
discuss the practical aspect of finding the set of correspond-
ing epipolar lines in both images to rectify. It is demon-
strated in Sec. 3.5 that it is possible to use uncalibrated as
well as calibrated cameras. A measure of image distortion
is introduced in Sec. 3.6 and used to show how both rec-
tification methods behave for different camera geometries.
Examples of rectification for different camera geometries
are presented in Sec. 4.

2 Linear transformation in projective
space

In this section we show how rectification methods based
on a single linear transformation in projective space [1, 3, 4]
fail for some camera geometries.

As stated earlier, the goal of rectification is to apply a
transformation to an image in order to make the epipolar
lines parallel to the focus of expansion. The result is a set
of images where each row represents one epipolar line and
can be used directly for the purpose of stereo matching (see
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Figure 2: Images from Fig. 1. Original images
(I1; I2) are shown with cylindrical rectification
(C1; C2) and planar rectification (P1; P2).

Fig. 2).
In projective space, an image point is expressed as p =

(px; py; h)
T where h is a scale factor. Thus we can assume

these points are projected to p = (px; py; 1)
T .

The linear projective transformation F is used to trans-
form an image point u into a new point v with the relation

v = F � u =

"
F0 F1 F2

F3 F4 F5

F6 F7 F8

#
� u (1)

where

v = (vx; vy; vh)
T u = (ux; uy; uh)

T uh 6= 0

The fact that uh 6= 0 simply implies that the original image
has a finite size. Enforcing that the reprojected point is not
at infinity implies that vh must be non-zero, that is

vh = uxF6 + uyF7 + uhF8 6= 0 (2)

Since ux; uy are arbitrary, Eq. 2 has only one possible so-
lution (F6; F7; F8) = (0; 0; 1) since only uh can guarantee
vh to be non zero and F to be homogeneous. Therefore, the
transformationF must have the form

F =

"
F0 F1 F2

F3 F4 F5

0 0 1

#

which corresponds to a camera displacement with no for-
ward (or backward) component.

In practice, the rectified image is unbounded only when
the foe is inside the image. Therefore, any camera motion
with a large forward component (making the foe visible)
cannot be rectified with this method. Moreover, as soon as
the forward component is large enough, the image points are
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Figure 3: The basic steps of the cylindrical recti-
fication method. First (Rfoe), an epipolar line is
rotated in the epipolar plane until it is parallel to
the foe. Second (Tfoe), a change of coordinate
system is applied. Third (Sfoe), a projection onto
the surface of the unit cylinder is applied.

mapped so far apart that the rectification becomes unusable
due to severe distortion.

In the next section, we described how cylindrical recti-
fication can alleviate these problems by making a different
use of linear transformations in projective space.

3 Cylindrical recti�cation
The goal of cylindrical rectification is to apply a trans-

formation of an original image to remap on the surface of a
carefully selected cylinder instead of a plane. By using the
line joining the cameras optical centers as the cylinder axis
(Fig. 1), all straight lines on the cylinder surface are neces-
sarily parallel to the cylinder axis and focus of expansion,
making them suitable to be used as epipolar lines.

The transformation from image to cylinder, illustrated
in Fig. 3, is performed in three stages. First, a rotation is
applied to a selected epipolar line (stepRfoe). This rotation
is in the epipolar plane and makes the epipolar line parallel to
the foe. Then, a change of coordinate system is applied (step
Tfoe) to the rotated epipolar line from the image system to
the cylinder system (with foe as principal axis). Finally,
(step Sfoe), this line is normalized or reprojected onto the
surface of a cylinder of unit diameter. Since the line is
already parallel to the cylinder, it is simply scaled along the
direction perpendicular to the axis until it lies at unit distance
from the axis. A particular epipolar line is referenced by its
angle � around the cylinder axis, while a particular pixel
on the epipolar line is referenced by its angle and position
along the cylinder axis (see Fig. 3).

Even if the surface of the cylinder is infinite, it can be
shown that the image on that surface is always bounded.
Since the transformation aligns an epipolar line with the axis
of the cylinder, it is possible to remap a pixel to infinity only
if its epipolar line is originally infinite. Since the original
image is finite, all the visible parts of the epipolar lines are

also of finite length and therefore the rectified image cannot
extend to infinity.

The rectification process transforms an image pointpxyz
into a new point qfoe which is expressed in the coordinate
system foe of the cylinder. The transformation matrixLfoe

is defined so that the epipolar line containing pxyz will
become parallel to the cylinder axis, the foe. Since all
possible epipolar lines will be parallel to the foe, they will
also be parallel to one another and thus form the desired
parallel aligned epipolar geometry.

We have the linear rectification relations between qfoe
and pxyz stated as

qfoe = Lfoepxyz

= (SfoeTfoeRfoe)pxyz (3)

and inversely

pxyz = L�1
foe

qfoe

= (RT

foe
TT

foe
S�1
foe

)qfoe (4)

where

Sfoe =

2
4 1 0 0

0 1
k

0

0 0 1

k

3
5 and Tfoe =

"
foe
u
v

#

These relations are completely invertible (except for the
special case pxyz = foe, which is quite easily handled).
The matrix Rfoe represents the rotation of the image point
in projective space. The matrix Tfoe represents the change
from the camera coordinate system to the cylinder system.
The matrix Sfoe represents the projective scaling used to
project rectified point onto the surface of the unit cylinder.

The next three subsections will describe how to compute
the coordinate transformationTfoe, the rotation Rfoe, and
the scaling Sfoe.

3.1 Determining transformation T

The matrix Tfoe is the coordinate transformation matrix
from system (x;y; z) to system (foe;u;v) such that

qfoe = Tfoeqxyz

qxyz = TT

foe
qfoe (5)

and is uniquely determined by the position and motion of
the cameras (see Fig. 3).

Any camera has a positionposand a rotation of� degrees
around the axis axis relative to the world coordinate system.
A homogeneous world point pw is expressed in the system
of camera a (with pos

a
, axisa, and �a) as

pa = Rawpw

where Raw is the 4� 4 homogeneous coordinate transfor-
mation matrix obtained as

Raw =

�
rot(axisa;��a) 0

0 1

� �
I �pos

a

0 1

�

=

�
raw �raw � posa
0 1

�



where
raw = rot(axisa;��a)

and rot(A; �) is a 3 � 3 rotation matrix of angle � around
axis A. The corresponding matrix Rbw for camera b with
pos

b
, axisb, and �b is defined in a similar way.

The direct coordinate transformation matrices for camera
a and b such that

pa = Rabpb

pb = Rbapa

are defined as

Rab = Raw �R
�1
bw

=

�
rab foea
0 1

�

Rba = Rbw �R
�1
aw

=

�
rba foeb
0 1

�

where

rab = rawr
T

bw

rba = rbwr
T

aw

foea = raw � (posb � pos
a
)

foeb = rbw � (posa � pos
b
)

from which we can derive the matrix Tfoe;a for rectifying
the image of camera a as

Tfoe;a =

"
n(foea)

n(z� foea)
n(foea � (z� foea))

#
(6)

where n(v) = v=kvk is a normalizing function. The corre-
sponding matrix Tfoe;b for rectifying the image of camera
b can be derived similarly or more simply by the relation

Tfoe;b = �Tfoe;a � rab (7)

For the case where foea = z, the last two rows of Tfoe;a

can be any two orthonormal vectors perpendicular to z.

3.2 Determining rotation R

The epipolar line containing a point pxyz will be rotated
around the origin (the camera’s optical center) and along
the epipolar plane until it becomes parallel to the foe. The
epipolar plane containing pxyz also contain the foe (by
definition) and the origin. The normal to that plane is

axis = foe� pxyz (8)

and will be the axis of rotation (see Fig. 3), thus ensuring that
pxyz remains in the epipolar plane. In the case pxyz = foe,
the axis can be any vector normal to the foe vector.

The angle of rotation needed can be computed by using
the fact that the normal z = (0; 0; 1)T to the image plane
has to be rotated until it is perpendicular to the foe. This is
because the new epipolar line has to be parallel to the foe.
The rotation angle is the angle between the normal z =

(0; 0; 1)T projected on the epipolar plane (perpendicular

to the rotation axis) and the plane normal to the foe also
containing the origin. By projecting the point pxyz onto
that plane, we can directly compute the angle. We have z0,
the normal z projected on the epipolar plane defined as

z0 = axis� (z� axis) =

2
4 �axisxaxisz

�axisyaxisz
axis

2
x
+ axis

2
y

3
5

and p0, the projected pxyz on the plane normal to the foe,
defined as

p0 = TT

foe
BTfoepxyz (9)

where Tfoe was previously defined in Eq. 6.
The rotation matrix Rfoe rotates the vector z0 onto the

vector p0 around the axis of Eq. 8 and is defined as

Rfoe = rotp0;z0 (10)

where rota;b rotates vector b onto vector a such that

rota;b =

"
n(a)

n(a� b)
n((a� b)� a)

#T "
n(b)

n(a� b)
n((a � b)� b)

#

If the point qfoe is available instead of point pxyz, (as
would be the case for the inverse transformation of Eq. 4) we
can still computeRfoe from Eq. 10 by substituting qxyz for
pxyz in Eq. 8 and 9 where qxyz is derived from qfoe using
Eq. 5. Notice that because pxyz and qxyz are in the same
epipolar plane, the rotation axis will be the same. Also, the
angle of rotation will also be the same since their projection
onto the plane normal to the foe is the same (modulo a scale
factor).

3.3 Determining the scaling S

The matrix Sfoe is used to project the epipolar line from
the unit image plane (i.e. located at z = 1) onto the cylin-
der of unit radius. To simplify notation in the following
equation, we define

A =

"
1 0 0

0 0 0

0 0 0

#
B =

"
0 0 0

0 1 0

0 0 1

#

As shown in Eq. 3 and 4, Sfoe has one scalar parameter k.
This parameter can be computed for a known point pxyz
(Eq. 3) by enforcing unit radius and solving the resulting
equation

kB qfoek = 1 (11)B
2
4 1 0 0

0 1

k
0

0 0 1

k

3
5TfoeRfoepxyz

 = 1

which yields the solution

k = kBTfoeRfoepxyzk



For the case of a known point qfoe (Eq. 4), enforcing
that the epipolar lines all have their z coordinates equal to 1
gives the equation

"
0

0

1

#
� pxyz = 1

"
0

0

1

#
� (RT

foe
TT

foe

"
1 0 0

0 k 0

0 0 k

#
qfoe) = 1

which can be simplified to

(Tfoec3) � (A qfoe) + k(Tfoec3) � (B qfoe) = 1

where c3 is the third column of rotation matrix Rfoe. The
solution is then

k =
1� (Tfoec3) � (A qfoe)

(Tfoec3) � (B qfoe)

It should be noted that the denominator can never be zero
because of Eq. 11 and the fact thatTfoec3 can never be zero
or orthogonal to B qfoe.

3.4 Common angle interval

In general, a rectified image does not span the whole
cylinder. The common angle interval is the interval that
yields all common epipolar lines between two views. In
order to control the number of epipolar lines extracted, it is
important to determine this interval for each image.

Notice that the rectification process implicitly guarantees
that a pair of corresponding epipolar lines have the same
angle on their respective cylinder, and therefore the same
row in the rectified images. The concern here is to determine
the angle interval of epipolar lines effectively present in both
images.

It can be shown that if a rectified image does not span the
whole cylinder, then the extremum angles are given by two
corners of the image. Based on this fact, it is sufficient to
compute the angle of the four corners and one point between
each pair of adjacent corners. By observing the ordering of
these angles and taking into account the periodicity of angle
measurements, it is possible to determine the angle interval
for one image.

Given the angle intervals computed for each image sepa-
rately, their intersection is the common angle interval sought.
The subsequent stereo matching process has only to consider
epipolar lines in that interval.

3.5 The case of uncalibrated cameras

Until now, it was always assumed that the cameras where
calibrated, i.e. their internal parameters are known. The pa-
rameters are the principal point (optical axis), focal lengths
and aspect ratio. More generally, we can represent all these
parameters by a 3�3 upper triangular matrix. In this section,
we assume that only the fundamental matrix is available.
This matrix effectively hides the internal parameters with
the camera motion (external parameters) in a single matrix.

The fundamental matrix F defines the epipolar relation
between points pa and pb of the images as

pT
b
�F � pa = 0 (12)

It is straightforward to extract the focus of expansion for
each image by noticing that all points of one image must
satisfy Eq. 12 when the point selected in the other image is
its foe. More precisely, the relations for foea and foeb are

pT
b
� F � foea = 0 8pb

foe
T

b
�F � pa = 0 8pa

which yield the homogeneous linear equation systems

F � foea = 0 (13)

FT � foeb = 0 (14)

which are easily solved.
At this point, it remains to show how to derive the con-

stituent of matrixLfoe of Eq. 3 from the fundamental matrix
F. These are the matrices Sfoe, Rfoe, and Tfoe.

The transformationTfoe;a can be directly obtained from
Eq. 6, using foea obtained in Eq. 13. Symmetrically (using
Eq. 14) we obtain

Tfoe;b =

"
n(foeb)

n(z� foeb)
n(foeb � (z� foeb))

#

The rotation matrix Rfoe is computed from the foe
(which is readily available from the fundamental matrix
F) and the transform matrix Tfoe, exactly as described in
Sec. 3.2.

Since the scaling matrix Sfoe is directly computed from
the value of rotation matrix Rfoe and transform Tfoe, it is
computed exactly as described in Sec. 3.3.

The rectification method is applicable regardless of the
availability of the internal camera parameters. However,
without these parameters, it is impossible to determine the
minimum and maximum disparity interval which is of great
utility in an subsequent stereo matching. In this paper, all the
results obtained performed with known internal parameters.

3.6 Epipolar distortion and image size

The distortion induced by the rectification process in con-
junction with the resampling of the original image can create
a loss of pixel information, i.e. pixels in the original im-
age are not accounted for and the information they carry
is simply discarded during resampling. We measure this
loss along epipolar lines, since it is along these lines that a
subsequent stereo process will be carried out. To establish
a measure of pixel information loss, we consider a rectified
epipolar line segments of a length of one pixel and compute
the lenghtL of the original line segment that is remapped to
it. For a given length L, we define the loss as

loss(L) =

�
0 L � 1

1� 1=L L > 1
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Figure 4: Pixel loss as a function of camera transla-
tion T = (1; 0; z). Rectified image width is 365, 730
and 1095 pixels for an original width of 256 pixels.

A shrinking of original pixels (i.e. L > 1) creates pixel
information loss while a stretching (i.e. L < 1) simply
reduce the density of the rectified image. For a whole image,
the measure is the expected loss over all rectified epipolar
lines, broken down into individual one pixel segments.

The fundamental property of cylindrical rectification is
the conservation of the length of epipolar lines. Since pixels
do not stretch or shrink on these lines, no pixel information
is lost during resampling, except for the unavoidable loss in-
troduced by the interpolation process itself. For planar rec-
tification, the length of epipolar lines is not preserved. This
implies that some pixel loss will occur if the rectified image
size is not large enough. In Fig. 4, three different rectified
image width (365, 730, 1095 pixels) were used with both
methods, for a range of camera translations T = (1; 0; z)
with a z component in the range z 2 [0; 1]. Cylindrical
rectification shows no loss for any camera motion and any
rectified image width2. However, planar rectification in-
duces a pixel loss that depends on the camera geometry. To
compensate for such a loss, the rectified images have to be
enlarged, sometimes to the point where they become useless
for subsequent stereo processing. For a z component equal
to 1 (i.e. T = (1; 0; 1)), all pixels are lost, regardless of
image size.

4 Experiments and results
Some examples of rectification applied to different cam-

era geometries are illustrated in this section. Fig. 5 presents
an image plane and the rectification cylinder with the repro-
jected image, for an horizontal camera motion. In this case,
the epipolar lines are already aligned. The rows represent
different angles around the cylinder, from 0� to 360�. The
image always appears twice since every cylinder point is
projective across the cylinder axis. The number of rows de-
termine the number of epipolar lines that are extracted from
the image.

Fig. 6 depicts a camera geometry with forward motion.
The original and rectified images are shown in Fig. 7 (pla-
nar rectification can not be used in this case). Notice how

2The minimum image width that guarantees no pixel loss is

equal to
p
w2 + h2 for an original image of size (w;h)

Figure 5: Image ”cube” rectified. Horizontal cam-
era motion (foe = (1; 0; 0)). A row represent an
individual epipolar line.

the rectified displacement of the sphere and cone is purely
horizontal, as expected.

Fig. 8 depicts a typical camera geometry, suitable for
planar rectification, with rectified images shown in Fig. 9.
While the cylindrical rectification (imagesC1; C2 in Fig. 9)
introduces little distortion, planar rectification (images
P1; P2) significantly distorts the images, which are also
larger to compensate for pixel information loss.

Examples where the foe is inside the image are obtained
when the forward component of the motion is large enough
with respect to the focal length (as in Fig. 7). It is important
to note that planar rectification always yields an unbounded
image (i.e. infinite size) for these cases and thus can not be
applied.

The execution time for both methods is very similar. For
many camera geometries, the slight advantage of planar
rectification relating to the number of matrix computation is
overcome by the extra burden of resampling larger rectified
images to reduce pixel loss.

5 Conclusion
We presented a new method, called cylindrical rectifi-

cation, for rectifying stereoscopic images under arbitrary
camera geometry. It effectively remaps the images onto the
surface of a unit cylinder whose axis goes through both cam-
eras optical centers. It applies a transformation in projective
space to each image point. A single linear transformation
is required per epipolar line to rectify. While it does not
preserves arbitrary straight lines, it preserves epipolar line
lengths, thus insuring minimal loss of pixel information. As
a consequence of allowing arbitrary camera motions, the
rectified images are always bounded, with a size indepen-
dent of camera motion.

The approach has been implemented and used success-
fully in the context of stereo matching [9], ego-motion
estimation [10] and tridimensional reconstruction and has
proved to provide added flexibility and accuracy at no sig-
nificant cost in performance.
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Figure 7: Rectification of forward camera motion.
The images I1; I2 are shown with their cylindrical
rectification C1; C2. The rectified image displace-
ments are all horizontal.
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Figure 8: Camera geometry suitable for planar rec-
tification. I1; I2 are the original images.
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Figure 9: Rectified images. Cylindrical rectification
(C1; C2) and planar rectification (P1; P2)


