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Abstract

The factorization method described in this series of reports requires an al-
gorithm to track the motion of features in an image stream. Given the
small inter-frame displacement made possible by the factorization approach,
the best tracking method turns out to be the one proposed by Lucas and
Kanade in 1981.

The method de�nes the measure of match between �xed-size feature windows
in the past and current frame as the sum of squared intensity di�erences over
the windows. The displacement is then de�ned as the one that minimizes
this sum. For small motions, a linearization of the image intensities leads to
a Newton-Raphson style minimization.

In this report, after rederiving the method in a physically intuitive way, we
answer the crucial question of how to choose the feature windows that are
best suited for tracking. Our selection criterion is based directly on the
de�nition of the tracking algorithm, and expresses how well a feature can be
tracked. As a result, the criterion is optimal by construction.

We show by experiment that the performance of both the selection and the

tracking algorithm are adequate for our factorization method, and we address
the issue of how to detect occlusions. In the conclusion, we point out speci�c
open questions for future research.





Preface

In principle, the stream of images produced by a moving camera allows the
recovery of both the shape of the objects in the �eld of view, and the motion
of the camera. Traditional algorithms recover depth by triangulation, and
compute shape by taking di�erences between depth values. This process,
however, is sensitive to noise for distant scenes.

To overcome this problem, we have developed a factorization method

to decompose an image stream directly into object shape and camera mo-
tion, without computing depth as an intermediate step. To explore this new
method, we designed a series of eleven technical reports, as shown in �gure
1, going from basic theory to implementation.

The �rst two report, already published as CMU-CS-90-166 and CMU-CS-

91-105, explore the idea in the case of planar motion, in which images are
single scanlines, and then for unrestricted, 3D motion and complete images.

The method used to select and track points from frame to frame is de-
scribed in detail in the present report, number 3.

As to the future reports, number 4 and 5 address shape and motion recon-

struction and tracking for line features, rather than points. Reports number

6 and 7 deal with perspective e�ects and degenerate motion. Occlusion can
be handled by our method, as shown in report number 8, while number 9
examines how to detect cases of spurious, that is, non-rigid, motion. The

factorization algorithm in report number 2 deals with the whole stream of

images at once; report number 10, in contrast, proposes an implementation
that can work with an inde�nitely long stream of images.

Report number 11 considers a more radical departure from the assump-
tion of a static scene than spurious motion, that of several bodies moving

independently in the �eld of view.
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Figure 0.1: The reports in the series.



Chapter 1

Introduction

The factorization method introduced in reports 1 and 2 of this series [Tomasi
and Kanade, 1990] [Tomasi and Kanade, 1991] requires selecting and tracking
of features in an image stream. In this report we address the issues involved,

and present our algorithm.
In general, two basic questions must be answered: how to select the

features, and how to track them from frame to frame. We base our solution
to the tracking problem on a previous result by Lucas and Kanade [Lucas
and Kanade, 1981], who proposed a method for registering two images for

stereo matching.
Their approach is to minimize the sum of squared intensity di�erences

between a past and a current window. Because of the small inter-frame
motion, the current window can be approximated by a translation of the old
one. Furthermore, for the same reason, the image intensities in the translated

window can be written as those in the original window plus a residue term

that depends almost linearly on the translation vector. As a result of these
approximations, one can write a linear 2 � 2 system whose unknown is the
displacement vector between the two windows.

In practice, these approximations introduce errors, but a few iterations of

the basic solution step su�ce to converge. The result is a simple, fast, and

accurate registration method.

The �rst question posed above, however, was left unanswered in [Lucas
and Kanade, 1981]: how to select the windows that are suitable for accu-

rate tracking. In the literature, several de�nitions of a "good feature" have
been proposed, based on an a priori notion of what constitutes an "inter-
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esting" window. For example, Moravec and Thorpe propose to use win-

dows with high standard deviations in the spatial intensity pro�le [Moravec,

1980], [Thorpe, 1984], Marr, Poggio, and Ullman prefer zero crossings of the

Laplacian of the image intensity [Marr et al., 1979], and Kitchen, Rosen-

feld, Dreschler, and Nagel de�ne corner features based on �rst and second

derivatives of the image intensity function [Kitchen and Rosenfeld, 1980],
[Dreschler and Nagel, 1981].

In contrast with these selection criteria, which are de�ned independently

of the registration algorithm, we show in this report that a criterion can be

derived that explicitly optimizes the tracking performance. In other words,
we de�ne a feature to be good if it can be tracked well.

In this report, we �rst pose the problem (chapter 2), and rederive the
equations of Lucas and Kanade in a physically intuitive way (chapter 3).

Chapter 4 introduces the selection criterion. We then show by experiment
(chapter 5) that the performance of both selector and tracker is satisfactory
in a wide variety of situations, and discuss the problem of detecting feature
occlusion. Finally, in chapter 6, we close with a discussion of the suitability
of this approach to our factorization method for the computation of shape

and motion, and point out directions for further research.
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Chapter 2

Feature Tracking

As the camera moves, the patterns of image intensities change in a complex
way. In general, any function of three variables I(x; y; t), where the space
variables x and y as well as the time variable t are discrete and suitably

bounded, can represent an image sequence. However, images taken at near
time instants are usually strongly related to each other, because they refer
to the same scene taken from only slightly di�erent viewpoints.

We usually express this correlation by saying that there are patterns that
move in an image stream. Formally, this means that the function I(x; y; t)

is not arbitrary, but satis�es the following property:

I(x; y; t+ � ) = I(x� �; y � �; t) ; (2:1)

in plain English, a later image taken at time t+� can be obtained by moving
every point in the current image, taken at time t, by a suitable amount.

The amount of motion d = (�; �) is called the displacement of the point at

x = (x; y) between time instants t and t+ � , and is in general a function of
x, y, t, and � .

Even in a static environment under a constant lighting, the property
described by equation (2.1) is violated in many situations. For instance, at

occluding boundaries, points do not just move within the image, but appear
and disappear. Furthermore, the photometric appearance of a region on a

visible surface changes when reectivity is a function of the viewpoint.

However, the invariant (2.1) is by and large satis�ed at surface markings,

and away from occluding contours. At locations where the image intensity
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changes abruptly with x and y, the point of change remains well de�ned even

in spite of small variations of overall brightness around it.

Surface markings abound in natural scenes, and are not infrequent in

man-made environments. In our experiments, we found that markings are

often su�cient to obtain both good motion estimates and relatively dense

shape results. As a consequence, this report is essentially concerned with

surface markings.

The Approach

An important problem in �nding the displacement d of a point from one
frame to the next is that a single pixel cannot be tracked, unless it has a

very distinctive brightness with respect to all of its neighbors. In fact, the
value of the pixel can both change due to noise, and be confused with adjacent
pixels. As a consequence, it is often hard or impossible to determine where
the pixel went in the subsequent frame, based only on local information.

Because of these problems, we do not track single pixels, but windows of

pixels, and we look for windows that contain su�cient texture. In chapter 4,
we give a de�nition of what su�cient texture is for reliable feature tracking.

Unfortunately, di�erent points within a window may behave di�erently.
The corresponding three-dimensional surface may be very slanted, and the
intensity pattern in it can become warped from one frame to the next. Or

the window may be along an occluding boundary, so that points move at
di�erent velocities, and may even disappear or appear anew.

This is a problem in two ways. First, how do we know that we are

following the same window, if its contents change over time? Second, if we
measure "the" displacement of the window, how are the di�erent velocities
combined to give the one resulting vector? Our solution to the �rst problem

is residue monitoring: we keep checking that the appearance of a window has

not changed too much. If it has, we discard the window.
The second problem could in principle be solved as follows: rather than

describing window changes as simple translations, we can model the changes
as a more complex transformation, such as an a�ne map. In this way, dif-

ferent velocities can be associated to di�erent points of the window.

This approach was proposed already in [Lucas and Kanade, 1981], and
was recently explored in a more general setting in [Rehg and Witkin, 1991].
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We feel, however, that in cases where the world is known to be rigid the dan-

ger of over-parametrizing the system outweighs the advantages of a richer

model. More parameters to estimate require the use of larger windows to

constrain the parameters su�ciently. On the other hand, using small win-

dows implies that only few parameters can be estimated reliably, but also

alleviates the problems mentioned above.

We therefore choose to estimate only two parameters (the displacement

vector) for small windows. Any discrepancy between successive windows

that cannot be explained by a translation is considered to be error, and the

displacement vector is chosen so as to minimize this residue error.
Formally, if we rede�ne J(x) = I(x; y; t+ � ), and I(x�d) = I(x� �; y�

�; t), where the time variable has been dropped for brevity, our local image
model is

J(x) = I(x� d) + n(x) ; (2:2)

where n is noise.
The displacement vector d is then chosen so as to minimize the residue

error de�ned by the following double integral over the given window W:

� =
Z
W

[I(x� d)� J(x)]2w dx : (2:3)

In this expression, w is a weighting function. In the simplest case, w
could be set to 1. Alternatively, w could be a Gaussian-like function, to
emphasize the central area of the window. The weighting function w could
also depend on the image intensity pattern: the relation (3.3) holds for planar

patches, and w could be chosen, as suggested in [Lucas and Kanade, 1981],
to de-emphasize regions of high curvature.

Several ways have been proposed in the literature to minimize this residue

(see [Anandan, 1989] for a survey). When the displacement d is much smaller
than the window size, the linearization method presented in [Lucas and
Kanade, 1981] is the most e�cient way to proceed.

In the next chapter, we rederive this method, and explain it in a physically

intuitive way. Then, in chapter 4, we show that the registration idea can
be extended also to selecting good features to track. As a consequence,

feature selection is no longer based on an arbitrary criterion for deciding
what constitutes a feature. Rather, a good feature is de�ned as one that can

be tracked well, in a precise mathematical sense.
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Chapter 3

Solving for the Image

Displacement

In the previous chapter, we justi�ed our local model of image changes as a
simple translation, plus some noise (equation (2.2)), and we posed the regis-
tration problem as the minimization of the error residue de�ned by equation
(2.3). In this chapter, we show that if the inter-frame displacement is su�-
ciently small with respect to the texture uctuations within the window, the

displacement vector itself can be written approximately as the solution to a
2� 2 linear system of equations.

When the displacement vector is small, the intensity function can be
approximated by its Taylor series truncated to the linear term:

I(x� d) = I(x)� g � d ;

and we can write the residue de�ned in equation (2.3) as

� =
Z
W

[I(x)� g � d� J(x)]2w dx =
Z
W

(h� g � d)2w dx ; (3:1)

where h = I(x)� J(x).
This residue is a quadratic function of the displacement d. As a conse-

quence, the minimization can be done in closed form. Di�erentiating the last

expression of the residue � in equation 3.1 with respect to d and setting the

result equal to zero yields the following vector equation:
Z
W

(h� g � d)gwdA = 0 :
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Since (g � d)g = (ggT )d, and d is assumed to be constant within W, we

have �Z
W

ggT wdA

�
d =

Z
W

hgwdA :

This is a system of two scalar equations in two unknowns. It can be

rewritten as

Gd = e ; (3:2)

where the coe�cient matrix is the symmetric, 2� 2 matrix

G =
Z
W

ggT wdA ;

and the right-hand side is the two-dimensional vector

e =
Z
W

(I � J)gwdA :

In the last expression, we wrote h explicitly as the di�erence between the
two frames I and J .

Equation (3.2) is the basic step of the tracking procedure. For every
pair of adjacent frames, the matrix G can be computed from one frame, by
estimating gradients and computing their second order moments. The vector
e, on the other hand, can be computed from the di�erence between the two
frames, along with the gradient computed above. The displacement d is then
the solution of system (3.2).

Physical Interpretation

To understand the meaning of this solution, we rederive the expression (3.1)

of the residue � in a physically more intuitive way.

Consider the intensity function within the window W. Figure 3.1 shows
an example. Make a second copy of it, and superimpose it on the �rst. There

is no space between the two intensity surfaces. If you now move the copy by
a small horizontal displacement, a gap forms between the two surfaces.

The width of the gap, measured horizontally, is a function of the displace-

ment between the two intensity patches. When measured vertically, on the
other hand, the width of the gap is just the di�erence between the values of

the two intensity pro�les.
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Figure 3.1: Example of image intensity function within a small window.
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In the following, we show that for small displacements the horizontal and

the vertical width of the gap at a given point in the image are related to each

other through the image gradient at that point. As a consequence, we can

write the in�nitesimal volume of the gap in a neighborhood of a given point

in two di�erent ways. One is a function of the displacement, the other is not.

We then look for the displacement that makes the di�erence between the

two expressions as small as possible in the Least Squared Error sense and over

the entire window W. This yields, by a di�erent route, the last expression

given in equation (3.1) for the residue �.

Figure 3.2 shows a small patch of the intensity function I(x) and the
corresponding translated patch behind it. The same �gure shows also a cross
section of the two patches along the direction of the image gradient.

The displacement vector d is in general in a di�erent direction than the

image gradient g = ( @I
@x
; @I
@y
). If the gradient is expressed as

g = gu ;

where g is the magnitude of g and u is a unit vector, then the displacement
� measured along the gradient direction is the projection of d along u:

� = d � u :

From the right part of �gure 3.2, we see that the vertical gap width
h = I � J is

h = �tan� ;

where � is the maximum slope of the patch. Since the tangent of � is equal

to the magnitude g of the gradient, we can write

h = � g = d � u g = d � g :

By equating the �rst and last term, we obtain the following equation relat-

ing the image gradient g, the inter-frame displacement d, and the di�erence
h between image intensities:

g � d = h : (3:3)

This is a scalar equation in the two-dimensional unknown d. The image

gradient g can be estimated from one image, while the di�erence h is easily

computed from both.

9



d

g

∆

α

hFigure 3.2: Two corresponding image intensity patches (left), and a section
of the same through the direction of the gradient (right). � is the projection

of the displacement d along the gradient g.
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The fact that the number of unknowns in equation (3.3) exceeds the num-

ber of constraints is called the aperture problem in the literature [Hildreth,

1983], [Horn and Schunck, 1981]: if we just look at that patch (as if through

a small aperture), we cannot determine the displacement d, but at most one

component of it.

If we now consider the whole window W, however, di�erent patches may

allow us to compute di�erent components of the displacement vector, as-

sumed to be constant within W. To combine these measurements, we ob-

serve that if the displacement d is assigned a wrong value, there will be a

di�erence between the left and the right-hand side of equation (3.3). The
best value for d can be chosen as the one that minimizes the square of that
di�erence, integrated over the entire window. In other words, we minimize
the weighted residue Z

W

(h � g � d)2wdA

with respect to d. By comparing with equation (3.1), we see that the ex-
pression above is equal to the residue �, as desired.

Equation (3.3) holds exactly either when the displacementd approaches zero,
or when the image intensities are linear functions of the image coordinates

x and y. In fact, this equation assumes that the patches in �gure 3.2 be
planar. For �nite displacements, the approximation will cause some error on
d especially at high-curvature points in the image intensity function.

As a consequence, the solution d to equation (3.2) will usually contain

some error. However, the images can be approximately registered by using

this solution, and the basic step (3.2) can be repeated. At every iteration
step, images are resampled by bilinear interpolation to achieve subpixel ac-

curacy. The closer we are to the solution, the better the approximations
underlying equation (3.2). In practice, we found that very few iterations

usually su�ce for convergence. We discuss some experiments in chapter 5.

Not all parts of an image lend themselves equally well to this tracking
method. For instance, when the intensity pattern I is constant, the matrixG
is null, and the displacement d is unde�ned. In the next chapter, we address

the problem of how to select good windows to track.
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Chapter 4

Feature Selection

Regardless of the method used for tracking, not all parts of an image contain
motion information. Similarly, along a straight edge, we can only determine
the motion component orthogonal to the edge.

In general terms, the strategy for overcoming these di�culties is to use
only regions with a rich enough texture. In this spirit, researchers have
proposed to track corners, or windows with a high spatial frequency content,
or regions where some mix of second-order derivatives was su�ciently high.

All these de�nitions usually yield trackable features. However, these "in-

terest operators" are often based on a preconceived and sometimes arbitrary
idea of what a good window looks like. In other words, they are based on the
assumption that good features can be de�ned independently of the method
used for tracking them. The resulting features may be intuitive, but come
with no guarantee of being the best for the tracking algorithm to produce

good results.

Instead, we propose a more principled approach. Rather than de�ning
our notion of a good window a priori, we base our de�nition on the method
we use for tracking. A good window is one that can be tracked well. With

this approach, we know that a window is omitted only if it is not good enough

for the purpose: the selection criterion is optimal by construction.

With the formulation of tracking introduced in the previous section, this

concept is easy to formalize. In fact, we can track a window from frame
to frame if the system (3.2) represents good measurements, and if it can be

solved reliably.
This means that the 2 � 2 coe�cient matrix G of the system must be

12



both above the image noise level and well-conditioned. In turn, the noise

requirement implies that both eigenvalues of G must be large, while the

conditioning requirement means that they cannot di�er by several orders of

magnitude.

Two small eigenvalues mean a roughly constant intensity pro�le within a

window. A large and a small eigenvalue correspond to a unidirectional pat-

tern. Two large eigenvalues can represent corners, salt-and-pepper textures,

or any other pattern that can be tracked reliably.

In practice, when the smaller eigenvalue is su�ciently large to meet the

noise criterion, the matrix G is usually also well conditioned. This is due
to the fact that the intensity variations in a window are bounded by the
maximum allowable pixel value, so that the greater eigenvalue cannot be
arbitrarily large.

As a consequence, if the two eigenvalues of G are �1 and �2, we accept a
window if

min(�1; �2) > � ; (4:1)

where � is a prede�ned threshold.
To determine �, we �rst measure the eigenvalues for images of a region of

approximately uniform brightness, taken with the camera to be used during
tracking. This gives us a lower bound for �. We then select a set of various
types of features, such as corners and highly textured regions, to obtain an
upper bound for �. In practice, we have found that the two bounds are
comfortably separate, and the value of �, chosen halfway in-between, is not

critical.
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Chapter 5

Experiments

In this chapter, we evaluate the performance of both feature selection and
tracking on real images. To this end, we use a stream of 100 frames, showing
surfaces of several di�erent types: a furry puppet, a cylindrical and glossy

mug with strong surface markings, an artichoke, a at model street sign.
Figures 5.1 and 5.2 show the �rst and the last frame of the stream, respec-
tively. Between frames, the camera was translated to the right, producing a
displacement of about one pixel per frame.

5.1 Feature Selection

Figure 5.3 shows an intensity encoding of the value of the smaller of the two
eigenvalues of the tracking matrix G (see equation 3.2) for all the square
windows of size 15 in the �rst frame. We call this the minor eigenvalue.

Figure 5.4 shows a histogram of the eigenvalues displayed in �gure 5.3.
For feature detection, we choose a threshold somewhere in the large gap

between the near-zero and the higher cluster. Because of the size of that

gap, the threshold value is not critical. We select a value of 10.
The feature selection algorithm sorts the minor eigenvalues in decreasing

order, and picks feature coordinates from the top of the sorted list. Every
time a coordinate pair is selected, it is assigned a new feature number. To

obtain non-overlapping features, all the features in the list that overlap the
window centered at the selected pair are deleted. Figure 5.5 shows the feature

windows computed from the frame in �gure 5.1. If desired, the requirement
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Figure 5.1: The �rst frame of the stream used in the experiments.

15



Figure 5.2: The last frame of the stream. The total image displacement from

�rst to last frame is about 100 pixels (one pixel per frame).
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of zero overlap can be relaxed by enforcing a minimum distance between

window centers smaller than the window size.

From �gure 5.5, we see that the eigenvalue criterion selects the corners on

the mug as well as fuzzier features on the puppet, both along the edges of the

spots, and elsewhere. Also, a considerable number of features is found on the

artichoke, where the intensity patterns are very irregular. The background,

as well as the relatively uniform areas on the pedestrian sign and on the mug,

contain no features. It is doubtful that any useful motion information can

be extracted from those areas.

No features are found along the straight edges on the mug. These edges
are characterized by a nearly-zero minor eigenvalue, and are good examples of
regions su�ering from the so-called "aperture problem" discussed in chapter
3.

Figures 5.6 and 5.7 show four sample feature windows. Each pair of
illustrations shows the grey values within a window, and its isometric plot.
All feature windows have substantial variations of intensity, but can hardly
be classi�ed as "corners".

An interesting phenomenon can be noticed in �gure 5.5 concerning fea-

tures at the corners on the mug: these windows are almost invariably posi-
tioned so that the corner in each of them is at the very edge of the window,
which is �lled by the brighter side of the corner (see for instance feature
number 1).

This phenomenon is due to the fact that the intensity variations in the

bright regions, albeit very small, are larger than those in the dark regions.
The odd placement of the corner windows, then, indeed maximizes the in-
tensity variations within the windows.

Although this phenomenon presented no di�culty in our experiments, it
is possible that with noisier images the "interesting" part of the feature is lost

from one frame to the next because it is too close to the window boundary.
We leave the exploration of this conjecture to future work.

5.2 Tracking

Figure 5.8 shows the last of the 100 frames in the sequence, with the superim-

posed features, as tracked by the algorithm. Each feature required typically
fewer than �ve iterations of the basic tracking step (see equation 3.2) to

17



Figure 5.3: The minor eigenvalue of G (see equation (3.2)) for the �rst frame
in the stream (�gure (5.1)). Brighter areas correspond to higher values.

The intensities in this display were compressed logarithmically. The square
patterns reect the shape of the 15 � 15 window used by the detector (and

the tracker).
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Figure 5.4: Histogram of the minor eigenvalues. Notice the wide gap between
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in frame 1, and the upper cluster.
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Figure 5.5: The non-overlapping features produced by thresholding the eigen-

values of �gure 5.3 with a value of 10. Some features are numbered for
reference in the text.
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Figure 5.6: Two sample feature windows: the head of the man on the pedes-
trian sign (feature 2), and a corner on the mug (feature 28).
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Figure 5.7: Two more sample feature windows: a detail of the artichoke
(feature 48), and a spot on the puppet (feature 211).
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stabilize the displacement estimate to within one hundredth of a pixel.

217 of the 226 features selected in the �rst frame survive tracking through-

out the stream. No gross errors are made for any of the surviving features.

Of the nine missing features at the end of the stream, six disappear o� the

right image boundary. Of the other three, two (201 and 207, on the fur of

the puppet) are too weak to be tracked.

The ninth missing feature, number 79, on the right side of the mug in

�gure 5.5, is lost because in frame 40 the tracker did not converge within

ten iterations. It would have taken 14 iterations for complete convergence,

that is, to bring the change in displacement due to a new iteration below one
hundredth of a pixel. The reason for the large number of iterations is that
feature 79 is on top of a glossy surface viewed at a substantial slant angle.
This causes the feature window to change its appearance substantially from

frame to frame.
During tracking, a cumulative residue is computed for each feature win-

dow. This residue is de�ned as the root-mean-squared intensity di�erence
between the �rst and the current window. The cumulative residue is plot-
ted in �gure 5.9 as a function of the frame number. Notice that most of

the residue curves grow at the rate of about one intensity level per pixel
every one-hundred frames. As discussed below, a larger residue may indicate
occlusion.

Window Size and Occlusion

As discussed in chapter 3, smaller windows are more sensitive to noise. How-
ever, they are also less likely to straddle surface discontinuities, or to be
a�ected by distortions due to changes of viewpoint. To illustrate this point,
we compared tracking of feature number 2 with square windows 15 and 31

pixels wide. Feature number 2 is the head of the pedestrian on the sign (see

�gure 5.6). In �gure 5.10, the tracks left by feature number 2 are shown for
the two window sizes.

At the end of the tracking process, there is a di�erence between the
results: the discrepancy is of about 3 pixels horizontally, and about 0.8 pixels

vertically. One of the two �nal coordinate pairs must be wrong. The reason

for the discrepancy can be seen from �gure 5.11, which shows the �rst and
last windows in the stream with the 31-pixel windows. Halfway through the

stream, the edge of the artichoke appeared in the window, causing the error
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Figure 5.8: The features surviving through the 100 frames. Of the 226 start-

ing features, only nine disappear, six of them o� the right image boundary.
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intensity levels per pixel, versus the frame number. Features 7, 8, 12, 16, 17,

and 97 are occluded during the stream.
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in the displacement values.

Small windows minimize these occlusion problems. On the other hand,

they will occur no matter what the size of the window. The dashed line in

�gure 5.9 suggests a threshold on the cumulative residue for the detection

of occlusions. Of the features above the threshold, those numbered 7, 8, 12,

16, 17, and 97 are occlusions. The other features, numbered 1, 4, 30, are

in an area of the mug that receives strong reections from the light source.

As a result, the overall intensity pattern changes substantially from the �rst

to the last frame, increasing the value of the residue even if the features are

tracked well (compare �gure 5.5 with the last frame, �gure 5.8).
This simple occlusion detection method would identify most occlusions,

at least for the sequence used for this experiment. It is possible that modeling
window changes as a�ne transformations, rather than simple translations,

increases the separation between good and bad residues, thus yielding a more
reliable detection.

False Features

Other occlusion phenomena produce problems that are more di�cult to de-
tect. For instance, feature number 45 starts at the intersection of the right
boundary of the artichoke with the upper left edge of the tra�c sign (see �g-
ure 5.5). As the camera moves, the local appearance of that intersection does
not change, but its position in space slides along both edges. The tracker

cannot notice the problem, but the feature would create a bad measurement
for any motion and shape method that assumes that features correspond to
static points in the environment. However, this problem can be detected in
three dimensions, after the motion and shape algorithm has been applied.
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Figure 5.10: Results of tracking feature 2 (the man's head on the sign) with

two di�erent window sizes (square windows of 15 and 31 pixels). The distance

between the right endpoints is about 3 pixels horizontally and 0.8 pixels

vertically.

Figure 5.11: A large window is more likely to change dramatically during

camera motion. Here, the boundary of the artichoke appears within the

large 31 � 31 window of feature 2 (the head of the pedestrian on the sign)
somewhere between frame 1 (top) and 100 (bottom), causing the error in

�gure 5.10. The smaller, 15�15, window (outlined in white) is less susceptible
to the problem.
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Chapter 6

Conclusion

The main focus of our research on visual motion is the reconstruction of
three-dimensional shape and motion from the motion of features in an im-
age sequence, as outlined in the �rst two reports of this series [Tomasi and

Kanade, 1990], [Tomasi and Kanade, 1991]. Many algorithms proposed in
the literature for similar purposes assume that feature points are available
from some unspeci�ed "previous processing".

Of course, the validity of these algorithms, including ours, depends crit-
ically on whether this preliminary processing can actually be done. In this

technical report, we have shown that it is possible to go from an image stream
to a collection of image features, tracked from frame to frame.

We chose to use the window-based technique proposed in [Lucas and
Kanade, 1981], because it is simple, fast, and gives accurate results if windows
are selected appropriately.

The need for a careful choice of the windows to track is crucial, and

we proposed a direct and e�ective solution to this problem. The proposed
criterion, based on the size of the smaller eigenvalue of the tracking matrix
G, is well justi�ed by the nature of the tracking method. Furthermore, it

subsumes previous feature selection criteria, in that it detects corners equally

well as regions with high spatial frequency content, or with high second-order

derivatives, or high values of intensity variance.

The experiments outlined in chapter 5, as well as those described in other
reports in this series, show that the overall performance is good.

Of course, this method does not settle the issue of motion detection in
image sequences. Window tracking requires good surface markings, can give
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rise to false measurements from windows along occluding boundaries, and

yields relatively sparse results.

However, false measurements should probably be detected at a higher

level in the processing chain, when measurements are combined into three-

dimensional motion and shape estimates.

Also, results from surface markings are very accurate, typically to within

one tenth of a pixel or better, and are therefore well suited for motion and

shape estimation.

As to sparsity, if rich shape results are the goal, the shape and motion

method will have to be complemented with other techniques for a denser
reconstruction of surfaces. However, the number of features obtained in
typical scenarios [Tomasi and Kanade, 1991] is more than su�cient to obtain
accurate motion results, and to initialize a dense shape map, to be used by

other modules for a more detailed reconstruction of the visible surfaces.

Future Work

As an agenda for future work on the detection and tracking of features in a
stream of images, we now summarize the issues we left open in this report.

Two parameters need to be speci�ed for detection and tracking: the size
of the window and the detection threshold. We have argued that windows
should be as small as possible, compatibly with good noise rejection. How-

ever, it has been shown [Okutomi and Kanade, 1990] that a careful choice of
the window size can improve performance considerably. It would be interest-
ing to develop an inexpensive and automatic window size selection algorithm.

The feature detection threshold was chosen in this report based on a
histogram of the minor eigenvalues for the entire image (�gure 5.4). Also
this parameter should, in the future, be selected automatically.

In chapter 2, we argued that for small windows a pure translation model

of image changes gives more reliable results than a model with more param-
eters. On the other hand, in chapter 5, we also conjectured that an a�ne

transformation model would improve the discrimination power of the occlu-
sion detector. This suggests a combined strategy: the translation model is

more adequate for the registration of adjacent frames, while a more sophis-

ticated transformation model is probably required when comparing distant
frames (in the �rst and the current image), as done for the detection of
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occlusions. How far the occlusion detector can be improved by the a�ne

transformation model is an interesting open question.

In the discussion of �gure 5.5, we pointed out the asymmetric behavior of

the feature selector for corner-like regions: the corner almost always appears

along the boundary of the window. It would be interesting to explore this

phenomenon. First of all, it should be determined whether this is at all a

problem, that is, if it can cause features to be lost when images are very

noisy. If so, it should be possible to add a feature stability criterion to the

maximization of min(�1; �2): choose features so as to maximize the minor

eigenvalue and the spatial stability of the feature in the presence of image
noise. The exact formalization of this stability criterion, as well as the recipe
for combining it with the eigenvalue maximization rule, are open research
questions.

Finally, a complete investigation of the detection and tracking methods
presented in this report requires a more thorough performance evaluation.
First, the methods should be compared experimentally with those previously
proposed in the literature. Second, performance should be measured for a
large number of sequences in a more diverse set of situations.
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