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Abstract: Two images of a single scene/object are related by the epipolar geometry, which
can be described by a 3x3 singular matrix called the essential matrix if images' internal
parameters are known, or the fundamental matrix otherwise. It captures all geometric
information contained in two images, and its determination is very important in many
applications such as scene modeling and vehicle navigation. This paper gives an introduction
to the epipolar geometry, and provides a complete review of the current techniques for
estimating the fundamental matrix and its uncertainty. A well-founded measure is proposed
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which we have developed for this review are available on the Internet.
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Tout ce que vous voulez savoir sur le calcul de la matrice

fondamentale

Résumé : La géométrie épipolaire décrit la relation entre deux images d'une même scène,
qui est caractérisée par une matrice 3x3 singulière. Cette matrice est connue sous le nom
de matrice essentielle si les paramètres intrinsèques des images sont connus, de matrice fon�
damentale s'ils ne le sont pas. Elle contient toutes les informations géométriques des deux
images. Son estimation est très importante pour beaucoup d'applications comme la modé�
lisation de scènes et le déplacement d'un robot mobile autonome. Cet article fournit une
introduction à la géométrie épipolaire, et fait une revue complète des techniques existantes
d'estimation de la matrice fondamentale et de son incertitude. Nous introduisons une mé�
thode de mesure permettant de comparer avec précision ces techniques. La reconstruction
projective est aussi passée en revue. Les logiciels que nous avons développés pour e�ectuer
cette revue sont disponible sur l'Internet.

Mots-clé : Géométrie épipolaire, matrice fondamentale, calibration, reconstruction, es�
timation de paramètres, techniques robustes, caractérisation d'incertitude, évaluation de
performance, logiciel
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1 Introduction

Two perspective images of a single rigid object/scene are related by the so-called epipolar

geometry, which can be described by a 3 � 3 singular matrix. If the internal (intrinsic)
parameters of the images (e.g. the focal length, the coordinates of the principal point,
etc) are known, we can work with the normalized image coordinates (Faugeras 1993), and
the matrix is known as the essential matrix (Longuet-Higgins 1981); otherwise, we have
to work with the pixel image coordinates, and the matrix is known as the fundamental

matrix (Luong 1992, Faugeras 1995, Luong and Faugeras 1996). It contains all geometric
information that is necessary for establishing correspondences between two images, from
which three-dimensional structure of the perceived scene can be inferred. In a stereovision
system where the camera geometry is calibrated, it is possible to calculate such a matrix
from the camera perspective projection matrices through calibration (Ayache 1991, Faugeras
1993). When the intrinsic parameters are known but the extrinsic ones (the rotation and
translation between the two images) are not, the problem is known as motion and structure
from motion, and has been extensively studied in Computer Vision; two excellent reviews are
already available in this domain (Aggarwal and Nandhakumar 1988, Huang and Netravali
1994). We are interested here in di�erent techniques for estimating the fundamental matrix
from two uncalibrated images, i.e. the case where both the intrinsic and extrinsic parameters
of the images are unknown. From this matrix, we can reconstruct a projective structure of
the scene, de�ned up to a 4� 4 matrix transformation.

The study of uncalibrated images has many important applications. The reader may
wonder the usefulness of such a projective structure. We cannot obtain any metric in�
formation from a projective structure: measurements of lengths and angles do not make
sense. However, a projective structure still contains rich information, such as coplanarity,
collinearity, and cross ratios (ratio of ratios of distances), which is sometimes su�cient for
arti�cial systems, such as robots, to perform tasks such as navigation and object recogni�
tion (Shashua 1994, Zeller and Faugeras 1994, Beardsley, Zisserman and Murray 1994).

In many applications such as the reconstruction of the environment from a sequence
of video images where the parameters of the video lens is submitted to continuous modi�
�cation, camera calibration in the classical sense is not possible. We cannot exact any
metric information, but a projective structure is still possible if the camera can be consi�
dered as a pinhole. Furthermore, if we can introduce some knowledge of the scene into
the projective structure, we can obtain more speci�c structure of the scene. For example,
by specifying a plane at in�nity (in practice, we need only to specify a plane su�ciently
far away), an a�ne structure can be computed, which preserves parallelism and ratios of
distances (Quan 1993, Faugeras 1995). Hartley, Gupta and Chang (1992) �rst reconstruct a
projective structure, and then use 8 ground reference points to obtain the Euclidean struc�
ture and the camera parameters. Mohr, Boufama and Brand (1993) embed constraints such
as location of points, parallelism and vertical planes (e.g. walls) directly into a minimization
procedure to determine a Euclidean structure. Robert and Faugeras (1993) show that the
3D convex hull of an object can be computed from a pair of images whose epipolar geometry
is known.

RR n�2927



6 Zhengyou Zhang

If we assume that the camera parameters do not change between successive views, the
projective invariants can even be used to calibrate the cameras in the classical sense without
using any calibration apparatus (known as self-calibration) (Maybank and Faugeras 1992,
Faugeras, Luong and Maybank 1992, Luong 1992, Zhang, Luong and Faugeras 1996, Enciso
1995).

Recently, we have shown (Zhang 1996a) that even in the case where images are calibrated,
more reliable results can be obtained if we use the constraints arising from uncalibrated
images as an intermediate step.

This paper gives an introduction to the epipolar geometry, provides a new formula of
the fundamental matrix which is valid for both perspective and a�ne cameras, and reviews
di�erent methods reported in the literature for estimating the fundamental matrix. Further�
more, a new method is described to compare two estimations of the fundamental matrix.
It is based on a measure obtained through sampling the whole visible 3D space. Projective
reconstruction is also reviewed. The software called FMatrix which implements the reviewed
methods and the software called Fdiff which computes the di�erence between two funda�
mental matrices are both available from my home page:

http://www.inria.fr/robotvis/personnel/zzhang/zzhang-eng.html

FMatrix detects false matches, computes the fundamental matrix and its uncertainty, and
the projective reconstruction of the points as well.

2 Epipolar Geometry and Problem Statement

2.1 Notation

A camera is described by the widely used pinhole model. The coordinates of a 3D point
M = [x; y; z]T in a world coordinate system and its retinal image coordinatesm = [u; v]T are
related by

s

2
4uv
1

3
5 = P

2
664
x

y

z

1

3
775 ;

where s is an arbitrary scale, and P is a 3 � 4 matrix, called the perspective projection
matrix. Denoting the homogeneous coordinates of a vector x = [x; y; � � � ]T by ex, i.e., ex =
[x; y; � � � ; 1]T , we have s em = PeM.

The matrix P can be decomposed as

P = A [R t] ;

where A is a 3� 3 matrix, mapping the normalized image coordinates to the retinal image
coordinates, and (R; t) is the 3D displacement (rotation and translation) from the world
coordinate system to the camera coordinate system.

INRIA
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The quantities related to the second camera is indicated by 0. For example, if mi is a
point in the �rst image, m0

i denotes its corresponding point in the second image.
A line l in the image passing through point m = [u; v]T is described by equation au +

bv + c = 0. Let l = [a; b; c]T , then the equation can be rewritten as lT em = 0 or emT l = 0.
Multiplying l by any non-zero scalar will de�ne the same 2D line. Thus, a 2D line is
represented by a homogeneous 3D vector. The distance from point m0 = [u0; v0]

T to line
l = [a; b; c]T is given by

d(m0; l) =
au0 + bv0 + cp

a2 + b2
:

Note that we here use the signed distance.

2.2 Epipolar Geometry and Fundamental Matrix

The epipolar geometry exists between any two camera systems. Consider the case of two
cameras as shown in Fig. 1. Let C and C 0 be the optical centers of the �rst and second

M

C 0
e e0

m m0

lm0 l0m

I 0

�

C

I

(R; t)

Figure 1: The epipolar geometry

cameras, respectively. Given a point m in the �rst image, its corresponding point in the
second image is constrained to lie on a line called the epipolar line ofm, denoted by l0m. The

RR n�2927



8 Zhengyou Zhang

line l0m is the intersection of the plane �, de�ned by m, C and C 0 (known as the epipolar

plane), with the second image plane I 0. This is because image point m may correspond
to an arbitrary point on the semi-line CM (M may be at in�nity) and that the projection of
CM on I 0 is the line l0m. Furthermore, one observes that all epipolar lines of the points in
the �rst image pass through a common point e0, which is called the epipole. Epipole e0 is
the intersection of the line CC 0 with the image plane I 0. This can be easily understood as
follows. For each point mk in the �rst image I, its epipolar line l0mk

in I 0 is the intersection
of the plane �k, de�ned by mk, C and C 0, with image plane I 0. All epipolar planes �k

thus form a pencil of planes containing the line CC 0. They must intersect I 0 at a common
point, which is e0. Finally, one can easily see the symmetry of the epipolar geometry. The
corresponding point in the �rst image of each pointm0

k lying on l
0

mk
must lie on the epipolar

line lm0

k

, which is the intersection of the same plane �k with the �rst image plane I. All
epipolar lines form a pencil containing the epipole e, which is the intersection of the line
CC 0 with the image plane I. The symmetry leads to the following observation. If m (a
point in I) and m0 (a point in I 0) correspond to a single physical point M in space, then
m, m0, C and C 0 must lie in a single plane. This is the well-known co-planarity constraint

in solving motion and structure from motion problems when the intrinsic parameters of the
cameras are known (Longuet-Higgins 1981).

The computational signi�cance in matching di�erent views is that for a point in the �rst
image, its correspondence in the second image must lie on the epipolar line in the second
image, and then the search space for a correspondence is reduced from 2 dimensions to 1
dimension. This is called the epipolar constraint. Algebraically, in order for m in the �rst
image and m0 in the second image to be matched, the following equation must be satis�ed:

emTF em0 = 0 with F = A�T [t]�RA
0�1 ; (1)

where (R; t) is the rigid transformation (rotation and translation) which brings points expres�
sed in the second camera coordinate system to the �rst one, and [t]� is the antisymmetric
matrix de�ned by t such that [t]�x = t � x for all 3D vector x. This equation can be
derived as follows. Without loss of generality, we assume that the world coordinate system
coincides with the second camera coordinate system. From the pinhole model, we have

s em = A [R t]eM0 and s0 em0 = A0 [I 0]eM0 :
Eliminating M

0, s and s0 in the above two equations, we obtain equation (1). Geometrically,
F em0 de�nes the epipolar line lm0 of point m0 in the �rst image. Equation (1) says no more
than that the correspondence in the �rst image of pointm0 lies on the corresponding epipolar
line lm0 . Transposing (1) yields the symmetric relation from the �rst image to the second
image.

The 3� 3 matrix F is called the fundamental matrix. Since det([t]�) = 0,

det(F) = 0 : (2)

INRIA



Determining the Epipolar Geometry and its Uncertainty: A Review 9

F is of rank 2. Besides, it is only de�ned up to a scalar factor, because if F is multiplied
by an arbitrary scalar, equation (1) still holds. Therefore, a fundamental matrix has only
seven degrees of freedom. There are only 7 independent parameters among the 9 elements
of the fundamental matrix.

Convention note: We use the second camera coordinate system as the world coordinate
system, which is in accordance with the convention used in (Faugeras 1993). Several resear�
chers prefer to use the �rst camera coordinate system, then (1) becomes em0TF0 em = 0 with
F0 = [t0]�R

0, where (R0; t0) transforms points from the �rst camera coordinate system to
the second. The relation between (R; t) and (R0; t0) is given by R0 = RT , and t0 = �RT t.
The reader can easily verify that F = F0T .

2.3 A General Form of Epipolar Equation for Any Projection Mo�

del

In this section we will derive a general form of epipolar equation which does not assume any
particular projection model (Xu and Zhang 1996).

A point m in the �rst image is matched to a point m0 in the second image. From the
camera projection model (orthographic, weak perspective, a�ne, or full perspective), we
have s em = PeM0 and s0 em0 = P0eM0 ; where P and P0 are 3� 4 matrices. An image point
m0 de�nes actually an optical ray, on which every space point eM0 projects on the second
image at em0. This optical ray can be written in parametric form as

eM0 = s0P0+ em0 + p0? ; (3)

where P0+ is the pseudo-inverse of matrix P0:

P0+ = P0T (P0P0T )�1 ; (4)

and p0? is any 4-vector that is perpendicular to all the row vectors of P0, i.e.

P0p0? = 0 :

Thus, p0? is a null vector of P0. As a matter of fact, p0? indicates the position of the optical
center (to which all optical rays converge). We show later how to determine p0?. For a
particular value s0, equation (3) corresponds to a point on the optical ray de�ned by m0.
Equation (3) is easily justi�ed by projecting M

0 onto the second image, which indeed gives
m0.

Similarly, an image point m in the �rst image de�nes also an optical ray. Requiring the
two rays to intersect in space implies that a point M0 corresponding to a particular s0 in (3)
must project onto the �rst image at m, that is

s em = s0PP0+ em0 +Pp0? :

RR n�2927



10 Zhengyou Zhang

Performing a cross product with Pp0? yields

s(Pp0?)� em = s0(Pp0?)� (PP0+ em0) :

Eliminating s and s0 by multiplying emT from the left (equivalent to a dot product), we have

emTF em0 = 0 ; (5)

where F is a 3� 3 matrix, called fundamental matrix :

F = [Pp0?]�PP
0+ : (6)

It can also be shown that this expression is equivalent to (1) for the full perspective projection
(see Xu and Zhang 1996), but it is more general. Indeed, (1) assumes that the �rst 3 � 3
sub-matrix of P0 is invertible, and thus is only valid for full perspective projection but not
for a�ne cameras (see Sect. 5.3), while (6) makes use of the pseudoinverse of the projection
matrix, which is valid for both full perspective projection as well as a�ne cameras. Therefore
the equation does not depend on any speci�c knowledge of projection model. Replacing the
projection matrix in the equation by speci�c projection matrix for each speci�c projection
model (e.g. orthographic, weak perspective, a�ne or full perspective) produces the epipolar
equation for that speci�c projection model. See (Xu and Zhang 1996) for more details.

The vector p0? still needs to be determined. We �rst note that such a vector must exist
because the di�erence between the row dimension and the column dimension is one, and
that the row vectors are generally independent from each other. Indeed, one way to obtain
p0? is

p0? = (I�P0+P0)! ; (7)

where ! is an arbitrary 4-vector. To show that p0? is perpendicular to each row of P0, we
multiply p0? by P0 from the left: P0p0? = (P0�P0P0T (P0P0T )�1P0)! = 0 ; which is indeed
a zero vector. The action of I�P0+P0 is to transform an arbitrary vector to a vector that
is perpendicular to every row vector of P0. If P0 is of rank 3 (which is the case for both
perspective and a�ne cameras), then p0? is unique up to a scale factor.

2.4 Problem Statement

The problem considered in the sequel is the estimation of F from a su�ciently large set of
point correspondences: f(mi;m

0

i) j i = 1; : : : ; ng, where n � 7. The point correspondences
between two images can be established by a technique such as that described in (Zhang,
Deriche, Faugeras and Luong 1995). We allow, however, that a fraction of the matches may
be incorrectly paired, and thus the estimation techniques should be robust.

INRIA



Determining the Epipolar Geometry and its Uncertainty: A Review 11

3 Techniques for Estimating the Fundamental Matrix

Let a point mi = [ui; vi]
T in the �rst image be matched to a point m0

i = [u0i; v
0

i]
T in the

second image. They must satisfy the epipolar equation (1), i.e. emT
i F em0

i = 0. This equation
can be written as a linear and homogeneous equation in the 9 unknown coe�cients of matrix
F:

uTi f = 0 ; (8)

where

ui = [uiu
0

i; uiv
0

i; ui; viu
0

i; viv
0

i; vi; u
0

i; v
0

i; 1]
T

f = [F11; F12; F13; F21; F22; F23; F31; F32; F33]
T ;

where Fij is the element of F at row i and column j.
If we are given n point matches, by stacking (8), we have the following linear system to

solve:

Unf = 0 ;

where

Un = [u1; � � � ;un]T :

This set of linear homogeneous equations, together with the rank constraint of the matrix
F, allow us to estimate the epipolar geometry.

3.1 Exact Solution with 7 Point Matches

As described in Sect. 2.2, a fundamental matrix F has only 7 degrees of freedom. Thus,
7 is the minimum number of point matches required for having a solution of the epipolar
geometry.

In this case, n = 7 and rank(U7) = 7. Through singular value decomposition, we obtain
vectors f1 and f2 which span the null space of U7. The null space is a linear combination of
f1 and f2, which correspond to matrices F1 and F2, respectively. Because of its homogeneity,
the fundamental matrix is a one-parameter family of matrices �F1 + (1� �)F2. Since the
determinant of F must be null, i.e.

det[�F1 + (1� �)F2] = 0 ;

we obtain a cubic polynomial in �. The maximum number of real solutions is 3. For each
solution �, the fundamental matrix is then given by

F = �F1 + (1� �)F2 :

RR n�2927



12 Zhengyou Zhang

Actually, this technique has already been used in estimating the essential matrix when 7
point matches in normalized coordinates are available (Huang and Netravali 1994). It is also
mentioned in (Torr 1995) for estimating the fundamental matrix.

As a matter of fact, the result that there may have three solutions given 7 matches
has been known since 1800's (Hesse 1863, Sturm 1869). Sturm's algorithm (Sturm 1869)
computes the epipoles and the epipolar transformation (see Sect. 2.2) from 7 point matches.
It is based on the observation that the epipolar lines in the two images are related by a
homography, and thus the cross-ratios of four epipolar lines is invariant. In each image, the
7 points de�ne 7 lines going through the unknown epipole, thus providing 4 independent
cross-ratios. Since these cross-ratios should remain the same in the two images, one obtains
4 cubic polynomial equations in the coordinates of the epipoles (4 independent parameters).
It is shown that there may exist up to three solutions for the epipoles.

3.2 Analytic Method with 8 or More Point Matches

In practice, we are given more than 7 matches. If we ignore the rank-2 constraint, we can
use a least-squares method to solve

min
F

X
i

( emT
i F em0

i)
2 ; (9)

which can be rewritten as:

min
f
kUnfk2 : (10)

The vector f is only de�ned up to an unknown scale factor. The trivial solution f to the
above problem is f = 0, which is not what we want. To avoid it, we need to impose some
constraint on the coe�cients of the fundamental matrix. Several methods are possible and
are presented below. We will call them the 8-point algorithm, although more than 8 point
matches can be used.

3.2.1 Linear Least-Squares Technique

The �rst method sets one of the coe�cients of F to 1, and then solves the above problem
using linear least-squares techniques. Without loss of generality, we assume that the last
element of vector f (i.e. f9 = F33) is not equal to zero, and thus we can set f9 = �1. This
gives

kUnfk2 = kU0nf 0 � c9k2 = f 0TU0Tn U
0

nf
0 � 2cT9U

0

nf
0 + cT9 c9 ;
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where U0n is the n � 8 matrix composed of the �rst 8 columns of Un, and c9 is the ninth
column of Un. The solution is obtained by requiring the �rst derivative to be zero, i.e.

@kUnfk2
@f 0

= 0 :

By de�nition of vector derivatives, @(aTx)=@x = a, for all vector a. We thus have

2U0Tn U
0

nf
0 � 2U0Tn c9 = 0 ; or f 0 =

�
U0Tn U

0

n

��1
U0Tn c9 :

The problem with this method is that we do not know a priori which coe�cient is not zero.
If we set an element to 1 which is actually zero or much smaller than the other elements,
the result will be catastrophic. A remedy is to try all nine possibilities by setting one of the
nine coe�cients of F to 1 and retain the best estimation.

3.2.2 Eigen Analysis

The second method consists in imposing a constraint on the norm of f , and in particular
we can set kfk = 1 : Compared to the previous method, no coe�cient of F prevails over the
others. In this case, the problem (10) becomes a classical one:

min
f
kUnfk2 subject to kfk = 1 : (11)

It can be transformed into an unconstrained minimization problem through Lagrange mul�
tipliers:

min
f
F(f ; �) ; (12)

where

F(f ; �) = kUnfk2 + �(1� kfk2) (13)

and � is the Lagrange multiplier. By requiring the �rst derivative of F(f ; �) with respect to
f to be zero, we have

UT
nUnf = �f :

Thus, the solution f must be a unit eigenvector of the 9 � 9 matrix UT
nUn and � is the

corresponding eigenvalue. Since matrix UT
nUn is symmetric and positive semi-de�nite, all

its eigenvalues are real and positive or zero. Without loss of generality, we assume the nine
eigenvalues of UT

nUn are in non-increasing order:

�1 � � � � � �i � � � � � �9 � 0 :
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We therefore have 9 potential solutions: � = �i for i = 1; : : : ; 9. Back substituting the
solution to (13) gives

F(f ; �i) = �i :

Since we are seeking to minimize F(f ; �), the solution to (11) is evidently the unit eigenvector
of matrix UT

nUn associated to the smallest eigenvalue, i.e. �9.

3.2.3 Imposing the Rank-2 Constraint

The advantage of the linear criterion is that it yields an analytic solution. However, we have
found that it is quite sensitive to noise, even with a large set of data points. One reason is
that the rank-2 constraint (i.e. detF = 0) is not satis�ed. We can impose this constraint a
posteriori. The most convenient way is to replace the matrix F estimated with any of the
above methods by the matrix F̂ which minimizes the Frobenius norm (see Sect. B) of F� F̂
subject to the constraint det F̂ = 0. Let

F = USVT

be the singular value decomposition of matrix F, where S = diag (�1; �2; �3) is a diagonal
matrix satisfying �1 � �2 � �3 (�i is the i

th singular value), and U and V are orthogonal
matrices. It can be shown that

F̂ = UŜVT

with Ŝ = diag (�1; �2; 0) minimizes the Frobenius norm of F� F̂ (see the appendix Sect. B
for the proof). (This method was used by Tsai and Huang (1984) in estimating the essential
matrix, and is introduced by Hartley (1995) to estimate the fundamental matrix.)

3.2.4 Geometric Interpretation of the Linear Criterion

Another problem with the linear criterion is that the quantity we are minimizing is not
physically meaningful. A physically meaningful quantity should be something measured in
the image plane, because the available information (2D points) are extracted from images.
One such quantity is the distance from a point mi to its corresponding epipolar line li =
F em0

i � [l1; l2; l3]
T , which is given by (see Sect. 2.1)

d(mi; li) =
emT
i lip

l21 + l22
=

1

ci
emT
i F em0

i ; (14)

where ci =
p
l21 + l22. Thus, the criterion (9) can be rewritten as

min
F

nX
i=1

c2i d
2(mi; li) :
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This means that we are minimizing not only a physical quantity d(mi; li), but also ci which
is not physically meaningful. Luong (1992) shows that the linear criterion introduces a bias
and tends to bring the epipoles towards the image center.

3.2.5 Normalizing Input Data

Hartley (1995) has analyzed, from numerical computation point of view, the high instability
of this linear method if pixel coordinates are directly used, and proposed to perform a simple
normalization of input data prior to running the 8-point algorithm. This technique indeed
produces much better results, and is summarized below.

Suppose that coordinates mi in one image are replaced by m̂i = T emi, and coordinates
m0

i in the other image are replaced by m̂0

i = T0 em0

i, where T and T0 are any 3� 3 matrices.
Substituting in the equation emT

i F em0

i = 0, we derive the equation m̂T
i T

�TFT0�1m̂0

i = 0.
This relation implies that T�TFT0�1 is the fundamental matrix corresponding to the point
correspondences m̂i $ m̂0

i. Thus, an alternative method of �nding the fundamental matrix
is as follows:

1. Transform the image coordinates according to transformations m̂i = T emi and m̂
0

i =
T0 em0

i.

2. Find the fundamental matrix F̂ corresponding to the matches m̂i $ m̂0

i.

3. Retrieve the original fundamental matrix as F = TT F̂T0.

The question now is how to choose the transformations T and T0.
Consider the second method described above, which consists in �nding the eigenvector

of the 9� 9 matrix UT
nUn associated with the least eigenvalue (for simplicity, this vector is

called the least eigenvector in the sequel). This matrix can be expressed asUT
nUn = UDUT ,

whereU is orthogonal andD is diagonal whose diagonal entries �i (i = 1; : : : ; 9) are assumed
to be in non-increasing order. In this case, the least eigenvector of UT

nUn is the last column
of U. Denote by � the ratio �1=�8. The parameter � is the condition number1 of the
matrix UT

nUn, well known to be an important factor in the analysis of stability of linear
problems (Golub and van Loan 1989). If � is large, then very small changes to the data can
cause large changes to the solution. The sensitivity of invariant subspaces is discussed in
detail in (Golub and van Loan 1989, p.413).

The major reason for the poor condition of the matrix UT
nUn � X is the lack of ho�

mogeneity in the image coordinates. In an image of dimension 200 � 200, a typical image
point will be of the form (100; 100; 1). If both emi and em0

i are of this form, then ui will
be of the form [104; 104; 102; 104; 104; 102; 102; 102; 1]T . The contribution to the matrix X
is of the form uiu

T
i , which will contain entries ranging between 108 and 1. The diagonal

entries of X will be of the form [108; 108; 104; 108; 108; 104; 104; 104; 1]T . Summing over all
point matches will result in a matrix X whose diagonal entries are approximately in this

1Strictly speaking, �1=�9 is the condition number, but �1=�8 is the parameter of importance here.
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proportion. We denote by Xr the trailing r � r principal submatrix (that is the last r
columns and rows) of X, and by �i(Xr) its i

th largest eigenvalue. Thus X9 = X = UT
nUn

and � = �1(X9)=�8(X9). First, we consider the eigenvalues of X2. Since the sum of the
two eigenvalues is equal to the trace, we see that �1(X2) + �2(X2) = trace(X2) = 104 + 1.
Since eigenvalues are non-negative, we know that �1(X2) � 104 + 1. From the interlacing

property (Golub and van Loan 1989, p.411), we arrive that

�8(X9) � �7(X8) � � � � � �1(X2) � 104 + 1 :

On the other hand, also from the interlacing property, we know that the largest eigenvalue
of X is not less than the largest diagonal entry, i.e. �1(X9) � 108. Therefore, the ratio
� = �1(X9)=�8(X9) � 108=(104 + 1). In fact, �8(X9) will usually be much smaller than
104 + 1 and the condition number will be far greater. This analysis shows that scaling the

coordinates so that they are on the average equal to unity will improve the condition of the

matrix UT
nUn.

Now consider the e�ect of translation. A usual practice is to �x the origin of the image
coordinates at the top left hand corner of the image, so that all the image coordinates are
positive. In this case, an improvement in the condition of the matrix may be achieved by

translating the points so that the centroid of the points is at the origin. Informally, if the
�rst image coordinates (the u-coordinates) of a set of points are f1001:5; 1002:3; 998:7; : : :g,
then the signi�cant values of the coordinates are obscured by the coordinate o�set of 1000.
By translating by 1000, these numbers are changed to f1:5; 2:3;�1:3; : : :g. The signi�cant
values become now prominent.

Based on the above analysis, Hartley (1995) propose an isotropic scaling of the input
data:

1. As a �rst step, the points are translated so that their centroid is at the origin.

2. Then, the coordinates are scaled, so that on the average a point emi is of the formemi = [1; 1; 1]T . Such a point will lie at a distance
p
2 from the origin. Rather than

choosing di�erent scale factors for u and v coordinates, we choose to scale the points
isotropically so that the average distance from the origin to these points is equal top
2.

Such a transformation is applied to each of the two images independently.
An alternative to the isotropic scaling is an a�ne transformation so that the two principal

moments of the set of points are both equal to unity. However, Hartley (1995) found that the
results obtained were little di�erent from those obtained using the isotropic scaling method.

Beardsley et al. (1994) mention a normalization scheme which assumes some knowledge
of camera parameters. Actually, if approximate intrinsic parameters (i.e. the intrinsic
matrix A) of a camera are available, we can apply the transformation T = A�1 to obtain a
�quasi-Euclidean� frame.

Boufama and Mohr (1995) use implicitly data normalization by selecting 4 points, which
are largely spread in the image (i.e. most distant from each other), to form a projective
basis.
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3.3 Analytic Method with Rank-2 Constraint

The method described in this section is due to Faugeras (1995) which imposes the rank-2
constraint during the minimization but still yields an analytic solution. Without loss of
generality, let f = [gT ; f8; f9]

T , where g is a vector containing the �rst seven components of
f . Let c8 and c9 be the last two column vectors of Un, and B be the n�7 matrix composed
of the �rst seven columns of Un. From Unf = 0, we have

Bg = �f8c8 � f9c9 :

Assume that the rank of B is 7, we can solve for g by least-squares as

g = �f8(BTB)�1BT c8 � f9(B
TB)�1BT c9 :

The solution depends on two free parameters f8 and f9. As in Sect. 3.1, we can use the
constraint det(F) = 0, which gives a third-degree homogeneous equation in f8 and f9, and
we can solve for their ratio. Because a third-degree equation has at least one real root, we
are guaranteed to obtain at least one solution for F. This solution is de�ned up to a scale
factor, and we can normalize f such that its vector norm is equal to 1. If there are three
real roots, we choose the one that minimizes the vector norm of Unf subject to kfk = 1. In
fact, we can do the same computation for any of the 36 choices of pairs of coordinates of f
and choose, among the possibly 108 solutions, the one that minimizes the previous vector
norm.

The di�erence between this method and those described in Sect. 3.2 is that the latter
impose the rank-2 constraint after application of the linear least-squares. We have experi�
mented this method with a limited number of data sets, and found the results comparable
with those obtained by the previous one.

3.4 Nonlinear Method Minimizing Distances of Points to Epipolar

Lines

As discussed in Sect. 3.2.4, the linear method (10) does not minimize a physically meaning�
ful quantity. A natural idea is then to minimize the distances between points and their
corresponding epipolar lines: minF

P
i d

2( emi;F em0

i) ; where d(�; �) is given by (14). Howe�
ver, unlike the case of the linear criterion, the two images do not play a symmetric role.
This is because the above criterion determines only the epipolar lines in the �rst image. As
we have seen in Sect. 2.2, by exchanging the role of the two images, the fundamental matrix
is changed to its transpose. To avoid the inconsistency of the epipolar geometry between
the two images, we minimize the following criterion

min
F

X
i

�
d2( emi;F em0

i) + d2( em0

i;F
T emi)

�
; (15)

which operates simultaneously in the two images.
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Let li = F em0

i � [l1; l2; l3]
T and l0i = FT emi � [l01; l

0

2; l
0

3]
T . Using (14) and the fact thatemT

i F em0

i = em0T
i F

T emi, the criterion (15) can be rewritten as:

min
F

X
i

w2
i ( emT

i F em0

i)
2 ; (16)

where

wi =

�
1

l21 + l22
+

1

l021 + l022

�1=2

=

�
l21 + l22 + l021 + l022
(l21 + l22)(l

02
1 + l022 )

�1=2

:

We now present two methods for solving this problem.

3.4.1 Iterative Linear Method

The similarity between (16) and (9) conducts us to solve the above problem by a weighted

linear least-squares technique. Indeed, if we can compute the weight wi for each point
match, the corresponding linear equation can be multiplied by wi (which is equivalent to
replacing ui in (8) by wiui), and exactly the same 8-point algorithm can be run to estimate
the fundamental matrix, which minimizes (16).

The problem is that the weights wi depends themselves on the fundamental matrix.
To overcome this di�culty, we apply an iterative linear method. We �rst assume that all
wi = 1 and run the 8-point algorithm to obtain an initial estimation of the fundamental
matrix. The weights wi are then computed from this initial solution. The weighted linear
least-squares is then run for an improved solution. This procedure can be repeated several
times.

Although this algorithm is simple to implement and minimizes a physical quantity, our
experience shows that there is no signi�cant improvement compared to the original linear
method. The main reason is that the rank-2 constraint of the fundamental matrix is not
taken into account.

3.4.2 Nonlinear Minimization in Parameter Space

From the above discussions, it is clear that the right thing to do is to search for a matrix
among the 3 � 3 matrices of rank 2 which minimizes (16). There are several possible pa�
rameterizations for the fundamental matrix (Luong 1992), e.g. we can express one row (or
column) of the fundamental matrix as the linear combination of the other two rows (or
columns). The parameterization described below is based directly on the parameters of the
epipolar transformation (see Sect. 2.2).
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Parameterization of fundamental matrix. Denoting the columns of F by the vectors
c1, c2 and c3, we have:

rank(F) = 2

()
(9j0; j1; j2 2 [1; 3]) (9�1; �2 2 R); cj0 + �1cj1 + �2cj2 = 0 (17)

(6 9� 2 R); cj1 + �cj2 = 0 : (18)

Condition (18), as a non-existence condition, cannot be expressed by a parameterization: we
shall only keep condition (17) and so extend the parameterized set to all the 3� 3-matrices
of rank strictly less than 3. Indeed, the rank-2 matrices of, for example, the following forms:�

c1 c2 �c2
�

and
�
c1 03 c3

�
and

�
c1 c2 03

�
do not have any parameterization if we take j0 = 1. A parameterization of F is then given
by (cj1 ; cj2 ; �1; �2). This parameterization implies to divide the parameterized set among
three maps, corresponding to j0 = 1, j0 = 2 and j0 = 3.

If we construct a 3-vector such that �1 and �2 are the j1
th and j2

th coordinates and 1
is the j0

th coordinate, then it is obvious that this vector is the eigenvector of F, and is thus
the epipole in the case of the fundamental matrix. Using such a parameterization implies
to compute directly the epipole which is often a useful quantity, instead of the matrix itself.

To make the problem symmetrical and since the epipole in the other image is also worth
being computed, the same decomposition as for the columns is used for the rows, which now
divides the parameterized set into 9 maps, corresponding to the choice of a column and a
row as linear combinations of the two columns and two rows left. A parameterization of the
matrix is then formed by the two coordinates x and y of the �rst epipole, the two coordinates
x0 and y0 of the second epipole and the four elements a, b, c and d left by ci1 , ci2 , lj1 and
lj2 , which in turn parameterize the epipolar transformation mapping an epipolar line of the
second image to its corresponding epipolar line in the �rst image. In that way, the matrix
is written, for example, for i0 = 3 and j0 = 3:

F =

2
4 a b �ax0 � by0

c d �cx0 � dy0

�ax� cy �bx� dy (ax0 + by0)x+ (cx0 + dy0)y

3
5 : (19)

At last, to take into account the fact that the fundamental matrix is de�ned only up to a
scale factor, the matrix is normalized by dividing the four elements (a; b; c; d) by the largest
in absolute value. We have thus in total 36 maps to parameterize the fundamental matrix.

Choosing the best map. Giving a matrix F and the epipoles, or an approximation to
it, we must be able to choose, among the di�erent maps of the parameterization, the most
suitable for F. Denoting by fi0j0 the vector of the elements of F once decomposed as in
equation (19), i0 and j0 are chosen in order to maximize the rank of the 9 � 8 Jacobian
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matrix:

J =
dfi0j0
dp

where p = [x; y; x0; y0; a; b; c; d]T : (20)

This is done by maximizing the norm of the vector whose coordinates are the determinants
of the nine 8� 8 submatrices of J. An easy calculation shows that this norm is equal to

(ad� bc)2
p
x2 + y2 + 1

p
x02 + y02 + 1 :

At the expense of dealing with di�erent maps, the above parameterization works equally well
whether the epipoles are at in�nity or not. This is not the case with the original proposition
in (Luong 1992). More details can be found in (Csurka, Zeller, Zhang and Faugeras 1996).

Minimization. The minimization of (16) can now be performed by any minimization pro�
cedure. The Levenberg-Marquardt method (as implemented in MINPACK from NETLIB (More
1977) and in the Numeric Recipes in C (Press, Flannery, Teukolsky and Vetterling 1988))
is used in our program. During the process of minimization, the parameterization of F
can change: The parameterization chosen for the matrix at the beginning of the process is
not necessarily the most suitable for the �nal matrix. The nonlinear minimization method
demands an initial estimate of the fundamental matrix, which is obtained by running the
8-point algorithm.

3.5 Gradient-based technique

Let fi = emT
i F em0

i. Minimizing
P

i f
2
i does not yield a good estimation of the fundamental

matrix, because the variance of each fi is not the same. The least-squares technique produces
an optimal solution if each term has the same variance. Therefore, we can minimize the
following weighted sum of squares:

min
F

X
i

f2i =�
2
fi ; (21)

where �2fi is the variance of fi, and its computation will be given shortly. This criterion now
has the desirable property: fi=�fi follows, under the �rst order approximation, the standard
Gaussian distribution. In particular, all fi=�fi have the same variance, equal to 1. The
same parameterization of the fundamental matrix as that described in the previous section
is used.

Because points are extracted independently by the same algorithm, we make a reasonable
assumption that the image points are corrupted by independent and identically distributed
Gaussian noise, i.e. their covariance matrices are given by

�mi
= �m0

i

= �2 diag (1; 1) ;
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where � is the noise level, which may be not known. Under the �rst order approximation,
the variance of fi is then given by

�2fi =
@fi

@mi

T

�mi

@fi

@mi
+

@fi

@m0

i

T

�m0

i

@fi

@m0

i

= �2[l21 + l22 + l021 + l022 ] ;

where li = F em0

i � [l1; l2; l3]
T and l0i = FT emi � [l01; l

0

2; l
0

3]
T . Since multiplying each term by

a constant does not a�ect the minimization, the problem (21) becomes

min
F

X
i

( emT
i F em0

i)
2=g2i ;

where gi =
p
l21 + l22 + l021 + l022 is simply the gradient of fi. Note that gi depends on F.

It is shown (Luong 1992) that fi=gi is a �rst order approximation of the orthogonal
distance from (mi;m

0

i) to the quadratic surface de�ned by emTF em0 = 0.

3.6 Nonlinear Method Minimizing Distances Between Observation

and Reprojection

If we can assume that the coordinates of the observed points are corrupted by additive noise
and that the noises in di�erent points are independent but with equal standard deviation
(the same assumption as that used in the previous technique), then the maximum likelihood
estimation of the fundamental matrix is obtained by minimizing the following criterion:

F(f ; M) =
X
i

(kmi � h(f ; Mi)k2 + km0

i � h0(f ; Mi)k2) ; (22)

where f represents the parameter vector of the fundamental matrix such as the one described
in Sect. 3.4, M = [MT1 ; : : : ; M

T
n ]

T are the structure parameters of the n points in space, while
h(f ; Mi) and h

0(f ; Mi) are the projection functions in the �rst and second image for a given
space coordinates Mi and a given fundamental matrix between the two images represented by
vector f . Simply speaking, F(f ; M) is the sum of squared distances between observed points
and the reprojections of the corresponding points in space. This implies that we estimate
not only the fundamental matrix but also the structure parameters of the points in space.
The estimation of the structure parameters, or 3D reconstruction, in the uncalibrated case
is an important subject and needs a separate section to describe it in su�cient details (see
Sect. A). In the remaining subsection, we assume that there is a procedure available for 3D
reconstruction.

A generalization to (22) is to take into account di�erent uncertainties, if available, in the
image points. If a point mi is assumed to be corrupted by a Gaussian noise with mean zero
and covariance matrix �mi

(a 2�2 symmetric positive-de�nite matrix), then the maximum
likelihood estimation of the fundamental matrix is obtained by minimizing the following

RR n�2927



22 Zhengyou Zhang

criterion:

F(f ; M) =
X
i

�
�mT

i �
�1
mi

�mi +�m0T
i �

�1
m0

i

�m0

i

�

with

�mi =mi � h(f ; Mi) and �m0

i =m0

i � h0(f ; Mi) :

Here we still assume that the noises in di�erent points are independent, which is quite
reasonable.

When the number of points n is large, the nonlinear minimization of F(f ; M) should be
carried out in a huge parameter space (3n + 7 dimensions because each space point has 3
degrees of freedom), and the computation is very expensive. As a matter of fact, we can
separate the structure parameters from the fundamental matrix such that the optimization
of the structure parameters is conducted in each optimization iteration for the parameters
of the fundamental matrix, that is:

min
f

(X
i

min
Mi

�
kmi � h(f ; Mi)k2 + km0

i � h0(f ; Mi)k2
�)

: (23)

Therefore, a problem of minimization over (3n+ 7)-D space (22) becomes a problem of mi�
nimization over 7-D space, in the latter each iteration contains n independent optimizations
of 3 structure parameters. The computation is thus considerably reduced. As will be seen in
Sect. A, the optimization of structure parameters is nonlinear. In order to speed up still more
the computation, it can be approximated by an analytic method; when this optimization
procedure converges, we then restart it with the nonlinear optimization method.

The idea underlying this method is already well known in motion and structure from
motion (Faugeras 1993, Zhang 1995) and camera calibration (Faugeras 1993). Similar tech�
niques have also been reported for uncalibrated images (Mohr, Veillon and Quan 1993,
Hartley 1993).

3.7 Robust Methods

Up to now, we assume that point matches are given. They can be obtained by techniques
such as correlation and relaxation (Zhang, Deriche, Faugeras and Luong 1995). They all
exploit some heuristics in one form or another, for example, intensity similarity or rigid/a�ne
transformation in image plane, which are not applicable to most cases. Among the matches
established, we may �nd two types of outliers due to

bad locations. In the estimation of the fundamental matrix, the location error of a point
of interest is assumed to exhibit Gaussian behavior. This assumption is reasonable
since the error in localization for most points of interest is small (within one or two
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pixels), but a few points are possibly incorrectly localized (more than three pixels).
The latter points will severely degrade the accuracy of the estimation.

false matches. In the establishment of correspondences, only heuristics have been used.
Because the only geometric constraint, i.e., the epipolar constraint in terms of the
fundamental matrix , is not yet available, many matches are possibly false. These will
completely spoil the estimation process, and the �nal estimate of the fundamental
matrix will be useless.

The outliers will severely a�ect the precision of the fundamental matrix if we directly apply
the methods described above, which are all least-squares techniques.

Least-squares estimators assume that the noise corrupting the data is of zero mean, which
yields an unbiased parameter estimate. If the noise variance is known, a minimum-variance

parameter estimate can be obtained by choosing appropriate weights on the data. Further�
more, least-squares estimators implicitly assume that the entire set of data can be interpreted
by only one parameter vector of a given model. Numerous studies have been conducted,
which clearly show that least-squares estimators are vulnerable to the violation of these
assumptions. Sometimes even when the data contains only one bad datum, least-squares
estimates may be completely perturbed. During the last three decades, many robust tech�
niques have been proposed, which are not very sensitive to departure from the assumptions
on which they depend.

Recently, computer vision researchers have paid much attention to the robustness of vi�
sion algorithms because the data are unavoidably error prone (Haralick 1986, Zhuang, Wang
and Zhang 1992). Many the so-called robust regression methods have been proposed that
are not so easily a�ected by outliers (Huber 1981, Rousseeuw and Leroy 1987). The reader
is referred to (Rousseeuw and Leroy 1987, Chap. 1) for a review of di�erent robust methods.
The two most popular robust methods are theM-estimators and the least-median-of-squares

(LMedS) method, which will be presented below. Recent works on the application of
robust techniques to motion segmentation include (Torr and Murray 1993, Odobez and
Bouthemy 1994, Ayer, Schroeter and Bigün 1994), and those on the recovery of the epipolar
geometry include (Olsen 1992, Shapiro and Brady 1995, Torr 1995)

3.7.1 M-Estimators

Let ri be the residual of the ith datum, i.e. the di�erence between the ith observation
and its �tted value. The standard least-squares method tries to minimize

P
i r

2
i , which is

unstable if there are outliers present in the data. Outlying data give an e�ect so strong in
the minimization that the parameters thus estimated are distorted. The M-estimators try
to reduce the e�ect of outliers by replacing the squared residuals r2i by another function of
the residuals, yielding

min
X
i

�(ri) ; (24)
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where � is a symmetric, positive-de�nite function with a unique minimum at zero, and is
chosen to be less increasing than square. Instead of solving directly this problem, we can
implement it as an iterated reweighted least-squares one. Now let us see how.

Let p = [p1; : : : ; pp]
T be the parameter vector to be estimated. The M-estimator of p

based on the function �(ri) is the vector p which is the solution of the following p equations:

X
i

 (ri)
@ri

@pj
= 0 ; for j = 1; : : : ; p, (25)

where the derivative  (x) = d�(x)=dx is called the in�uence function. If now we de�ne a
weight function

w(x) =
 (x)

x
; (26)

then Equation (25) becomes

X
i

w(ri)ri
@ri

@pj
= 0 ; for j = 1; : : : ; p. (27)

This is exactly the system of equations that we obtain if we solve the following iterated
reweighted least-squares problem

min
X
i

w(r
(k�1)
i )r2i ; (28)

where the superscript (k) indicates the iteration number. The weight w(r
(k�1)
i ) should be

recomputed after each iteration in order to be used in the next iteration.
The in�uence function  (x) measures the in�uence of a datum on the value of the

parameter estimate. For example, for the least-squares with �(x) = x2=2, the in�uence
function is  (x) = x, that is, the in�uence of a datum on the estimate increases linearly
with the size of its error, which con�rms the non-robustness of the least-squares estimate.
When an estimator is robust, it may be inferred that the in�uence of any single observation
(datum) is insu�cient to yield any signi�cant o�set (Rey 1983). There are several constraints
that a robust M -estimator should meet:

� The �rst is of course to have a bounded in�uence function.

� The second is naturally the requirement of the robust estimator to be unique. This
implies that the objective function of parameter vector p to be minimized should have
a unique minimum. This requires that the individual �-function is convex in variable

p. This is necessary because only requiring a �-function to have a unique minimum
is not su�cient. This is the case with maxima when considering mixture distribution;
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the sum of unimodal probability distributions is very often multimodal. The convexity

constraint is equivalent to imposing that @2�(:)
@p2 is non-negative de�nite.

� The third one is a practical requirement. Whenever @2�(:)
@p2 is singular, the objective

should have a gradient, i.e. @�(:)
@p 6= 0. This avoids having to search through the

complete parameter space.

There are a number of di�erent M-estimators proposed in the literature. The reader is
referred to (Zhang 1996b) for a comprehensive review.

It seems di�cult to select a �-function for general use without being rather arbitrary.
The result reported in Sect. 4 uses Tukey function:

ri =

8<
:
c2

6

�
1�

h
1�

� ri
c�

�2i3�
if jrij � c�

(c2=6) otherwise,

where � is some estimated standard deviation of errors, and c = 4:6851 is the tuning
constant. The corresponding weight function is

wi =

(
[1� (x=c)2]2 if jrij � c�

0 otherwise.

Another commonly used function is the following tri-weight one:

wi =

8><
>:
1 jrij � �

�=jrij � < jrij � 3�

0 3� < jrij :

In (Olsen 1992, Luong 1992), this weight function was used for the estimation of the epipolar
geometry.

Inherent in the di�erent M-estimators is the simultaneous estimation of �, the standard
deviation of the residual errors. If we can make a good estimate of the standard deviation
of the errors of good data (inliers), then data whose error is larger than a certain number
of standard deviations can be considered as outliers. Thus, the estimation of � itself should
be robust. The results of the M-estimators will depend on the method used to compute it.
The robust standard deviation estimate is related to the median of the absolute values of
the residuals, and is given by

�̂ = 1:4826[1 + 5=(n� p)] median
i

jrij : (29)

The constant 1.4826 is a coe�cient to achieve the same e�ciency as a least-squares in the
presence of only Gaussian noise (actually, the median of the absolute values of random
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numbers sampled from the Gaussian normal distribution N(0; 1) is equal to ��1( 3
4
) �

1=1:4826); 5=(n � p) (where n is the size of the data set and p is the dimension of the
parameter vector) is to compensate the e�ect of a small set of data. The reader is referred
to (Rousseeuw and Leroy 1987, page 202) for the details of these magic numbers.

Our experience shows that M-estimators are robust to outliers due to bad localization.
They are, however, not robust to false matches, because they depend heavily on the initial
guess, which is usually obtained by least-squares. This leads us to use other more robust
techniques.

3.7.2 Least Median of Squares (LMedS)

The LMedS method estimates the parameters by solving the nonlinear minimization pro�
blem:

min median
i

r2i :

That is, the estimator must yield the smallest value for the median of squared residuals
computed for the entire data set. It turns out that this method is very robust to false
matches as well as outliers due to bad localization. Unlike the M-estimators, however, the
LMedS problem cannot be reduced to a weighted least-squares problem. It is probably
impossible to write down a straightforward formula for the LMedS estimator. It must be
solved by a search in the space of possible estimates generated from the data. Since this
space is too large, only a randomly chosen subset of data can be analyzed. The algorithm
which we have implemented (the original version was described in (Zhang, Deriche, Luong
and Faugeras 1994, Deriche, Zhang, Luong and Faugeras 1994, Zhang, Deriche, Faugeras
and Luong 1995)) for robustly estimating the fundamental matrix follows the one structured
in (Rousseeuw and Leroy 1987, Chap. 5), as outlined below.

Given n point correspondences: f(mi;m
0

i)ji = 1; : : : ; ng, we proceed the following steps:

1. A Monte Carlo type technique is used to drawm random subsamples of p = 7 di�erent
point correspondences (recall that 7 is the minimum number to determine the epipolar
geometry).

2. For each subsample, indexed by J , we use the technique described in Sect. 3.1 to
compute the fundamental matrix FJ . We may have at most 3 solutions.

3. For each FJ , we can determine the median of the squared residuals, denoted by MJ ,
with respect to the whole set of point correspondences, i.e.,

MJ = median
i=1;::: ;n

[d2( emi;FJ em0

i) + d2( em0

i;F
T
J emi)] :

Here, the distances between points and epipolar lines are used, but we can use other
error measures.

4. Retain the estimate FJ for which MJ is minimal among all m MJ 's.
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The question now is: How do we determine m ? A subsample is �good� if it consists of p
good correspondences. Assuming that the whole set of correspondences may contain up to a
fraction " of outliers, the probability that at least one of the m subsamples is good is given
by

P = 1� [1� (1� ")p]m : (30)

By requiring that P must be near 1, one can determine m for given values of p and ":

m =
log(1� P )

log[1� (1� ")p]
:

In our implementation, we assume " = 40% and require P = 0:99, thus m = 163. Note that
the algorithm can be speeded up considerably by means of parallel computing, because the
processing for each subsample can be done independently.

As noted in (Rousseeuw and Leroy 1987), the LMedS e�ciency is poor in the presence of
Gaussian noise. The e�ciency of a method is de�ned as the ratio between the lowest achie�
vable variance for the estimated parameters and the actual variance provided by the given
method. To compensate for this de�ciency, we further carry out a weighted least-squares
procedure. The robust standard deviation estimate is given by (29), that is,

�̂ = 1:4826[1+ 5=(n� p)]
p
MJ ;

where MJ is the minimal median estimated by the LMedS. Based on �̂, we can assign a
weight for each correspondence:

wi =

(
1 if r2i � (2:5�̂)2

0 otherwise ;

where

r2i = d2( emi;F em0

i) + d2( emi;F
T em0

i) :

The correspondences having wi = 0 are outliers and should not be further taken into account.
We thus conduct an additional step:

5. Re�ne the fundamental matrix F by solving the weighted least-squares problem:

min
X
i

wir
2
i :

The fundamental matrix is now robustly and accurately estimated because outliers have
been detected and discarded by the LMedS method.
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As said previously, computational e�ciency of the LMedS method can be achieved by
applying a Monte-Carlo type technique. However, the seven points of a subsample thus
generated may be very close to each other. Such a situation should be avoided because
the estimation of the epipolar geometry from such points is highly instable and the result
is useless. It is a waste of time to evaluate such a subsample. In order to achieve higher
stability and e�ciency, we develop a regularly random selection method based on bucketing
techniques, which works as follows. We �rst calculate the min and max of the coordinates of
the points in the �rst image. The region is then evenly divided into b�b buckets (see Fig. 2).
In our implementation, b = 8. To each bucket is attached a set of points, and indirectly a
set of matches, which fall in it. The buckets having no matches attached are excluded. To
generate a subsample of 7 points, we �rst randomly select 7 mutually di�erent buckets, and
then randomly choose one match in each selected bucket.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Figure 2: Illustration of a bucketing technique

One question remains: How many subsamples are required? If we assume that bad
matches are uniformly distributed in space, and if each bucket has the same number of
matches and the random selection is uniform, the formula (30) still holds. However, the
number of matches in one bucket may be quite di�erent from that in another. As a result,
a match belonging to a bucket having fewer matches has a higher probability to be selected.
It is thus preferred that a bucket having many matches has a higher probability to be
selected than a bucket having few matches, in order for each match to have almost the
same probability to be selected. This can be realized by the following procedure. If we
have in total l buckets, we divide range [0 1] into l intervals such that the width of the ith

interval is equal to ni
�P

i ni, where ni is the number of matches attached to the ith bucket
(see Fig. 3). During the bucket selection procedure, a number, produced by a [0 1] uniform
random generator, falling in the ith interval implies that the ith bucket is selected.
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0 1 2 3 l� 1

0 1

number of matches

bucket

random

variable

Figure 3: Interval and bucket mapping

Together with the matching technique described in (Zhang, Deriche, Faugeras and Luong
1995), we have implemented this robust method and successfully solved, in an automatic way,
the matching and epipolar geometry recovery problem for di�erent types of scenes such as in�
door, rocks, road, and textured dummy scenes. The corresponding software image-matching
has been made available on the Internet since 1994.

3.8 Characterizing the Uncertainty of Fundamental Matrix

Since the data points are always corrupted by noise, and sometimes the matches are even
spurious or incorrect, one should model the uncertainty of the estimated fundamental ma�
trix in order to exploit its underlying geometric information correctly and e�ectively. For
example, one can use the covariance of the fundamental matrix to compute the uncertainty
of the projective reconstruction or the projective invariants, or to improve the results of
Kruppa's equation for a better self-calibration of a camera (Zeller 1996).

In order to quantify the uncertainty related to the estimation of the fundamental matrix
by the method described in the previous sections, we model the fundamental matrix as a
random vector f 2 IR7 (vector space of real 7-vectors) whose mean is the exact value we are
looking for. Each estimation is then considered as a sample of f and the uncertainty is given
by the covariance matrix of f .

In the remaining of this subsection, we consider a general random vector y 2 IRp, where
p is the dimension of the vector space. The same discussion applies, of course, directly to
the fundamental matrix. The covariance of y is de�ned by the positive symmetric matrix

�y = E[(y �E[y])(y �E[y])T ] ; (31)
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where E[y] denotes the mean of the random vector y.

3.8.1 The Statistical Method

The statistical method consists in using the well-known large number law to approximate
the mean: if we have a su�ciently large number N of samples yi of a random vector y, then
E[y] can be approximated by the sample mean

EN [yi] =
1

N

NX
i=1

yi ;

and �y is then approximated by

1

N � 1

NX
i=1

[(yi �EN [yi])(yi �EN [yi])
T ] : (32)

A rule of thumb is that this method works reasonable well when N > 30. It is especially
useful for simulation. For example, through simulation, we have found that the covariance
of the fundamental matrix estimated by the analytical method through a �rst order ap�
proximation (see below) is quite good when the noise level in data points is moderate (the
standard deviation is not larger than one pixel) (Csurka et al. 1996).

3.8.2 The Analytical Method

The explicit case. We now consider the case that y is computed from another random
vector x of IRm using a C1 function ':

y = '(x) :

Writing the �rst order Taylor expansion of ' in the neighborhood of E[x] yields

'(x) = '(E[x]) +D'(E[x]) � (x �E[x]) + "(kx�E[x]k2) ; (33)

where the function t ! "(t) from IR into IRp is such that limt!0 "(t) = 0, and D'(x) =
@'(x)=@x is the Jacobian matrix. Assuming that any sample of x is su�ciently close to
E[x], we can approximate ' by the �rst order terms of (33) which yields:

E[y] ' '(E[x]) ;

'(x)�'(E[x]) ' D'(E[x]) � (x�E[x]) :
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The �rst order approximation of the covariance matrix of y is then given in function of the
covariance matrix of x by

�y = E[('(x) �'(E[x]))('(x) �'(E[x]))T ] = D'(E[x])�xD'(E[x])
T : (34)

The case of an implicit function. In some cases like ours, the parameter is obtained
through minimization. Therefore, ' is implicit and we have to make use of the well-known
implicit functions theorem to obtain the following result (see Faugeras 1993, chap.6).

Proposition 1. Let a criterion function C : IRm � IRp ! IR be a function of class C1,

x0 2 IRm be the measurement vector and y0 2 IRp be a local minimum of C(x0; z). If the

Hessian H of C with respect to z is invertible at (x; z) = (x0;y0) then there exists an open

set U 0 of IRm containing x0 and an open set U
00

of IRpcontaining y0 and a C1 mapping

' : IRm ! IRp such that for (x;y) in U 0 � U
00

the two relations �y is a local minimum of
C(x; z) with respect to z� and y = '(x) are equivalent. Furthermore, we have the following

equation:

D'(x) = �H�1 @�
@x

; (35)

where

� =

�
@C

@z

�T

and H =
@�

@z
:

Taking x0 = E[x] and y0 = E[y], equation (34) then becomes

�y = H�1
@�

@x
�x

@�

@x

T

H�T : (36)

The case of a sum of squares of implicit functions. Here we study the case where
C is of the form:

nX
i=1

C2
i (xi; z)

with x = [xT1 ; : : : ;x
T
i ; : : : ;x

T
n ]

T . Then, we have

� = 2
X
i

Ci
@Ci

@z

T

H =
@�

@z
= 2

X
i

@Ci

@z

T @Ci

@z
+ 2

X
i

Ci
@2Ci

@z2
:
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Now, it is a usual practice to neglect the terms Ci
@2Ci

@z2 with respect to the terms @Ci

@z

T @Ci

@z

(see classical books of numerical analysis (Press et al. 1988)) and the numerical tests we did
con�rm that we can do this because the former is much smaller than the latter. We can
then write:

H =
@�

@z
� 2

X
i

@Ci

@z

T @Ci

@z
:

In the same way we have:

@�

@x
� 2

X
i

@Ci

@z

T @Ci

@x
:

Therefore, equation (36) becomes:

�y = 4H�1
X
i;j

@Ci

@z

T @Ci

@x
�x

@Cj

@x

T @Cj

@z
H�T : (37)

Assume that the noise in xi and that in xj (j 6= i) are independent (which is quite
reasonable because the points are extracted independently), then �xi;j = E[(xi � �xi)(xi �
�xi)

T ] = 0 and �x = diag (�x1 ; : : : ;�xn). Equation (37) can then be written as

�y = 4H�1
X
i

@Ci

@z

T @Ci

@xi
�xi

@Ci

@xi

T @Ci

@z
H�T :

Since �Ci
= @Ci

@xi
�xi

@Ci

@xi

T
by de�nition (up to the �rst order approximation), the above

equation reduces to

�y = 4H�1
X
i

@Ci

@z

T

�Ci

@Ci

@z
H�T : (38)

Considering that the mean of the value of Ci at the minimum is zero and under the
somewhat strong assumption that the Ci's are independent and have identical distributed
errors2, we can then approximate �Ci

by its sample variance (see e.g. (Anderson 1958)):

�Ci
=

1

n� p

X
i

C2
i =

S

n� p
;

where S is the value of the criterion C at the minimum, and p is the number of parameters,
i.e. the dimension of y. Although it has little in�uence when n is big, the inclusion of p in

2It is under this assumption that the solution given by the least-squares technique is optimal.
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the formula above aims at correcting the e�ect of a small sample set. Indeed, for n = p, we
can almost always �nd an estimate of y such that Ci = 0 for all i, and it is not meaningful
to estimate the variance. Equation (38) �nally becomes

�y =
2S

n� p
H�1HH�T =

2S

n� p
H�T : (39)

The case of the fundamental matrix. As explained in Sect. 3.4, F is computed using a
sum of squares of implicit functions of n point correspondences. Thus, referring to the
previous paragraph, we have p = 7, and the criterion function C(m̂; f7) (where m̂ =
[m1;m

0

1; � � � ;mn;m
0

n]
T and f7 is the vector of the seven chosen parameters for F) is gi�

ven by (15). �f7 is thus computed by (39) using the Hessian obtained as a by-product of
the minimization of C(m̂; f7).

According to (34), �F is then computed from �f7 :

�F =
@F(f7)

@f7
�f7

@F(f7)

@f7

T

: (40)

Here, we actually consider the fundamental matrix F(f7) as a 9-vector composed of the 9
coe�cients which are functions of the 7 parameters f7.

The reader is referred to (Zhang and Faugeras 1992, chap.2) for a more detailed exposition
on uncertainty manipulation.

3.9 Other techniques

Two analytical approaches have been reported which consist in choosing four matched points
to form a projective basis. After the change of coordinates with respect to this projective
basis, the new fundamental matrix has a simple form. Boufama and Mohr (1995) then
parameterize the fundamental matrix in terms of a homography related to a plane and
one epipole, while Ponce and Genc (1996) set up the linear constraints on the epipole
using the linear subspace method (Heeger and Jepson 1992). When the projective basis is
appropriately chosen, very good results (comparable with those obtained with the normalized
8-point algorithm) have been obtained. As both approaches minimize some quantities which
do not have a clear physical interpretation, I think that the good results are more directly
related to the implicit data normalization in choosing an appropriate projective basis, rather
than the particular techniques exploited.

RANSAC (random sample consensus) (Fischler and Bolles 1981) is a paradigm originated
in the Computer Vision community for robust parameter estimation. The idea is to �nd,
through random sampling of a minimal subset of data, the parameter set which is consistent
with a subset of data as large as possible. The consistent check requires the user to supply a
threshold on the errors, which re�ects the a priori knowledge of the precision of the expected
estimation. This technique is used by Torr (1995) to estimate the fundamental matrix. As
is clear, RANSAC is very similar to LMedS both in ideas and in implementation, except
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that RANSAC needs a threshold to be set by the user for consistence checking, while the
threshold is automatically computed in LMedS. However, LMedS cannot deal with the case
where the percentage of outliers is higher than 50%, while RANSAC can.

4 An Example of Fundamental Matrix Estimation With

Comparison

The pair of images is a pair of calibrated stereo images (see Fig. 4). There are 241 point
matches, which are established automatically by the technique described in (Zhang, Deriche,
Faugeras and Luong 1995). Outliers have been discarded. The calibrated parameters of the
cameras are of course not used, but the fundamental matrix computed from these parameters
serves as a ground truth. This is shown in Fig. 5, where the four epipolar lines are displayed,
corresponding, from the left to the right, to the point matches 1, 220, 0 and 183, respectively.
The intersection of these lines is the epipole, which is clearly very far from the image. This
is because the two cameras are placed almost in the same plane.

Figure 4: Image pair used for comparing di�erent estimation techniques of the fundamental
matrix

The epipolar geometry estimated with the linear method is shown in Fig. 6 for the same
set of point matches. One can �nd that the epipolar is now in the image, which is completely
di�erent from what we have seen with the calibrated result. If we perform a data normali�
zation before applying the linear method, the result is considerably improved, as shown in
Fig. 7. This is very close to the calibrated one.
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Figure 5: Epipolar geometry estimated through classical stereo calibration, which serves as
the ground truth

The nonlinear method gives even better result, as shown in Fig. 8. A comparison with
the �true� epipolar geometry is shown in Fig. 9. There is only a small di�erence in the
orientation of the epipolar lines. We have also tried the normalization method followed by
the nonlinear method, and the same result was obtained. Other methods have also been
tested, and visually almost no di�erence is observed.

Table 1: Comparison of di�erent methods for estimating the fundamental matrix

Method �F e e0 RMS CPU
Calib. 5138.18 �8875.85 1642.02 �2528.91 0.99
linear 5.85% 304.018 124.039 256.219 230.306 3.40 0.13s
normal. 7.20% �3920.6 7678.71 8489.07 �15393.5 0.89 0.15s
nonlinear 0.92% 8135.03 �14048.3 1896.19 �2917.11 0.87 0.38s
gradient 0.92% 8166.05 �14104.1 1897.80 �2920.12 0.87 0.40s
M-estim. 0.12% 4528.94 �7516.3 1581.19 �2313.72 0.87 1.05s
reproj. 0.92% 8165.05 �14102.3 1897.74 �2920.01 0.87 19.1s
LMedS 0.13% 3919.12 �6413.1 1500.21 �2159.65 0.75 2.40s

Quantitative results are provided in Table 1, where the elements in the �rst column indi�
cates the methods used in estimating the fundamental matrix: they are respectively the clas�
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Figure 6: Epipolar geometry estimated with the linear method

sical stereo calibration (Calib.), the linear method with eigen analysis (linear), the linear
method with prior data normalization (normal.), the nonlinear method based on minimiza�
tion of distances between points and epipolar lines (nonlinear), the nonlinear method based
on minimization of gradient-weighted epipolar errors (gradient), the M-estimator with Tu�
key function (M-estim.), the nonlinear method based on minimization of distances between
observed points and reprojected ones (reproj.), and the LMedS technique (LMedS). The
fundamental matrix of Calib is used as a reference. The second column shows the di�e�
rence between the fundamental matrix estimated by each method with that of Calib. The
di�erence is measured as the Frobenius norm: �F = kF � FCalibk � 100%. Since each F
is normalized by its Frobenius norm, �F is directly related to the angle between two unit
vectors. It can be seen that although we have observed that Method normal has considera�
bly improved the result of the linear method, its �F is the largest. It seems that �F is not
appropriate to measure the di�erence between two fundamental matrix. We will describe
another one in the next paragraph. The third and fourth columns show the positions of
the two epipoles. The �fth column gives the root of the mean of squared distances between
points and their epipolar lines. We can see that even with Calib, the RMS is as high as
1 pixel. There are two possibilities: either the stereo system is not very well calibrated, or
the points are not well localized; and we think the latter is the major reason because the
corner detector we use only extracts points within pixel precision. The last column shows
the approximate CPU time in seconds when the program is run on a Sparc 20 workstation.
Nonlinear, gradient and reproj give essentially the same result (but the latter is much
more time consuming). The M-estimator and LMedS techniques give the best results. This
is because the in�uence of poorly localized points has been reduced in M-estimator or they
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Figure 7: Epipolar geometry estimated with the linear method with prior data normalization

are simply discarded in LMedS. Actually, LMedS has detected �ve matches as outliers, which
are 226, 94, 17, 78 and 100. Of course, these two methods are more time consuming than
the nonlinear method.

4.1 A Measure of Comparison Between Fundamental Matrices

From the above discussion, the Frobenius norm of the di�erence between two normalized
fundamental matrices is clearly not an appropriate measure of comparison. In the following,
we describe a measure proposed by Stéphane Laveau from INRIA Sophia-Antipolis, which
we think characterizes well the di�erence between two fundamental matrices. Let the two
given fundamental matrices be F1 and F2. The measure is computed as follows (see Fig. 10):

Step 1: Choose randomly a point m in the �rst image.

Step 2: Draw the epipolar line of m in the second image using F1. The line is shown as a
dashed line, and is de�ned by FT

1m.

Step 3: If the epipolar line does not intersect the second image, go to Step 1.

Step 4: Choose randomly a point m0 on the epipolar line. Note that m andm0 correspond
to each other exactly with respect to F1.

Step 5: Draw the epipolar line ofm in the second image using F2, i.e. F
T
2m, and compute

the distance, noted by d01, between point m0 and line FT
2m.
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Figure 8: Epipolar geometry estimated with the nonlinear method

Figure 9: Comparison between the Epipolar geometry estimated through classical stereo
calibration (shown in Red/Dark lines) and that estimated with the nonlinear method (shown
in Green/Grey lines)
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m
m0 FT
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FT
2m

F1m
0

F2m
0

d1
d01

Figure 10: De�nition of the di�erence between two fundamental matrices in terms of image
distances

Step 6: Draw the epipolar line of m0 in the �rst image using F2, i.e. F2m
0, and compute

the distance, noted by d1, between point m and line F2m
0.

Step 7: Conduct the same procedure from Step 2 through Step 6, but reversing the roles
of F1 and F2, and compute d2 and d

0

2.

Step 8: Repeat N times Step 1 through Step 7.

Step 9: Compute the average distance of d's, which is the measure of di�erence between
the two fundamental matrices.

In this procedure, a random number generator based on uniform distribution is used. The
two fundamental matrices plays a symmetric role. The two images plays a symmetric role
too, although it is not at �rst sight. The reason is that m and m0 are chosen randomly
and the epipolar lines are symmetric (line F1m

0 goes through m). Clearly, the measure
computed as above, in pixels, is physically meaningful, because it is de�ned in the image
space in which we observe the surrounding environment. Furthermore, when N tends to
in�nity, we sample uniformly the whole 3D space visible from the given epipolar geometry.
If the image resolution is 512� 512 and if we consider a pixel resolution, then the visible 3D
space can be approximately sampled by 5123 points. In our experiment, we set N = 50000.
Using this method, we can compute the distance between each pair of fundamental matrices,
and we obtain a symmetric matrix. The result is shown in Table 2, where only the upper
triangle is displayed (because of symmetry). We arrive at the following conclusions:

� The linear method is very bad.

� The linear method with prior data normalization gives quite a reasonable result.

� The nonlinear method based on point-line distances and that based on gradient-weighted
epipolar errors give very similar results to those obtained based on minimization of
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distances between observed points and reprojected ones. The latter should be avoided
because it is too time consuming.

� M-estimators or the LMedS method give still better results because they try to limit
or eliminate the e�ect of poorly localized points. The epipolar geometry estimated by
LMedS is closer to the one computed through stereo calibration.

The LMedS method should be de�nitely used if the given set of matches contain false
matches.

Table 2: Distances between the fundamental matrices estimated by di�erent techniques

linear normal. nonlinear gradient M-estim. reproj. LMedS
Calib. 116.4 5.97 2.66 2.66 2.27 2.66 1.33

linear 117.29 115.97 116.40 115.51 116.25 115.91
normal. 4.13 4.12 5.27 4.11 5.89
nonlinear 0.01 1.19 0.01 1.86
gradient 1.19 0.00 1.86
M-estim. 1.20 1.03
reproj. 1.88

Due to space limitation, the result on the uncertainty of the fundamental matrix is not
shown here, and can be found in (Csurka et al. 1996), where we also use the uncertainty
to de�ne the epipolar band for matching, to compute the uncertainty of the projective
reconstruction, and to improve the self-calibration based on Kruppa equations.

5 Discussions

In this paper, we have reviewed a number of techniques for estimating the epipolar geometry
between two images. Point matches are assumed to be given, but some of them may have
been incorrectly paired. How to establish point matches is the topic of paper (Zhang,
Deriche, Faugeras and Luong 1995).

5.1 Summary

For two uncalibrated images under full perspective projection, at least 7 point matches are
necessary to determine the epipolar geometry. When only 7 matches are available, there
are possibly three solutions, which can be obtained by solving a cubic equation. If more
data are available, then the solution is in general unique and several linear techniques have
been developed. The linear techniques are usually sensitive to noise and not very stable,
because they ignore the constraints on the nine coe�cients of the fundamental matrix and
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the criterion they are minimizing is not physically meaningful. The results, however, can be
considerably improved by �rst normalizing the data points, instead of using pixel coordinates
directly, such that their new coordinates are on the average equal to unity. Even better
results can be obtained under nonlinear optimization framework by

� using an appropriate parameterization of fundamental matrix to take into account
explicitly the rank-2 constraint, and

� minimizing a physically meaningful criterion.

Three choices are available for the latter: the distances between points and their correspon�
ding epipolar lines, the gradient-weighted epipolar errors, and the distances between points
and the reprojections of their corresponding points reconstructed in space. Experiments
show that the three give essentially the same results, but the third is much more time consu�
ming. Therefore, the third is not recommended, although it is statistically optimal under
certain conditions. One can, however, use it as the last step to re�ne the results obtained
with the �rst or second technique.

Point matches are obtained by using some heuristic techniques such as correlation and
relaxation, and they usually contain false matches. Also, due to the limited performance of a
corner detector or low contrast of an image, a few points are possibly poorly localized. These
outliers (sometimes even one) will severely a�ect the precision of the fundamental matrix if
we directly apply the methods described above, which are all least-squares techniques. We
have thus presented in detail two commonly used robust techniques: M-Estimators and Least
Median of Squares (LMedS). M-estimators try to reduce the e�ect of outliers by replacing the
squared residuals by another function of the residuals which is less increasing than square.
They can be implemented as an iterated reweighted least-squares. Experiments show that
they are robust to outliers due to bad localization, but not robust to false matches. This
is because they depend tightly on the initial estimation of the fundamental matrix. The
LMedS method solves a nonlinear minimization problem which yields the smallest value
for the median of squared residuals computed for the entire data set. It turns out that
this method is very robust to false matches as well as to outliers due to bad localization.
Unfortunately, there is no straightforward formula for the LMedS estimator. It must be
solved by a search in the space of possible estimates generated from the data. Since this
space is too large, only a randomly chosen subset of data can be analyzed. We have proposed
a regularly random selection method to improve the e�ciency.

Since the data points are always corrupted by noise, one should model the uncertainty of
the estimated fundamental matrix in order to exploit its underlying geometric information
correctly and e�ectively. We have modeled the fundamental matrix as a random vector
in its parameterization space and described methods to estimate the covariance matrix of
this vector under the �rst order approximation. In (Csurka et al. 1996), we show how
the uncertainty can be used to de�ne the epipolar band for matching, to compute the
uncertainty of the projective reconstruction, and to improve the self-calibration based on
Kruppa equations.
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Techniques for projective reconstruction will be reviewed in Appendix A. Although
we cannot obtain any metric information from a projective structure (measurements of
lengths and angles do not make sense), it still contains rich information, such as coplanarity,
collinearity, and ratios, which is sometimes su�cient for arti�cial systems, such as robots,
to perform tasks such as navigation and object recognition.

5.2 Degenerate con�gurations

Up to now, we have only considered the situations where no ambiguity arises in interpreting
a set of point matches (i.e. they determine a unique fundamental matrix), except for the
case of 7 point matches where three solutions may exist. Sometimes, however, even with
a large set of point matches, there exist many solutions for the fundamental matrix which
explain the data equally well, and we call such situations degenerate for the determination
of the fundamental matrix.

Maybank (Maybank 1992) has thoroughly studied the degenerate con�gurations:

� 3D points lie on a quadric surface passing through the two optical centers (called the
critical surface, or maybank quadric by Longuet-Higgins). We may have three di�erent
fundamental matrices compatible with the data. The two sets of image points are
related by a quadratic transformation:

m = F1m
0 �F2m

0 ;

where F1 and F2 are two of the fundamental matrices.

� The two sets of image points are related by a homography:

em = �H em0 ;

where � is an arbitrary non-zero scalar, and H is a 3� 3 matrix de�ned up to a scale
factor. This is a degenerate case of the previous situation. It arises when 3D points
lie on a plane or when the camera undergoes a pure rotation around the optical center
(equivalent to the case when all points lie on a plane at in�nity).

� 3D points are in even more special position, for example on a line.

The stability of the fundamental matrix related to the degenerate con�gurations is analyzed
in (Luong and Faugeras 1996). A technique which automatically detects the degeneracy
based on �2 test when the noise level of the data points is known is reported in (Torr,
Zisserman and Maybank 1995, Torr, Zisserman and Maybank 1996).

5.3 A�ne cameras

So far, we have only considered images under perspective projection, which is a nonlinear
mapping from 3D space to 2D. This makes many vision problems di�cult to solve, and
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more importantly, they can become ill-conditioned when the perspective e�ects are small.
Sometimes, if certain conditions are satis�ed, for example, when the camera �eld of view is
small and the object size is small enough with respect to the distance from the camera to
the object, the projection can be approximated by a linear mapping (Aloimonos 1990). The
a�ne camera introduced in (Mundy and Zisserman 1992) is a generation of the orthographic
and weak perspective models. Its projection matrix has the following special form:

PA =

2
4P11 P12 P13 P14
P21 P22 P23 P24
0 0 0 P34

3
5

de�ned up to a scale factor. The epipolar constraint (5) is still valid, but the fundamental
matrix (6) will be of the following simple form (Xu and Zhang 1996):

FA =

2
4 0 0 a13

0 0 a23
a31 a32 a33

3
5 :

This is known as the a�ne fundamental matrix (Zisserman 1992, Shapiro, Zisserman and
Brady 1994). Thus, the epipolar equation is linear in the image coordinates under a�ne
cameras, and the determination of the epipolar geometry is much easier. This has been
thoroughly studied by Oxford group (Shapiro 1993, Shapiro et al. 1994) (see also (Xu and
Zhang 1996)), and thus is not addressed here.

5.4 Cameras with Lens Distortion

With the current formulation of the epipolar geometry (under either full perspective or a�ne
projection), the homogeneous coordinates of a 3D point and those of the image point are
related by a 3� 4 matrix. That is, the lens distortion is not addressed. This statement does
not imply, though, that lens distortion has never been accounted for in the previous work.
Indeed, distortion has usually been corrected o�-line using classical methods by observing for
example straight lines, if it is not weak enough to be neglected. A preliminary investigation
has been conducted (Zhang 1996b), which considers lens distortion as an integral part of a
camera. In this case, for a point in one image, its corresponding point does not lie on a line
anymore. As a matter of fact, it lies on the so-called epipolar curve. Preliminary results show
that the distortion can be corrected on-line if cameras have a strong lens distortion. More
work still needs to be done to understand better the epipolar geometry with lens distortion.

5.5 Multiple cameras

The study of the epipolar geometry is naturally extended to more images. When 3 images
are considered, trilinear constraints exist between point/line correspondences (Spetsakis
and Aloimonos 1989). �Trilinear� means that the constraints are linear in the point/line
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coordinates of each image, and the epipolar constraint (5) is a bilinear relation. The trilinear
constraints have been rediscovered in (Shashua 1995) in the context of uncalibrated images.
Similar to the fundamental matrix for two images, the constraints between three images can
be described by a 3 � 3 � 3 matrix de�ned up to a scale factor (Spetsakis and Aloimonos
1989, Hartley 1994). There exist at most 4 linear independent constraints in the elements of
the above matrix, and 7 point matches are required to have a linear solution (Shashua 1995).
However, the 27 elements are not algebraically independent. There are only 18 parameters
to describe the geometry between three uncalibrated images (Faugeras and Robert 1994),
and we have three algebraically independent constraints. Therefore, we need at least 6 point
matches to determine the geometry of three images (Quan 1995).

When more images are considered, quadrilinear relations arising when four-tuples of
images are considered, which are, however, algebraically dependent of the trilinear and bili�
near ones (Faugeras and Mourrain 1995). That is, they do not bring in any new information.
Recently, quite a lot of e�orts have been directed towards the study of the geometry of N
images (see (Luong and Viéville 1994, Carlsson 1994, Triggs 1995, Weinshall, Werman and
Shashua 1995, Viéville, Faugeras and Luong 1996, Laveau 96) to name a few). A complete
review of the work on multiple cameras is beyond the scope of this paper.

A Projective Reconstruction

We show in this section how to estimate the position of a point in space, given its projections
in two images whose epipolar geometry is known. The problem is known as 3D reconstruction

in general, and triangulation in particular. In the calibrated case, the relative position (i.e.
the rotation and translation) of the two cameras is known, and 3D reconstruction has already
been extensively studied in stereo (Ayache 1991). In the uncalibrated case, like the one
considered here, we assume that the fundamental matrix between the two images is known
(e.g. computed with the methods described in Sect. 3), and we say that they are weakly

calibrated .

A.1 Projective Structure from Two Uncalibrated Images

In the calibrated case, a 3D structure can be recovered from two images only up to a
rigid transformation and an unknown scale factor (this transformation is also known as a
similarity), because we can choose an arbitrary coordinate system as a world coordinate
system (although one usually chooses it to coincide with one of the camera coordinate
systems). Similarly, in the uncalibrated case, a 3D structure can only be performed up to
a projective transformation of the 3D space (Faugeras 1992, Hartley et al. 1992, Maybank
1992, Faugeras 1995).

At this point, we have to introduce a few notations from Projective Geometry (a good in�
troduction can be found in (Faugeras 1995)). For a 3D point M = [X;Y; Z]T , its homogeneous
coordinates are ex = [U; V;W; S]T = �eM where � is any nonzero scalar and eM = [X;Y; Z; 1]T .
This implies: U=S = X , V=S = Y , W=S = Z. If we include the possibility that S = 0, then
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ex = [U; V;W; S]T are called the projective coordinates of the 3D point M, which are not all
equal to zero and de�ned up to a scale factor. Therefore, ex and �ex (� 6= 0) represent the
same projective point. When S 6= 0, ex = SeM. When S = 0, we say that the point is at
in�nity. A 4� 4 nonsingular matrix H de�nes a linear transformation from one projective
point to another, and is called the projective transformation. The matrix H, of course, is
also de�ned up to a nonzero scale factor, and we write

�ey =Hex ; (41)

if ex is mapped to ey by H. Here � is a nonzero scale factor.

Proposition 2. Given two (perspective) images with unknown intrinsic parameters of a

scene, the 3D structure of the scene can be reconstructed up to an unknown projective trans�

formation as soon as the epipolar geometry (i.e. the fundamental matrix) between the two

images is known.

Assume that the true camera projection matrices are P and P0. From (6), we have the
following relation

F = [Pp0?]�PP
0+ ;

where F is the known fundamental matrix. The 3D structure thus reconstructed is M. The
proposition says that the 3D structure H�1eM, where H is any projective transformation
of the 3D space, is still consistent with the observed image points and the fundamental
matrix. Following the pinhole model, the camera projection matrices corresponding to the
new structure H�1eM are

bP = PH and bP0 = P0H ;

respectively. In order to show the above proposition, we only need to prove

[bPbp0?]� bPbP0+ = �F � �[Pp0?]�PP
0+ ; (42)

where bp0? = (I� bP0+ bP0)b! with b! any 4-vector, and � is a scalar since F is de�ned up to a
scale factor. The above result has been known for several years (Maybank 1992, Faugeras
1992, Hartley et al. 1992). In (Xu and Zhang 1996), we provide a simple proof through pure
linear algebra.

A.2 Computing Camera Projection Matrices

The projective reconstruction is very similar to the 3D reconstruction when cameras are
calibrated. First, we need to compute the camera projection matrices from the fundamental
matrix F with respect to a projective basis, which can be arbitrary because of Proposition 2.
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A.2.1 Factorization Method

Let F be the fundamental matrix for the two cameras. There are an in�nite number of
projective bases which all satisfy the epipolar geometry. One possibility is to factor F as a
product of an antisymmetric matrix [e]� (e is in fact the epipole in the �rst image) and a
matrix M, i.e., F = [e]�M. A canonical representation can then be used:

P = [M e] and P0 = [I 0] :

It is easy to verify that the above P and P0 do induce the fundamental matrix.
The factorization of F into [e]�M is in general not unique, because if M is a solution

then M + evT is also a solution for any vector v (indeed, we have always [e]�ev
T = 0).

One way to do the factorization is as follow (Luong and Viéville 1994). Since FTe = 0,
the epipole in the �rst image is given by the eigenvector of matrix FFT associated to the
smallest eigenvalue. Using the relation

kvk2I3 = vvT � [v]2
�
;

we can obtain the M matrix as

M = � 1

kek2 [e]�F :

This decomposition is used in (Beardsley et al. 1994). Numerically, better results of 3D
reconstruction are obtained when the epipole e is normalized such that kek = 1.

A.2.2 Choosing a Projective Basis

Another possibility is to choose e�ectively �ve pairs of points, each of four points not being
coplanar, between the two cameras as a projective basis. We can of course choose �ve cor�
responding points we have identi�ed. However, the precision of the �nal projective recons�
truction will depend heavily upon the precision of the pairs of points. In order to overcome
this problem, we have chosen in (Zhang, Faugeras and Deriche 1995) the following solution.
We �rst choose �ve arbitrary points in the �rst image, noted bymi (i = 1; : : : ; 5). Although
they could be chosen arbitrarily, they are chosen such that they are well distributed in the
image to have a good numerical stability. For each point mi, its corresponding epipolar line
in the second image is given by l0i = FTmi. We can now choose an arbitrary point on l0i
as m0

i, the corresponding point of mi. Finally, we should verify that none of four points is
coplanar, which can be easily done using the fundamental matrix (Faugeras 1992, credited
to Roger Mohr). The advantage of this method is that the �ve pairs of points satisfy exactly
the epipolar constraint.

Once we have �ve pairs of points (mi;m
0

i), (i = 1; : : : ; 5), we can compute the camera
projection matrices as described in (Faugeras 1992). Assigning the projective coordinates
(somewhat arbitrarily) to the �ve reference points, we have �ve image points and space
points in correspondence, which provides 10 constraints on each camera projection matrix,
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leaving only one unknown parameter. This unknown can then be solved using the known
fundamental matrix.

A.3 Reconstruction Techniques

Now that the camera projection matrices of the two images with respect to a projective
basis are available, we can reconstruct 3D structures with respect to that projective basis

from point matches.

A.3.1 Linear Methods

Given a pair of points in correspondence: m = [u; v]T andm0 = [u0; v0]T . Let ex = [x; y; z; t]T

be the corresponding 3D point in space with respect to the projective basis chosen before.
Following the pinhole model, we have:

s [u; v; 1]
T
= P [x; y; z; t]

T
; (43)

s0 [u0; v0; 1] = P0 [x; y; z; t]
T
; (44)

where s and s0 are two arbitrary scalars. Let pi and p
0

i be the vectors corresponding to
the ith row of P and P0, respectively. The two scalars can then be computed as: s =
pT3 ex ; s0 = p03

T ex : Eliminating s and s0 from (43) and (44) yields the following equation:

Aex = 0 ; (45)

where A is a 4� 4 matrix given by

A = [p1 � up3; p2 � vp3; p
0

1 � u0p03; p
0

2 � v0p03]
T
:

As the projective coordinates ex are de�ned up to a scale factor, we can impose kexk = 1,
then the solution to (45) is well known (see also the description in Sect. 3.2.2) to be the
eigenvector of the matrix ATA associated to the smallest eigenvalue.

If we assume that no point is at in�nity, then we can impose t = 1, and the projective
reconstruction can be done exactly in the same way as for the Euclidean reconstruction. The
set of homogeneous equations, Aex = 0, is reduced to a set of 4 non-homogeneous equations
in 3 unknowns (x; y; z). A linear least-squares technique can be used to solve this problem.

A.3.2 Iterative Linear Methods

The previous approach has the advantage of providing a closed-form solution, but it has the
disadvantage that the criterion that is minimized does not have a good physical interpre�
tation. Let us consider the �rst of the equations (45). In general, the point ex found will
not satisfy this equation exactly; rather, there will be an error �1 = pT1 ex� upT3 ex. What we
really want to minimize is the di�erence between the measured image coordinate u and the
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projection of ex, which is given by pT1 ex=pT3 ex. That is, we want to minimize
�01 = pT1 ex=pT3 ex� u = �1=p

T
3 ex :

This means that if the equation had been weighted by the factor 1=w1 where w1 = pT3 ex, then
the resulting error would have been precisely what we wanted to minimize. Similarly, the
weight for the second equation of (45) would be 1=w2 = 1=w1, while the weight for the third
and fourth equation would be 1=w3 = 1=w4 = 1=p0T3 ex. Finally, the solution could be found
by applying exactly the same method described in the last subsection (either eigenvector
computation or linear least-squares).

Like the method for estimating the fundamental matrix described in Sect. 3.4, the pro�
blem is that the weights wi depends themselves on the solution ex. To overcome this di�culty,
we apply an iterative linear method. We �rst assume that all wi = 1 and run a linear al�
gorithm to obtain an initial estimation of ex. The weights wi are then computed from this
initial solution. The weighted linear least-squares is then run for an improved solution. This
procedure can be repeated several times until convergence (either the solution or the weight
does not change between successive iterations). Two iterations are usually su�cient.

A.3.3 Nonlinear Methods

As said in the last paragraph, the quantity we want to minimize is the error measured in
the image plane between the observation and the projection of the reconstruction, that is

(u� pT1 ex
pT3 ex )2 + (v � pT2 ex

pT3 ex )2 + (u0 � p01
T ex

p03
T ex )2 + (v0 � p02

T ex
p03

T ex )2 :
However, there does not exist any closed-form solution, and we must use any standard
iterative minimization technique, such as the Levenberg-Marquardt. The initial estimate ofex can be obtained by using any linear technique described before.

Hartley and Sturm (1994) reformulates the above criterion in terms of the distance
between a point and its corresponding epipolar line de�ned by the ideal space point being
sought. By parameterizing the pencil of epipolar lines in one image by a parameter t (which
de�nes also the corresponding epipolar line in the other image by using the fundamental
matrix), he is able to transform the minimization problem to the resolution of a polynomial
of degree 6 in t. There may exist up to 6 real roots, and the global minimum can be found
by evaluating the minimization function for each real root.

More projective reconstruction techniques can be found in (Hartley and Sturm 1994,
Rothwell, Csurka and Faugeras 1995), but it seems to us that the techniques presented here,
especially the one based on the image errors, are the best that one can recommend.
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B Approximate Estimation of Fundamental Matrix from

General Matrix

We �rst introduce the Frobenius norm of a matrix A = [aij ] (i = 1; : : : ;m; j = 1; : : : ; n),
which is de�ned by

kAk =

vuut mX
i=1

nX
j=1

a2ij : (46)

It is easy to show that for all orthogonal matrices U and V of appropriate dimensions, we
have

kUAVT k = kAk :

Proposition 3. We are given a 3� 3 matrix F, whose singular value decomposition (SVD)

is

F = USVT ;

where S = diag (�1; �2; �3) and �i (i = 1; 2; 3) are singular values satisfying �1 � �2 � �3 �
0. Let Ŝ = diag (�1; �2; 0), then

F̂ = UŜVT

is the closest matrix to F that has rank 2. Here, �closest� is quanti�ed by the Frobenius

norm of F� F̂, i.e. kF� F̂k. We show this in two parts.

Proof. We show this in two parts.
First, the Frobenius norm of F� F̂ is given by

kF� F̂k = kUT (F� F̂)Vk = k diag (0; 0; �3)k = �3 :

Second, for some 3 � 3 matrix G of rank 2, we can always �nd an orthogonal vector z
such that Gz = 0, i.e. z is the null vector of matrix G. Since

Fz =
3X

i=1

�i(v
T
i z)ui ;

where ui and vi are the i
th column vectors of U and V, we have

kF�Gk2 � k(F�G)zk2 = kFzk2

=

3X
i=1

�2i (v
T
i z)

2 � �23 :
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This implies that F̂ is indeed the closest to F, which completes the proof.

In the above derivation, we have used the following inequality which relates the Frobenius
norm to the vector norm:

kAk � max
kzk=1

kAzk � kAzk with kzk = 1.

The reader is referred to (Golub and van Loan 1989) for more details.
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Unité de recherche INRIA Rennes, Irisa, Campus universitaire de Beaulieu, 35042 RENNES Cedex
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Unité de recherche INRIA Rocquencourt, Domaine de Voluceau, Rocquencourt, BP 105, 78153 LE CHESNAY Cedex
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