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Abstract: A new method for solving the stereo
matching problem in the presence of large occlusion is
presented. A data structure | the disparity space image
| is de�ned in which we explicitly model the e�ects of
occlusion regions on the stereo solution. We develop a
dynamic programming algorithm that �nds matches and
occlusions simultaneously. We show that while some
cost must be assigned to unmatched pixels, our algo-
rithm's occlusion-cost sensitivity and algorithmic com-
plexity can be signi�cantly reduced when highly-reliable
matches, or ground control points, are incorporated into
the matching process. The use of ground control points
eliminates both the need for biasing the process towards
a smooth solution and the task of selecting critical prior
probabilities describing image formation.
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1 Introduction

Our world is full of occlusion. In any scene, we are likely
to �nd several, if not several hundred, occlusion edges.
In binocular imagery, we encounter occlusion times two.
Stereo images contain occlusion edges that are found in
monocular views and occluded regions that are unique
to a stereo pair[5]. Occluded regions are spatially co-
herent groups of pixels that can be seen in one image
of a stereo pair but not in the other. These regions
mark discontinuity jumps and can be used to improve
segmentation, motion analysis, and object identi�cation
processes, which must preserve object boundaries. There
is psychophysical evidence that the human visual system
uses geometrical occlusion relationships during binocu-
lar stereopsis[20][18] to reason about the spatial rela-
tionships between objects in the world. In this paper we
present a stereo algorithm that does so as well.
Although absolute occlusion sizes in pixels depend

upon the con�guration of the imaging system, images
of everyday scenes often contain occlusion regions much

larger than those found in popular stereo test imagery.
In our lab, common images like Figure 1 contain dispar-
ity shifts and occlusion regions over eighty pixels wide.1

Popular stereo test images, however, like the JISCT test
set[7], the \pentagon" image, the \white house" image,
and the \Renault part" image have maximum occlusion
disparity shifts on the order of 20 pixels wide. Re-
gardless of camera con�guration, images of the every-
day world will have substantially larger occlusion regions
than aerial or terrain data. Even processing images with
small disparity jumps, researchers have found that occlu-
sion regions are a major source of error[8].

2 Previous Occlusion and

Stereo Work

Most stereo researchers have generally either ignored oc-
clusion analysis entirely or treated it as a secondary pro-
cess that is postponed until matching is completed and
smoothing is underway[2, 13]. A few authors have pro-
posed techniques that indirectly address the occlusion
problem by minimizing spurious mismatches resulting
from occluded regions and discontinuities[15, 9, 1, 19, 1,
17, 10].
Belhumeur has considered occlusion in several papers.

In [5], Belhumeur and Mumford point out that occluded
regions, not just occlusion boundaries, must be iden-
ti�ed and incorporated into matching. Using this ob-
servation and Bayesian reasoning, an energy functional
is derived using using pixel intensity as the matching
feature and dynamic programming is used to �nd the
minimal-energy solution. In [3] and [4] the Bayesian es-
timator is re�ned to deal with sloping and creased sur-
faces. Penalty terms are imposed for proposing a break
in vertical and horizontal smoothness or a crease in sur-
face slope. Belhumeur's method requires the estimation
of several critical prior terms which are used to suspend
smoothing operations.

1Typical set up is two CCD cameras, with 12mm focal length

lenses, separated by a baseline of about 30cm.



  
Figure 1: Noisy stereo pair of a man and kids. The largest occlusion region in this image is 93 pixels wide, or 13 percent
of the image.

Geiger, Ladendorf, and Yuille[14] also directly address
occlusion and occlusion regions by de�ning an a priori
probability for the disparity �eld based upon a smooth-
ness function and an occlusion constraint. For match-
ing, two shifted windows are used in the spirit of [19]
to avoid errors over discontinuity jumps. Assuming the
monotonicity constraint, the matching problem is solved
using dynamic programming. Unlike in Belhumeur's
work, the stereo occlusion problem is formulated as a
path-�nding problem in a left-scanline to right-scanline
matching space. Geiger et al. make the important ob-
servation that \a vertical break (jump) in one eye corre-
sponds to a horizontal break (jump) in the other eye."

Finally, Cox et al.[12] have proposed a dynamic pro-
gramming solution to stereo matching that does not re-
quire the smoothing term incorporated into Geiger and
Belhumeur's work. They point out that several equally
good paths can be found through matching space using

only the occlusion and ordering constraints. To provide
enough constraint for their system to select a single solu-
tion, they optimize a Bayesian maximum-likelihood cost
function minimizing inter- and intra-scanline disparity
discontinuities.

Our approach is to explicitly model occlusion edges
and occlusion regions and to use them to drive the
matching process. We develop a data structure which we
will call the disparity-space image (DSI), and we use this
data structure to develop a stereo algorithm that �nds
matches and occlusions simultaneously. We show that
while some cost must be assigned to unmatched pixels,
an algorithm's occlusion-cost sensitivity and algorithmic
complexity can be signi�cantly reduced when highly-
reliable matches, or ground control points (GCPs), are
incorporated into the matching process.

3 The DSI Representation

In this section we describe a data structure we call the
disparity-space image, or DSI. We have used the data
structure to explore the occlusion and stereo problem
and it facilitated our development of a dynamic program-
ming algorithm that uses occlusion constraints. The
DSI is an explicit representation of matching space; it
is related to �gures that have appeared in previous work
[11, 14, 21, 19].

3.1 DSI Creation for Ideal Imagery

We generate the DSI representation for ith scanline in
the following way: Select the ith scanline of the left
and right images, sL

i
and sR

i
respectively, and slide them

across one another one pixel at a time. At each step, the
scanlines are subtracted and the result is entered as the
next line in the DSI. The DSI representation stores the
result of subtracting every pixel in sL

i
with every pixel

sR
i
and maintains the spatial relationship between the

matched points. As such, it may considered an (x, dis-
parity) matching space, with x along the horizontal, and
disparity along the vertical. Given two images IL and
IR the value of the DSI is given:

DSIR
i
(x; d) =

�
IR(x; i)� IL(x+ d; i)

when 0 � (x + d) < N
(1)

where all other values are not de�ned and 0 � d < N

and 0 � x < N . The superscript of R on DSIR indicates
the right DSI. DSIL

i
is simply a negated, skewed version

of the DSIR
i
.

The above de�nition generates a \full" DSI where
there is no limit on disparity. By considering camera
geometry, we can crop the representation. In the case
of parallel, front-facing cameras objects are shifted to
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Figure 2: This �gure describes how a DSILi is generated. The corresponding epipolar scanlines from the left and right
images are used. The scanline from the left image is held still as the scanline from the right image is shifted across. After

each pixel shift, the scanlines are subtracted. The result from the overlapping pixels is placed in the resulting DSILi . The

DSILi is then cropped, since we are only interested in disparity shifts that are zero or greater since we assume we have
parallel optical axis in our imaging system.

the right in the left image. No matches will be found
searching in the other direction. Further, if a maximum
possible disparity, dmax, is known then no matches will
be found by shifting right more than dmax pixels. These
limitations permit us to crop the top N and bottom
N � dmax lines of the DSI. DSI generation is illustrated
in Figure 2.

3.2 DSI Creation for Imagerywith Noise

To make the DSI more robust to e�ects of noise, we
can change the comparison function from subtraction to
correlation. We de�ne gL

i
as a group of scanlines cen-

tered around sL
i
and gR

i
as a group of scanlines centered

around sR
i
. gL

i
and gR

i
are shifted across each other

to generate the DSI representation for scanline i. In-
stead of subtracting a single pixel, however, we compare
a window in gL to a window in gR:

WL(x; d; wx; wy; cx; xy) =

(wy�cy)X
s=�cy

(wx�cx)X
t=�cx

[(IR(x+ t; i+ s) �ML(x; i))�

(IL(x+ d+ t; i+ s)�MR(x+ d; i))]2 (2)

where wx�wy is the size of the window, (cx; cy) is the
location of the center of the window, andML is the mean

of the window in the left image:

ML(x; y) =
1

wy �wx

(wy�cy)X
i=�cy

(wx�cx)X
i=�cx

IL(i; j) (3)

MR is computed like ML using the right image.
Using correlation for matching drastically reduces

the e�ects of noise. However, windows create prob-
lems at vertical and horizontal depth discontinuities
where occluded regions lead to spurious matching. We
solve this problem using a simpli�ed version of adaptive
windows[16]. At every pixel location we use 9 di�er-
ent windows to perform the matching. The windows are
shown in Figure 3. Some windows are designed so that
they will match to the left, some are designed to match
to the right, some are designed to match towards the top,
and so on. At an occlusion boundary, some of the �lters
will match across the boundary and some will not. At
each pixel, only the best result from matching using all 9
windows is stored. Bad matches resulting from occlusion
tend to be discarded. DSIL

i
is generated by:

DSIL
i
(x; d; wx; wy) =8>>>>><

>>>>>:

min
0�cx<wx
0�cy<wy

WL

i
(x; d; wx; wy)

when 0 � (x� d) < N

NaN
otherwise

(4)
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Figure 3: To reduce the e�ects of noise in DSI generation, we have used 9 window matching, where window centers (marked

in black) are shifted to avoid spurious matches at occlusion regions and discontinuity jumps.
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Figure 4: This �gure shows (a) a model of the stereo sloping wedding cake that we will use as a test example, (b) a depth

pro�le through the center of the sloping wedding cake, (c) a simulated, noise-free image pair of the cake, (d) the enhanced,

cropped, correlation DSI representation for the image pair in (c), and (e) the enhanced, cropped, correlation DSI for a noisy

sloping wedding cake (SNR = 18 dB). In the top image of (d), the regions labeled \D" mark diagonal gaps in the matching

path caused by regions occluded in the left image. The regions labeled \V" mark vertical jumps in the path caused by

regions occluded in the right image. In the bottom image of (d), diagonal gaps mark occluded regions in the right image

and vertical jumps mark occluded regions in the left image.
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To test the correlation DSI and other components of
our stereo method, we have produced a more interest-
ing version of the three-layer stereo wedding cake image
frequently used by stereo researchers to assess algorithm
performance. Our cake has three square layers, a square
base, and two sloping sides. The cake is \iced" with
textures cropped from several images. A side view of a
physical model of the sloping wedding cake stereo pair
is shown in Figure 4-b and a noiseless simulation of the
same the wedding cake is shown in Figure 4-c. The slop-
ing wedding cake is a challenging test example since it
has textured and homogeneous regions, huge occlusion
jumps, a disparity shift of 84 pixels for the top level, and
at and sloping regions. The enhanced, cropped DSI for
the noiseless cake is shown in Figure 4-d.

A noisy image cake was generated with Gaussian white
noise (SNR = 18 dB) The DSI generated for the noisy
cake is displayed in Figure 4-e. Even with large amounts
of noise, the \near-zero" dark path through the DSI dis-
parity space is clearly visible and sharp discontinuities
have been preserved.

3.3 Structure of the DSI

Figure 4-d shows the cropped, correlation DSI for a scan-
line through the middle of the test image pair shown in
Figure 4-c. Near-zero values have been enhanced. No-
tice the characteristic streaking pattern that results from
holding one scanline still and sliding the other scanline
across. When a textured region on the left scanline slides
across the corresponding region in the right scanline, a
line of matches can be seen in the DSIL

i
. When two

textureless matching regions slide across each other, a
diamond-shaped region of near-zero matches can be ob-
served. The more homogeneous the region is, the more
distinct the resulting diamond shape will be. The cor-
rect path through DSI space can be easily seen as a dark
line connecting block-like segments.

4 Occlusion Analysis and DSI

Path Constraints

In a discrete formulation of the stereo matching problem,
any region with non-constant disparity must have asso-
ciated unmatched pixels. Any slope or disparity jump
creates blocks of occluded pixels. Because of these occlu-
sion regions, the matching zero path through the image
cannot be continuous. The regions labeled \D" in Fig-
ure 4-d mark horizontal gaps in the enhanced zero line in
DSIL

i
and DSIR

i
. The regions labeled \V" mark vertical

jumps from disparity to disparity. These jumps corre-
spond to left and right occlusion regions. We use this

\occlusion constraint"[14] to restrict the type of match-
ing path that can be recovered from each DSIL

i
. Each

time an occluded region is proposed, the recovered path
is forced to have the appropriate vertical or diagonal
jump.

Nearly all stereo scenes obey the ordering constraint
(ormonotonicity constraint [14]): if object a is to the left
of object b in the left image then a will be to the left of
b in the right image. Thin objects with large matching
disparities violate this rule, but they are rare. By assum-
ing the ordering rule we can impose a second constraint
on the disparity path through the DSI that signi�cantly
reduces the complexity of the path-�nding problem. In
the DSIL

i
, moving from left to right, diagonal jumps can

only jump forward (down and across) and vertical jumps
can only jump backwards (up). In the DSIR

i
the relation-

ship is reversed: moving left to right diagonal jumps can
only jump backwards and across and vertical jumps can
only jump forwards (down). If this rule is broken the
ordering constraint does not hold.

5 Finding the Best Path

Using the occlusion constraint and ordering constraint,
the correct disparity path is highly constrained. From
any location in the DSIL

i
, there are only three directions

a path can take { a horizontal match, a diagonal occlu-
sion, and a vertical occlusion. This observation allows us
to develop a stereo algorithm that integrates matching
and occlusion analysis into a single process.
However, the number of allowable paths obeying these

two constraints is still huge. The possible number of
paths through the DSIL

i
of size (N;D) where D = dmax

is computed using a two-parameter recurrence relation:

Total paths = p(N; 0; D) where (5)

p(i; j;D) = p(i; j + 1; D) +
p(i � 1; j;D) +
p(i � 1; j � 1; D)

and the boundary conditions are set using:

p(i; j;D) =

�
0 when i < 0 or j < 0 or j > i or j > D

1 when i = 0 and j = 0
(6)

where (i = 0; j = 0) is the upper left corner of the sL
i
and

(i = N � 1; j = 0) is the upper right corner.

The number of possible paths through a typical image
is enormous. When the sloping wedding is reduced to a
256 pixel wide image and the maximumdisparity shift is
set at 45 pixels, there are 3.25e+191 legal disparity paths
for each scanline! Since we cannot search all possible
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paths, we adopt the strategy of previous researchers and
exploit the power of dynamic programming techniques.

5.1 Dynamic Programming Constraints

Our algorithm for �nding the best path through the DSI
is formulated as a dynamic programming (DP) path-
�nding problem in (x; disparity) space. We wish to �nd
the minimum cost traversal through the DSIL

i
image

when the occlusion constraints are imposed. We assume
the epipolar scanlines have been alligned along horizon-
tal scanlines.
DP algorithms require that the decision making pro-

cess be ordered and that the decision making at any state
depend only upon the current state. The occlusion con-
straint and ordering constraint severely limit the direc-
tion the path can take from the path's current endpoint.
If we base the decision of which path to choose at any
pixel only upon the cost of each possible path we can
take and not on any previous moves we have made, we
satisfy the DP requirements and can use DP to �nd the
optimal path.
Our DSI analysis led us to consider the occlusion prob-

lem in a \state-like" manner. As we traverse through the
DSI image �nding the optimal path, we can be in any
of three states: match (M), vertical occlusion (V), or
diagonal occlusion (D). Figure 5 symbolically shows the
legal transitions between each type of state. The path is
further constrained at the edges of the DSI image, where
several types of transitions may be invalid.
A cost is assigned to each pixel in the path depending

upon the current state. We design our DP algorithm to
minimize the cost of a path where the cost of a match
is the absolute value of the DSIL

i
pixel at the match

point. The better the match, the lower the cost assessed.
The algorithm will attempt to maximize the number of
\good" matches in the �nal path. Since the algorithm

will also propose un-matched points | occlusion regions
| we need to assign a cost for unmatched pixels in the
vertical or diagonal jumps. Otherwise the \best path"
would be one that matches almost no pixels.
This application of dynamic programming to the

stereo problem reveals the power of these techniques[6,
5, 12, 14]. When formulated as a DP problem, �nding
the best path through an DSI of width N and disparity
range D requires considering N �D DP nodes. For the
256 pixel wide version of the sloping wedding cake exam-
ple, the computation considers 11,520 nodes, as opposed
to 3.25e+191 paths!

5.2 Assigning occlusion cost

For the work presented here we chose a constant occlu-
sion pixel cost. Without an additional constraint the

algorithm is quite sensitive to this cost. In the next
section we propose an alternative approach to reducing
occlusion cost sensitivity that reduces complexity and
does not arti�cially restrict the disparity path.

5.3 Ground control points

Unfortunately, slight variations in the occlusion pixel
cost can change the globally minimum path through the
DSIL

i
space, particularly with noisy data[12]. Because

this cost is incurred for each proposed occluded pixel,
the cost of proposed occlusion region is linearly propor-
tional to the width of the region. Consider the example
illustrated in Figure 6. The \correct" solution is the one
which starts at region A, jumps forwarded diagonally 6
pixels to region B where disparity remains constant for 4
pixels, and then jumps back vertically 6 pixels to region
C. The occlusion cost for this path is co � 6 � 2 where co
is the pixel occlusion cost. If the co is too great, a string
of bad matches will be selected as the lower-cost path,
as shown.

In order to overcome this occlusion cost sensitiv-
ity, we need to impose another constraint in addi-
tion to the occlusion and ordering constraints. How-
ever, unlike previous approaches we do not want to
bias the solution towards any generic property such
as smoothness[14], inter-scanline consistency[19, 12], or
intra-scanline \goodness"[12].

Instead, we use high con�dence matching guesses:
Ground control points (GCPs). These points are used to
force the disparity path to make large disparity jumps
that might otherwise have been avoided because of large
occlusion costs.

Figure 7 illustrates this idea showing two GCPs and
a number of possible paths between them. We note
that regardless of which disparity path is chosen, the

discrete lattice ensures that path-a, path-b, and path-c
all require 6 occlusion pixels. Therefore, all three paths
incur the same occlusion cost. Our algorithm will se-
lect the path that minimizes the cost of the proposed
matches independent of where occlusion breaks are pro-
posed and the occlusion cost value. If there is a single
occlusion region between the GCPs in the original im-
age, the path with the best matches is similar to path-a
or path-b. On the other hand, if the region between the
two GCPs is sloping gently, then a path like path-c, with
tiny, interspersed occlusion jumps will be preferred. The
path through (x, disparity) space, therefore, will be con-
strained solely by the occlusion and ordering constraints
and the goodness of the matches between the GCPs.
An exception to this situation occurs if the algorithm
proposes additional occlusion regions as in path-d; such
solutions typically have a much higher cost than the cor-
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Figure 5: State diagram of legal moves the DP algorithm can make when processing the DSIRi . From the match state,

the path can move vertically up to the vertical discontinuity state, horizontally to the match state, or diagonally to the
diagonal state. From the vertical state, the path can move vertically up to the vertical state or horizontally to the match
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Figure 6: The total occlusion cost for an object shifted D pixels can be costocclusion �D � 2. If the cost becomes high, a

string of bad matches may be a less expensive path. To eliminate this undesirable e�ect, we must impose another constraint.

rect one.

5.4 Selecting and enforcing GCPs

If we force the disparity path through GCPs, their selec-
tion must be highly reliable. We use several heuristic �l-
ters to identify GCPs before we begin the DP processing.
The �rst heuristic requires that a control point be both
the best left-to-right and best right-to-left match[15].
Second, to avoid spurious \good" matches in occlusion
regions, we also require that control points have match
value that is smaller than the occlusion cost. Finally, to
further reduce the likelihood of a spurious match, we ex-
clude any proposed GCPs that have no immediate neigh-
bors that are also marked as GCPs.

Once we have a set of control points, we force our
DP algorithm to choose a path through the points by
assigning zero cost for matching with a control point and
a very large cost to every other path through the control
point's column. In the DSIL

i
, the path must pass through

each column at some pixel in some state. By assigning a
large cost to all paths and states in a column other than
a match at the control point, we have guaranteed that
the path will pass through the point.

An important feature of this approach of incorporat-
ing GCPs is that this method allows us to have more
than one GCP per column. Instead of forcing the path
through one GCP, we force the path through one of a few
GCPs. Even using multiple windows and left-to-right,
right-to-left matching, it is still possible that we will la-
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bel a GCP in error if only one per column is permitted.
It is unlikely, however, that none of several proposed
GCPs in a column will be the correct GCP. By allowing
multiple GCPs per column, we have eliminated the risk
of forcing the path through a point erroneously marked
as high-con�dence due image noise without increasing
complexity or weakening the GCP constraint.

5.5 Reducing complexity

By forcing the disparity path to hit some points, we
have reduced the computational complexity of the path-
�nding problem by limiting the number of paths that
an algorithm must consider. If a GCP is required at
(x0; d0) the boundary conditions on the total possible
paths p(N; 0; D) are revised:

p(i; j;D) =

8>>>>>>>>>><
>>>>>>>>>>:

0 when (i < 0) or (j < 0) or
(j > i) or (j > D)

0 when (m � n) � (i � j) and
(i < x0) and (j < x0 � 1)

0 when (i � x0) and
(j > d0) and
(m � d0) > (i � j)

1 when i = 0 and j = 0
(7)

Recall that the number of possible paths in the
256 pixel wide wedding cake image is approximately
3.25e+191. However, using only twelve of the control
points selected by our algorithm for that image, the legal
paths are reduced to 8.41e+161. Using all of the control
points would restrict the path number further. Though
still large, these numbers are particularly important if a
stereo algorithm tries to solve the path-�nding problem
without using a dynamic programming technique.
More importantly, each GCP also signi�cantly reduces

the number of DP nodes that must be considered. With-
out GCPs, the DP algorithm must consider one node
for every point in the DSI. Speci�cation of a GCP, how-
ever, prevents the solution path from traversing certain
regions of the DSI. Because of the occlusion and mono-
tonicity constraints, each GCP carves out two compli-
mentary triangles in the DSI that are now not valid.
Figure 8 illustrates such pairs of triangles. The total
area of the two triangles, A, depends upon at what dis-
parity d the GCP is located, but is known to lie within
the range D

2

4 � A � D
2

2 where D is the allowed dis-
parity range. For the 256 pixel wedding cake image,
506 � A � 1012. Since the total number of DP nodes
is 11,520 each GCP whose constraint triangles do not
overlap with another pair of GCP constraint triangles
reduces the DP complexity by about 10%. With several
GCPs the complexity is less than 25% of the original
problem.

6 DP algorithm { Results

Input to our algorithm consists of a stereo pair. Epipolar
lines are assumed to be known and corrected to corre-
spond to horizontal scanlines. We assume that additive
and multiplicative photometric bias between the left and
right images is minimized, although the birch tree exam-
ple shows our algorithm will work with signi�cant addi-
tive di�erences.

The dynamic programming portion of our algorithm
is quite fast; almost all time is spent in creating the cor-
related DSI. Generation time for each scanline depends
upon the e�ciency of the correlation code, the number
and size of the masks, and the size of the original im-
agery. Running on a HP 730 workstation with a 515x512
image using nine 7x7 �lters and a maximum disparity
shift of 100 pixels, our current implementation takes a
few seconds per scanline. However, since the most time
consuming operations are simple window-based cross-
correlation, the entire procedure could be made to run
near real time with simple dedicated hardware.

The results generated by our algorithm using corre-
lation with 9 masks for the noise-free wedding cake are
shown in Figure 9-a. Computation was performed on
the SDIL

i
but the results have been shifted to the cyclo-

pean view. The top layer of the cake has been shifted 84
pixels. Our algorithm found the occlusion breaks at the
edge of each layer, indicated by black regions. Sloping
regions have been recovered as a sloping region inter-
spersed with tiny occlusion jumps. Since we have not
used any sloping or inter- or intra-scanline consistency,
the solution in the sloping regions is governed only by
the ground control points and the best matches in the
region. There is an interesting artifact in the image that
results from a high-contrast diagonally sloping line in
the imagery, the shape of our �lters, and the occlusion
cost we have chosen.

Figure 9-b shows the results for the sloping wedding
cake with noise (SNR = 18 dB). The algorithm still
performs reasonably well at locating occlusion regions.
Sloping regions still exhibit the tiny occlusion structure,
although with less uniformity. Interestingly, once we in-
troduce noise, the artifact appearing the the noiseless
image is reduced, probably due to noise a�ecting the
sensitivity of the occlusion cost value.

For the \kids" and \birch" results displayed in this pa-
per, we used a subtraction DSI for our matching data.
The 9-window correlation DSI was used only to �nd
the GCPs. Since our algorithm will work properly us-
ing the subtraction DSI, any method that �nds highly-
reliable matches could be used to �nd GCPs, obviating
the need for the computationally expensive cross correla-
tion. Both the \kids" and \birch" results were generated
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Paths A, B, and C have 6 occluded pixels.
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Figure 7: (a) Once a GCP has forced the disparity path through some disparity-shifted region, the occlusion will be

proposed regardless of the cost of the occlusion jump. (b) The path between two GCPs will depend only upon the good

matches in the path, since the occlusion cost is the same for each type of path. Path-d is the single exception, since an
additional occlusion jump has been proposed. While that path is possible, it is unlikely the globally optimum path through

the space will have any more occlusion jumps than necessary unless the data supporting a second occlusion jump is strong.

GCP 1

= Legal Area = Excluded Area = Ground Control Point

GCP2

D

Figure 8: GCP constraint regions. Each GCP removes a pair of similar triangles from the possible solution path. If the

GCP is at one extreme of the disparity range (GCP 1), then the area excluded is maximized at D2=2. If the GCP is exactly

in the middle of the disparity range (GCP 2) the areas is minimized at D2=4.

a)

 

b)

 

Figure 9: Results of our algorithm for the (a) noise-free and (b) noisy sloping wedding cake.
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using the same occlusion cost which we chose through
experimentation. This cost, however, can be varied by
more than a factor of two without a major e�ect on the
results.

Figure 10-a shows the \birch" image from the JISCT
stereo test set[7]. The occlusion regions in this image are
di�cult to recover properly because of the skinny trees,
some textureless regions, and a 15 percent brightness
di�erence between images. The skinny trees make oc-
clusion recovery particularly sensitive to occlusion cost
when GCPs are not used, since there are relatively few
good matches on each skinny tree compared with the size
of the occlusion jumps to and from each tree. Figure 10-b
shows the results of our algorithm without using GCPs.
The occlusion cost prevented the path on most scan-
lines from jumping out to some of the trees. Figure 10-c
shows the algorithm run with the same occlusion cost
using GCPs. Most of the occlusion regions around the
trees are recovered reasonably well since GCPs on the
tree surfaces eliminated the dependence on the occlu-
sion cost. There are some errors in the image, however.
Several shadow regions of the birch �gure are completely
washed-out with intensity values of zero. Consequently,
some of these regions have led to spurious GCPs which
caused incorrect disparity jumps in our �nal result. This
problemmight be minimized by changing the GCP selec-
tion algorithm to check for texture wherever GCPs are
proposed. On some scanlines, no GCPs were recovered
on some trees which led to the scanline gaps in some of
the trees.

Figure 11-a is an enlarged version of the left image
of Figure 1. Figure 11-b shows the results obtained by
the algorithm developed by Cox et al.[12]. The Cox algo-
rithm is a similarDP procedure which uses inter-scanline
consistency instead of GCPs to reduce sensitivity to oc-
clusion cost.

Figure 11-c shows our results on the same image.
These images have not been converted to the cyclo-
pean view, so black regions indicate regions occluded
in the left image. The Cox algorithm does a reason-
ably good job at �nding the major occlusion regions,
although many rather large, spurious occlusion regions
are proposed.

When the algorithm generates errors, the errors are
more likely to propagate over adjacent lines, since inter-
and intra-scanline consistency are used[12]. To be able
to �nd the numerous occlusions, the Cox algorithm re-
quires a relatively low occlusion cost, resulting in false
occlusions. Our higher occlusion cost and use of GCPs
�nds the major occlusion regions cleanly. For example,
the man's head is clearly recovered by our approach. The
algorithm did not recover the occlusion created by the
man's leg as well as hoped since it found no good control

points on the bland wall between the legs. The wall be-
hind the man was picked up well by our algorithm, and
the structure of the people in the scene is quite good.
Most importantly, we did not use any smoothness or
inter- and intra-scanline consistencies to generate these
results.

We should note that our algorithmdoes not perform as
well on images that only have short match regions inter-
spersed with many disparity jumps. In such imagery our
conservative method for selecting GCPs fails to provide
enough constraint to recover the proper surface. How-
ever, the results on the birch imagery illustrate that in
real imagery with many occlusion jumps, there are likely
to be enough stable regions to drive the computation.

7 Summary

We have presented a stereo algorithm that incorpo-
rates the detection of occlusion regions directly into the
matching process. We develop an dynamic program-
ming solution that obeys the occlusion and ordering
constraints to �nd a best path through the disparity
space image and does not use smoothness, intra- or inter-
scanline consistency criteria. To eliminate sensitivity to
occlusion cost we use ground control points (GCPs)|
high con�dence matches. These points improve results,
reduce complexity, and minimize dependence on occlu-
sion cost without arbitrarily restricting the recovered so-
lution.
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