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Abstract:

To make a Euclidean reconstruction of the world seen through a stereo rig, we can either
use a calibration grid, and the results will rely on the precision of the grid and the extracted
points of interest, or use self-calibration. Past work on self-calibration is focussed on the use
of only one camera, and gives sometimes very unstable results.

In this paper, we use a stereo rig which is supposed to be weakly calibrated using a
method such as the one described in [1]. Then, by matching two sets of points of the same
scene reconstructed from di�erent points of view, we try to �nd both the homography that
maps the projective reconstruction [2] to the Euclidean space and the displacement from
the �rst set of points to the second set of points.

We present results of the Euclidean reconstruction of a whole object from uncalibrated
cameras using the method proposed here.
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Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
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De la reconstruction projective à la reconstruction

euclidenne

Résumé :

Pour faire une reconstruction 3-D euclidienne du monde vu à travers une paire sté-
réoscopique de caméras, on peut soit utiliser les images d'une grille de calibrage, et les
résultats reposeront sur la précision de la grille et des points d'intérêt extraits, soit utiliser
une méthode d'auto-calibrage. Les précédents travaux sur l'auto-calibrage s'interessent le
plus souvent au calibrage d'une seule caméra et donnent la plupart du temps des résultats
instables.

La méthode présentée dans ce document consiste à d'abord e�ectuer un calibrage faible
d'une paire de caméras rigidement liées, comme décrit dans [1]. Ensuite, par la mise en
correspondance de deux ensembles de points 3-D provenant de de la meme scène reconstruite
à partir de points de vue di�érents, nous cherchons à la fois l'homographie qui transforme
la reconstruction projective [2] en reconstruction euclidenne et le déplacement rigide entres
les deux ensembles de points reconstruits.

Nous présentons des résultats de reconstruction euclidienne d'un objet entier en utilisant
la méthode proposée ici.

Mots-clé : stéréoscopie, vision 3-D
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2 Frédéric Devernay , Olivier Faugeras

1 Introduction

This article is concerned with the following problem. Given a weakly calibrated stereo
rig, i.e. a pair of camera with known epipolar geometry, we know that we can obtain 3-D
reconstructions of the environment up to an unknown projective transformation [2, 5]. We
call such a reconstruction a projective reconstruction. In particular, no a�ne or euclidean
information can a priori be extracted from it unless some further information is available [4].
The problem is then to determine what is the information that is missing and how can it be
recovered. We provide a very simple answer to both questions: with one rigid displacement
of the stereo rig, the three-dimensional structure of the scene can be in general uniquely
recovered up to a similitude transformation using some elementary matrix algebra, assuming
that reliable correspondences between the two projective reconstructions obtained from the
two viewpoints can be established. We call such a reconstruction a euclidean reconstruction.

This result does not contradict previous results, for example [7, 6] which showed that the
intrinsic parameters of a camera could be in general recovered from two displacements of
the camera because we are using simultaneously two cameras. The method developed here
avoids any reference to the intrinsic parameters of the cameras and does not require solving
the nonlinear Kruppa equations which are de�ned in the previous references.

2 Goal of the method

Our acquisition system consists of a pair of cameras. This system can be calibrated using
a weak calibration method [1], so that we can make a projective reconstruction [2] of the
scene in front of the stereoscopic system, by matching features (points, curves, or surfaces)
between the two images.

Projective reconstruction roughly consists of chosing �ve point matches between the two
views and chosing these �ve points as a projective basis to reconstruct the scene. The
�ve point matches can be either real points (i.e. points that are physically present in the
scene) or virtual points. The virtual point matches are calculated by choosing a point in
the �rst camera, and then choosing any point on its epipolar line in the second camera as
its correspondant, thus these points satisfy the epipolar constraint but are not the images
of a physical point. Let us call P the resulting projective basis which is thus attached to the
stereo rig.

Let us now consider a real correspondence (m1; m
0

1
) between the two images. We can

reconstruct the 3-D point M1 in the projective basis P . Let us now suppose that after
moving the rig to another place, the correspondence has become (m2;m

0

2
), yielding a 3-D

reconstructed point M2 in the projective basis P . We know from the results of [2, 5] that
the two reconstructions are related by a collineation of P3 which is represented by a full
rank 4�4 matrixH12 de�ned up to a scale factor. We denote by the symbol ~= the equality
up to a scale factor. Thus we have

M2 ~=H12M1

INRIA



From Projective to Euclidean Reconstruction 3

whereM1 andM2 are homogeneous coordinate vectors of M1 and M2 in P .
Let us now imagine for a moment that an orthonormal frame of reference E is attached

to the stereo rig. The change of coordinates from P to E is described by a full rank 4 � 4
matrix H12, also de�ned up to a scale factor. In the coordinate frame E the two 3-D
reconstructions obtained from the two viewpoints are related by a rigid displacement, not
a general collineation. This rigid displacement is represented by the following 4� 4 matrix
D12:

D12 ~=

�
R12 t12
0 1

�

where R12 is a rotation matrix. It is well known and fairly obvious that the displacement
matrixes form a subgroup of SL(4) which we denote by E(3).

We can now relate the three matrixes H12;H, and D12 (see �gure 1):

H12 ~=H
�1D12H (1)

Since the choice of E is clearly arbitrary, the matrix H is de�ned up to an arbitrary dis-
placement. More precisely, we make no di�erence between matrix H and matrix DH for an
arbitrary elementD of E(3). In mathematical terms, this means that we are interested only
in the quotient SL(4)=E(3) of the group SL(4) by its subgroup E(3). Therefore, instead
of talking about the matrix H we talk about its equivalence class H. The basic idea of our
method is to select in the equivalence class a canonical element D̂Ĥ, which is the same as
selecting a special euclidean frame Ê among all possible ones and show that equation (1)
can be solved in general uniquely for Ĥ and D0 ~=D�1D12D.

3 Colineations modulo a displacement

3.1 First method

Finding a unique representative of the equivalence classes of the group SL(4) modulo a
displacement in E(3) is equivalent to �nding a unique decomposition of a collineation (which
depends upon 15 parameters) into the product of a displacement (which depends upon 6
parameters) and a member of a subgroup of dimension 15� 6 = 9. In fact, we are looking
for something similar to the well-known QR or QL decompositions of a matrix into an
orthogonal matrix and an upper or lower triangular matrix, where �orthogonal� would be
replaced by �displacement�.

Let us thus consider an elementH of SL(4) and assume that the element h44 is non zero.
We de�ne the 3� 1 vector t by

t = [h14=h44; h24=h44; h34=h44]
T ; (2)

and write H as

H = h44

�
I3 t

0T 1

� �
A 0

lT 1

�
(3)
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D12
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H12
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H

Figure 1: Given the collineation H12 we want to �nd the collineation H that maps the
projective reconstruction to the euclidean reconstruction and the displacement D12.
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From Projective to Euclidean Reconstruction 5

Note that since detH = h44 detA 6= 0, this implies that detA 6= 0. Then there is a unique
QL decomposition of A, so that

H = h44

�
Q t

0T 1

� �
L 0

lT 1

�
(4)

where Q is orthogonal and L is lower triangular with strictly positive diagonal elements.
Thus the group SL(4)modulo the displacementsE(3) is isomorphic to the group of the lower
triangular matrices with strictly positive diagonal elements. Q is a rotation if detH > 0, or
a plane symetry if detH < 0 (remember that the sign of detH cannot be changed because
H is of dimension 4.

If we want to decompose H into a rotation and a translation, we have to remove the
constraint on the sign of one the elements of the diagonal of L, e.g. there is no constraint
on the sign of the �rst element of L. In practice, the decomposition will be done using a
standard QL decomposition, and then if Q is a plane symmetry rather than a rotation we
just have to change the sign of the �rst element of L and of the �rst column of Q, so that
the multiplication of both matrices gives the same result and Q becomes a rotation.

3.2 Second method

Another way to �nd a unique representative of the equivalence classes of the group of
collineations modulo a displacement is to build these representatives by applying constraints
on the group of collineations corresponding to the degrees of freedom of a displacement. A
simple representative is the one such that the image of the origin is the origin (i.e. the
translational term of the collineation is zero), the z axis is globally invariant (i.e. the axis
of the rotational term is the z axis), and the image of the y axis is in the yz plane the sign
of the y coordinate being invariant (i.e. the angle of the rotation is zero).

These constraints correspond to constraints on the form of matrix H. The image of the
origin by H is the origin itself i�:

H [0; 0; 0; 1] = [0; 0; 0; a] (5)

The z axis is globally invariant i�:

H [0; 0; 1; 0] = [0; 0; b; c] (6)

And the last constraint (the angle of the rotation is zero) corresponds to:

H [0; 1; 0; 0] = [0; d; e; f ] (7)

and a, d, and f have the same sign. Consequently, H being de�ned up to a scale factor and
non-singular, it can be written as:

H =

2
664

g 0 0 0
h d 0 0
j e b 0
k f c 1

3
775 (8)
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6 Frédéric Devernay , Olivier Faugeras

with d > 0 and f > 0. Thus equation 1 becomes:

H12 ~=L
�1D12 L (9)

where L is a lower triangular matrix with the second and third coordinates of the diagonal
positive and the last set to 1.

4 Back to the Euclidean world

In this section we show how to recover partly the Euclidean geometry from two projective
reconstruction of the same scene. The only thing we have to do is to solve equation 1 for
a lower triangular H. Let us �rst establish some properties of the colineation between the
two reconstructions.

Proposition 1 Let A and B be two projective reconstructions in P3, the projective space

of dimension 3, of the same scene using the same projection matrices from di�erent points
of view. Let H12 be the projective transformation (or colineation) from B to A. Then The

eigenvalues of H12 are � (with order of multiplicity 2), �ei�, and �e�i�, with � = 4
p
detH12,

and the last coordinate of H12, h44, is not zero.

Equation 1 yields thatH12 andD12 are conjugate (up to a scale factor), thenH12=
4
p
detH12

and D12 have the same eigenvalues, which are: 1 with order of multiplicity two, ei�, and
e�i�.

Before continuing, we have to prove the following lemma:

Lemma 2 for each 4�4 real matrix A whose eigenvalues are (1; 1; ei�; e�i�, there is a 4�4
lower triangular matrix L (lik = 0 for k > i) with lii > 0; i = 1; 2; : : : ; n de�ned up to a
scale factor, and a orthogonal matrix Q satisfying A = L�1QL. If detA = 1, then Q is a

rotation.

Since its eigenvalues are either real or conjugate of each other, a real matrix whose
eigenvalues are of module one can be decomposed in the form A = PD12P

�1, where D12 is
a quasi-diagonal matrix of the form:

D12 =

2
64

B1 0
. . .

0 Bk

3
75 with Bi = [�1] or

�
cos �i � sin �i
sin �i cos �i

�
(10)

We can then compute the QL decomposition of P�1, P�1 = Q0L which gives:

A = L�1Q0
T
D12Q

0L = L�1QL

where L is a lower triangular matrix with positive diagonal elements, andQ is an orthogonal
matrix. Of course, if detA = 1, then detQ = 1, and Q is a rotation.2

We now have all the tools needed to prove the following theorem.
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Theorem 3 Let A and B be two projective reconstructions of the same scene using the same

projection matrices from di�erent points of view. Let H12 be the projective transformation
(or colineation) from B to A. H12 can be decomposed in the form H12 = �L�1D12L, where

L is lower triangular and D is a displacement. The set of solutions is a two-dimensional
manifold, one dimension is the scale factor on the Euclidean space, the other is a parameter
corresponding to the choice of the absolute conic.

If we take three reconstructions taken from generic points of view, the full Euclidean
geometry can be recovered, up to a scale factor.

Let us suppose that detH12 = 1 to eliminate the scale factor on H12. Let

�
l

1

�
be an

eigenvector of HT

12
corresponding to the eigenvalue 1. This implies:

�
I 0

lT 1

�
H12 =

�
A b

0 1

� �
I 0

lT 1

�
(11)

so that H can be decomposed in the form:

H12 =

�
I 0

�lT 1

� �
A b

0 1

� �
I 0

lT 1

�
(12)

H12 =

�
A+ blT b

lT
��
1� lTb� I�A� 1� lTb

�
(13)

Using the lemma 2, A can be decomposed into:

A = L�1RL (14)

and we can write b as:
b = L�1t (15)

Thus,

H12 =

�
L�1RL + L�1tlT L�1t

lT
��
1� lTL�1t

�
I � L�1RL

�
1� lTL�1t

�
(16)

which can be factorized as:

H12 =

�
L�1 0

�lTL�1 1

� �
R t

0 1

� �
L 0

lT 1

�
(17)

We showed that this decomposition exists, but it is certainly not unique. If we count the
parameters on each side, H12 has 16 parameters minus 3 because 2 eigenvalues must be 1
and the two others have one degree of freedom (the angle of the rotation, �), which makes
13 parameters on the left side of equation 9, and on the right side we have 6 parameters for
the displacement and 9 for the lower triangular matrix which makes 15 parameters. Then
the solution to this equation is not unique and the set of soloutions must be a manifold of

RR n�2725



8 Frédéric Devernay , Olivier Faugeras

dimension 2. One of the two remaining parameters is the scale factor on the Euclidean space,
because we have no length reference. We can eliminate it by setting one of the parameters
of the diagonal of L to 1 (they can never be zero because L is non singular).

It can be shown [3, 8] that the other parameter represents the incertitude on the choice
of the absolute conic from H, because one displacement does not de�ne it uniquely, so that
we cannot have the complete Euclidean structure from one displacement (i.e. two projective
reconstructions). One way to deal with it would be to �x one of the intrinsinc parameters of
the cameras[8], e.g. by saying that the x and y axis of the cameras are orthogonal. Another
one is to simply use more than one displacement.

5 Results

To test this method, we took several stereoscopic pairs of images of an object using a
stereo rig (Figure 2). We then perform weak calibration on these stereo pairs and stereo by

Figure 2: One of the ten stereoscopic pairs used for the example

correlation. The result is a set of disparity maps, which are in fact projective reconstructions
if we take the pixel coordinates as the �rst two coordinates and the disparity as the thisd
coordinate (the last one being 1).

We have then 8 unknowns for the matrix L, as we showed before, and 6 unknowns for
each displacement, which makes 6 + 8(n� 1) unknowns, if n is the number of stereo pairs.
We compute these parameters using a least-squares technique: We match points between
successive stereo pairs and the error to minimize is the distance between the points of
reconstruction i transformedby the matrix L�1DL and the matched points of reconstruction
i + 1, thus the minimization is done in image and disparity space. Since image space is
Euclidean and disparity behaves well (it is bounded, at least), this distance should work
�ne.

In fact we recovered the complete Euclidean geometry of our object. Figure 3 shows the
reconstruction from the �rst stereo pair, as seen when transformed by matrix L, and Figures

INRIA



From Projective to Euclidean Reconstruction 9

4 and 5 show the complete reconstruction of the object from 10 stereo pairs, with lighting
or with texture mapping.

Figure 3: The Euclidean reconstruction from the �rst stereo pair

6 Conclusion

In this paper we presented a method to recover partly or completely the Euclidean geometry
using an uncalibrated stereo rig. All we need to do this is the fundamental matrix of the
stereo rig, which can be calculated by a robust method like [1], and point matches between
the di�erent stereo pairs, which could be computed automatically. Using multiple stereo

RR n�2725



10 Frédéric Devernay , Olivier Faugeras

Figure 4: The complete reconstruction of the object, rendered with lighting

INRIA



From Projective to Euclidean Reconstruction 11

Figure 5: The complete reconstruction of the object, rendered with lighting and texture
mapping from the original images
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12 Frédéric Devernay , Olivier Faugeras

pairs, we increase the stability of the algorithm by adding more equations than unknowns.
We presented results on a real object, which was fully reconstructed in Euclidean space using
a few stereo pairs.

The possible applications of this method include the possibility to acquire easily 3-D
objects using any set of uncalibrated stereo cameras, for example to modelize an object to
be used in virtual reality, or autonomous robot navigation.

In the near future we plan to enhance the system in order to make it completely au-
tomatic: we must have a way to match points automatically (feature tracking would be a
good starting point) a to perform fusion and simpli�cation of the 3-D reconstruction once
the registration is done.
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