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Abstract

Often, stereo matching is treated as two quite independent subprocesses: segmentation,

followed by matching. In this paper, we treat these processes as naturally related, with

partial matching results feeding back into the segmentation and both proceeding simultane-

ously in a cooperative fashion. We consider regions as the primitives to be matched, and our

implementation is based upon maintaining a hierarchy of segmented regions in each image,

corresponding to analysis at di�ering scales. The selection of a particular segmentation for

a region at an appropriate scale in one image is validated with reference to the optimal

matching region in the other image. We present examples of our methods applied to image

of real o�ce scenes.

1 Introduction

Vision enables a system to interact richly with its environment. A fundamental task solved

with facility by biological systems is the visual discrimination of objects and their situation

(shape/location) in space, and one of the strategies evolved for the job is stereo vision. Similarly,

stereo is one of the methods of choice for equipping autonomous robots with visual perception.

In this paper we present a novel approach to the combined problem of image segmentation and

object distance computation based on interaction between a segmentation component and a

stereo component. We believe the combination to be better than the parts taken individually.

Stereo matching with points and lines as the entities has become a well developed industry.

We investigate region based matching as we feel that many of the shortcomings inherent in

other approaches can be overcome by taking more developed entities. To cite but two examples:

mismatches over pairs of line elements are to be expected frequently due to the lack of features

available for distinguishing between segments; and occlusion e�ects are relatively more severe

when applied to points or segments than to regions.

The basic idea developed in this paper is that, since objects in the world being imaged give

rise to events in both stereo images (modulo occlusions and border e�ects), segmentation in

each image should be carried out in conjunction with segmentation in the other, thus, hope-

fully, producing a more reliable segmentation in both. Some of the computation can be done

independently, however, prior to any matching. If a number of (candidate) segmentations of

the images are computed for a range of parameters and organized in a tree structure, then

merging/splitting regions just amounts to moving up/down in the tree. Thus, the complete

procedure consists of two steps:

1. computing �ne to coarse hierarchical candidate segmentations, independently for each

image;

2. determining a �nal segmentation by choosing for each pixel the most appropriate region

level among the candidates, cooperatively with region based stereo matching between the

images.
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1.1 Related work

Region based methods seek homogeneity among pixels according to certain criteria (generally

based on grey level statistics). Pixels which satisfy given criteria are grouped together into

regions on the assumption that intra-object grey levels are homogeneous. A popular region

segmentation method is the quadtree based split-and-merge algorithm [1] and its variants (see [2]

for an early survey). The resultant square blocks of pixels are generally merged with adjacent

blocks on the basis of homogeneity criteria to produce the �nal segmentation into irregularly

shaped regions.

In [3], we can �nd some mathematical basis for region growing techniques using homogeneity

predicates. Image segmentation by region growing using multiple predicates has been proposed

by [4], although for a single level only.

Stereo matching has been done on the basis of the raw image grey levels by correlation

techniques, and by matching entities or features extracted from the images separately (we refer

the reader to the surveys [5, 6]). The most commonly used features are points representing

estimated edge elements. Line elements may also be used [7]; the only references we are aware

of for the use of regions as features are [8, 9].

In most approaches, feature extraction proceeds independently of and preceeds the stereo

matching. In contrast, our method depends in an essential fashion on the interaction between

segmentations in both the stereo images and matching between them.

2 Segmentation

We present here the creation of the segmentation hierarchies, step 1 above, which can be carried

out independently in each image. All segmentation levels are considered equally valid in that

we make no decision here as to which level segmentation a pixel belongs. As described in x3, it

is the interaction between images which decides the ultimate segmentation.

A predicate P de�nes a segmentation S = fR1; R2; : : :g of a set E when [1]

1. S is a partition of E;

2. P (Ri) is true for all i;

3. if i 6= j then P (Ri [Rj) is false.

A hierarchical segmentation is a sequence S0; S1; : : : ; Sn, where each level Si is a segmentation

de�ned by predicate P i and which contains the previous Si�1, i.e., 8R 2 Si�1; 9 �R 2 Si such

that R � �R. Note that each segmentation level may result from the successive application of

several predicates, P i
j ; j = 1; 2; : : : ; ni, say.

The pseudo code below gives the organization of the segmentation step. The outer while

loop computes (potential, or candidate) segmentations for an entire range of parameter values

in both images, arranged in the form of two trees (hierarchical graph structures). Level 0, at

the bottom of the hierarchy, consists of �ne segmentations, i.e., small regions, with increasing

levels producing progressively larger regions. The middle while loop indicates that various

predicates determine the merge criteria at each level, and the predicates are applied to produce

merges pairs of adjacent regions in the inner loop.

A segmentation depends on the order of the merges. To avoid having the order depend

on the image traversal strategy, obviously unsatisfactory, we carry out the merges in order of

increasing cost, according to the associated predicate.
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initialize regions;

initialize (level l = 0) segmentation parameters tl
1
; : : : ; tlm;

while (segmentation halt criterion not satisfied)

initialize (k = 0) cost function C l
k and predicate P l

k;

while (not all predicates already applied)

compute list of costs of merging adjacent regions

MC = fC l
k(Ri0 ; Rj0) � C l

k(Ri1 ; Rj1) � � � �g;

while (MC not empty)

if (P l
k(regions of head of MC) is true) merge regions;

MC tail of MC;

next predicate P l
k+1;

next segmentation (level l + 1) parameters;

2.1 Region growing

We produce segmentations S0; S1; : : : ; Sn proceeding `upwards' (�ne to coarse) from an initial

level by merging neighbouring regions satisfying homogeneity conditions (x2.1.2).

The region merging algorithm, described in the next section, may begin with pixel-sized

regions. For reasons of e�ciency, however, we begin with initial regions created by standard

quadtree operations [10]. This simple pre-processing allows a substantial reduction in the

number of initial regions.

i002g o

Figure 1: original stereo pair.

2.1.1 Levels of segmentation

We begin with the square quadtree regions output from the initialization, and choose fairly

selective parameters t0k (i.e., permitting only the most obvious region merges). The parameters

are then progressively relaxed, permitting more permissive merges, and the resolution of the

segmentations of the hierarchy moves from �ne to coarse. For each characteristic k, the pro-

gression of thresholds t0k < t1k < � � � < tnk controls the shape of the segmentation graph, and is

such that the levels become �ner towards the top. Generally, the ultimate tnk are taken to be

very large to permit all possible region merges.

Table 1 shows the organization of the parameters of the various segmentation levels. Note

that each level is created by the application of multiple merge predicates to pairs of adjacent

regions.

2.1.2 Merge conditions

The result of the initialization by quadtree merging is to segment the image into square regions

satisfying intensity homogeneity conditions. Grouping next considers adjacent regions (rather
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predicate threshold segm level

P n
0

tn
0

...
... n coarse

P n
m tnm
...

...
...

...

P 1

0
t1
0

...
... 1

...

P 1

m t1m
P 0

0
t0
0

...
... 0 �ne

P 0

m t0m
P q t0 quadtree initialization

Table 1: Successive predicates create various segmentation levels.

than regions with a common quadtree parent as in the initialization). Adjacent regions Rl
i; R

l
j

are merged into one region whenever the predicate P l
k is true, where, given a cost-of-merging

function C l
k,

P l
k(R

l
i; R

l
j) �

�
C l
k(R

l
i; R

l
j) < tlk

�
:

Multiple merging predicates may be successively applied at each level, as in Table 1. Our

criteria are derived from simple image statistics, e.g., P l
minmax

and P l
mean

are based on the cost

functions

C l
minmax

(Rl
i; R

l
j) = max(Rl

i [ R
l
j)�min(Rl

i [R
l
j)

C l
mean

(Rl
i; R

l
j) = jmean(Rl

i)�mean(Rl
j)j;

respectively.

We consider edge elements as `special regions' with the following properties: edge regions

merge to other edge regions (to create linked edges), but cannot merge to `normal' regions; an

edge region separating two regions can prevent the merging of those regions.

Thus, a merge between adjacent Rl
i; R

l
j is considered only if P l

edge
is true,

P l
edge

(Rl
i; R

l
j) �

 
edge length(Rl

i; R
l
j)

frontier length(Rl
i; R

l
j)

< tledge

!
;

where frontier length is the boundary length between the two regions (the number of pixels

where the regions are adjacent), and edge length is the number of actual edge pixels that

separate the two regions (pixels of edge regions that are adjacent to both regions). If we did not

use this criteria, two similar regions (in the sense of predicates) that are separated by an edge

region and that have a small frontier length would be merged, leaving the edge region isolated

inside the new region.

The grain of edge elements should be appropriate to the grain of the regions. As the

segmentation into regions becomes coarser, weak edges are converted into normal regions and

disappear by becoming merged into larger regions. Thus, at the coarsest segmentations, only

strong edges remain to constrain the merges.

2.1.3 Merge ordering

The order in which pairs of regions are merged has been shown to inuence the results of merging

algorithms [2]. Thus, the inevitable order dependence must be motivated by something more
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rigourous than just the image traversal strategy. We �rst associate a cost to merging each

mergeable pair of adjacent regions, and then merge regions in order of increasing cost. Once

the list of merge costs has been exhausted (perhaps up to some threshold), there is no more to

be done with the current predicate. We then consider the next predicate, or, if all predicates

have been applied to this level, relax the segmentation parameters to permit more permissive

merges, and carry out the above process at the new segmentation level. This is repeated until

the cost of region merges becomes prohibitive.

The resulting segmentations at various granularities are shown in Fig. 2.

[]i002g s[0: : : 3]

Figure 2: Levels of segmentation of the left image (�ne to coarse from upper left to lower right).

3 Region based stereo matching

The region based matching procedure exploits the hierarchical region graph described in the

previous section. It is during this matching process, step 2 in 1, that we make a committment

to a particular segmentation level for each region. Recall that the creation of the segmentations

is e�ectively just a pre-processing step and doesn't change the fundamentals of the algorithm.

Contrary to the segmentation, which proceeds bottom-up (�ne regions to coarse), matching

begins at the top of the segmentation tree and works downwards. This makes better use of larger

regions where the matches are expected to be more reliable. The region based stereo matching

associates regions in the left graph with regions in the right which are likely to be images of

the same physical object. Since image formation parameters can di�er, the same segmentation

parameter is not guaranteed to give similar results in both images. Thus, matching may occur

across levels of segmentation.

Let L;R be the sets of all the regions at the top (level n) of the segmentation structures

of the left and right images respetively, see the following pseudo-code. Given region Ln
i in the

left image, we consider a set of regions �n
i � R of the top level of the right image which are

admissible matches to Ln
i . The set �n

i could, in principle, be the entire R, but when we are

given the geometry of the cameras, we can restrict �n
i to regions whose centre of gravity is
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`close' to the epipolar of the centre of gravity of Ln
i . In addition, we further restrict the regions

of �n
i by imposing rough size-similarity (based on the number of pixels) and circularity (based

on the �rst moments) constraints relative to Ln
i .

L initialized to fLn
i g;

R initialized to fRn
j g;

do

for (all Li 2 L)

determine eligible regions �i � R;

for (all Rj 2 �i)

compute similarity s(Li; Rj);

while (maxLi2L;Rj2�i
s(Li; Rj)) sufficient

match Li; Rj;

remove Li and all relatives from L;

remove Rj and all relatives from R;

for (all R 2 L [R)

add descendents to L or R;

while L or R has changed;

For each Rn
j 2 �n

i , we then compute a measure of overall similarity

s(Ln
i ; R

n
j ) =

qX
p=1

wpsp(L
n
i ; R

n
j );

for weight wp and various resemblance functions between regions

sp(L;R) = 1�
min(Ap(L); Ap(R))

max(Ap(L); Ap(R))
:

Ap is some attribute of a region, for example, intensity mean, intensity variance, spatial moment,

etc. All pairs of matchable regions are stored in list form by order of decreasing similarity. Note

that the left region Li contributes a pair to the list for each element of �i, and that these pairs

are not necessarily contiguous on the list since they are ordered by similarity. Matching then

proceeds simply down the ordered list of similar pairs. Once a region �nds a match, any

other pairs of which it is a member are henceforth ignored, since their constituents are, by

construction, less similar. Pairs are considered in order and removed from the list until the

measure of similarity between the next pair falls below a given threshold.

It is at the moment of matching that we �nally make a de�nitive committment to a particular

segmentation. Only when a region is �nally matched, do we consider that its pixels constitute

a region in the sense of the �nal segmentation. If it happened that all regions were matched at

the coarsest level, that is, all the measures of similarity were su�cient, there would be no reason

to go further and we would consider it the segmentation. This is (unfortunately) unlikely to

occur, hence we proceed iteratively, downward in the tree.

All regions which remain unmatched are split, that is, their children (previously computed)

are all added to the region lists L;R and participate in the further matching. These regions now

undergo exactly the matching process described above. With the inclusion of a level of children,

inter-level matching becomes possible: s(Ln
i ; R) may indicate more similarity when R belongs

to some level other that n. Each iteration descends one level in the segmentation graph and

adds children regions from the new region to the sets of matchable regions. When the iteration

is carried to the limit, it leads to testing the matchability of each unmatched region in the left

image to each unmatched region at any level in the right. Note that this is not the same as

testing all regions against all other regions, with its potential for combinatorial explosion, since

regions are eliminated from consideration once they become matched (along with their parents

and children).
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Matching stops when there is nothing left to do, when no remaining pair of admissible

matches is su�ciently similar (and this is guaranteed to take place, since there are �nitely

many regions and some are eliminated from consideration at each iteration). It is also only

now that we consider a �nal segmentation to have taken place through the interaction due to

the matching component between the left and right potential segmentations. It may well be

that the resultant segmentations are incomplete in that not every image pixel is assigned to a

particular region, since not every region can necessarily be expected to �nd a match. However,

we have found that leaving some regions unmatched does not detract from the overall quality

of the results. It seems, in fact, preferable to accept only reliable matches than to force the

maximum number of matches and accept matches of dubious quality.

au choix: i00[1-9][gd] m*

Figure 3: Top: Matching regions. Bottom: resultant segmentation.

4 Conclusions

Our approach to stereo image analysis, presented in this paper, is based on three tenets, which

address the basic problem of how to make use of as much image information as possible. First,

image segmentation and matching should not be independent successive processes. There is

information in each image relevant to the analysis of the other, and this should be incorporated

into the segmentation as well as the matching step. Second, regions possess more structural

information which is stable to small changes of viewpoint than do edges or points. Hence, we

expect to make more stable matches by taking regions as the primitive elements. Third, and

related to the previous point, edge- and region-based methods are naturally complementary,

and should be used together for segmentation; neither should be considered as an end in itself.

We have developed programs to test these assumptions, and we feel that the results are indeed

promising.

7



Acknowledgements

Rachid Deriche provided an implementation of the Canny edge operator. Francis Ledru created

the synthetic o�ce scene, and Olivier Faugeras supplied the stereo pair of the o�ce scene.

References

[1] S.L. Horowitz and T. Pavlidis. Picture segmentation by a directed split-and-merge proce-

dure. In Proceedings of the Second International Joint Conference on Pattern Recognition,

pages 424{433, 1974.

[2] Steven W. Zucker. Region growing: childhood and adolescence. Computer Graphics and

Image Processing, 5:382{399, 1976.

[3] Jean-Michel Morel and Sergio Solimini. Segmentation d'images par m�ethode variationnelle:

une preuve constructive d'existence. Comptes Rendus de l'Acad�emie des Sciences, 1988.

[4] Andr�e Gagalowicz and Olivier Monga. A new approach to image segmentation. In Pro-

ceedings of the Eighth International Conference on Pattern Recognition, Paris, October

1986.

[5] Stephen T. Barnard and Martin A. Fischler. Computational stereo. Computing Surveys,

14(4):553{572, December 1982.

[6] Olivier D. Faugeras. A Few Steps toward Arti�cial 3 D Vision. Technical Report 790,

INRIA, February 1988.

[7] Nicholas Ayache and Francis Lustman. Fast and reliable passive stereovision using three

cameras. In International Workshop on Industrial Applications of Machine Vision and

Machine Intelligence, Tokyo, February 1987.

[8] Jean-Pierre Cocquerez and Andr�e Gagalowicz. Mise en correspondence de r�egions dans

une paire d'images st�er�eo. In Machines et R�eseaux Intelligents, Paris, May 1987.

[9] Jean-Pierre Cocquerez and Olivier Monga. Matching regions in stereovision. In Proceedings

of the Fourth Scandinavian Conference on Image Analysis, Stockholm, 1987.

[10] Hanan Samet. The quadtree and related hierarchical data structures. Computing Surveys,

16(2):187{260, June 1984.

8


