
.

.

UNIT�E DE RECHERCHE
INRIA-SOPHIA ANTIPOLIS

Institut National
de Recherche

en Informatique
et en Automatique

Sophia Antipolis
B.P. 109

06561 Valbonne Cedex
France

T�el.: 93 65 77 77

Rapports de Recherche

No1658

Programme 4
Robotique, Image et Vision

ITERATIVE POINT MATCHING

FOR REGISTRATION OF

FREE-FORM CURVES

Zhengyou ZHANG

Mars 1992

Iterative Point Matching for

Registration of Free-Form Curves

Une m�ethode it�erative bas�ee sur la mise

en correspondance de points pour recaler

des courbes de forme g�en�erale

Zhengyou Zhang

INRIA Sophia-Antipolis, 2004 route des Lucioles

BP 109, F-06561 Valbonne Cedex { FRANCE

E-Mail: zzhang@sophia.inria.fr

Abstract
Geometric matching in general is a di�cult unsolved problem in computer vision.

Fortunately, in many practical applications, some a priori knowledge exists which con-

siderably simpli�es the problem. In visual navigation, for example, the motion between

successive positions is usually either small or approximately known, but a more precise

registration is required for environment modeling. The algorithm described in this

report meets this need. Objects are represented by free-form curves, i.e., arbitrary

space curves of the type found in practice. A curve is available in the form of a set

of chained points. The proposed algorithm is based on iteratively matching points

on one curve to the closest points on the other. A least-squares technique is used

to estimate 3-D motion from the point correspondences, which reduces the average

distance between curves in the two sets. Both synthetic and real data have been used

to test the algorithm, and the results show that it is e�cient and robust, and yields

an accurate motion estimate. The algorithm can be easily extended to solve similar

problems such as 2-D curve matching and 3-D surface matching.

Keywords: Free-Form Curve Matching, 3-D registration, Motion Estimation, Dy-

namic Scene Analysis, 3-D Vision

R�esum�e
Le recalage de deux ensembles de primitives g�eom�etriques est un probl�eme en

g�en�eral tr�es dur et non r�esolu. Heureusement, dans beaucoup d'applications pratiques,

des connaissances a priori simpli�ent considerablement le probl�eme. Dans la navigation

�a base de vision, par exemple, le mouvement entre deux positions successives est

g�en�eralement soit petit soit approximativement connu. A partir de cette estim�ee grossi�ere,

notre algorithme permet de calculer le mouvement avec une tr�es bonne pr�ecision,

n�ecessaire �a l'obtention d'un mod�ele satisfaisant de l'environnement. Les objets sont

repr�esent�es au moyen de courbes. Chaque courbe �etant repr�esent�ee par une liste de

points châ�n�es, aucune contrainte n'est a priori impos�ee sur la forme de la courbe,

donc sur celle de l'objet. L'algorithme propos�e est bas�e sur la mise en correspondance

it�erative de points d'une courbe avec les points les plus proches d'une autre courbe. Une

technique de moindres carr�es est utilis�ee pour estimer le mouvement 3D �a partir des

correspondances de points. L'application de ce mouvement r�eduit la distance moyenne

entre les courbes dans les deux ensembles. Des donn�ees de synth�ese et des donn�ees

r�eelles one �et�e utilis�ees pour tester cet algorithme. Les r�esultats montrent qu'il est

e�cace et robuste, et donne une estimation pr�ecise du mouvement. L'algorithm peut

être facilement �etendu �a des probl�emes similaires comme le recalage de courbes 2D ou

le recalage de surfaces 3D.

Mots cl�es: Recalage de courbes, mise en correspondance 3D, estimation du mouve-

ment, analyse de sc�enes dynamiques, vision 3D

Contents

1 Introduction 3

2 Problem Statement 4

3 Iterative Pseudo Point Matching Algorithm 7

3.1 Finding Closest Points : 7

3.2 Pseudo Point Matching : 8

3.3 Updating the Matching : 8

3.4 Computing Motion : 10

3.5 Summary : 13

4 Practical Considerations 15

4.1 Search for Closest Points : 15

4.2 Curve Sampling : 17

4.3 Choice of the Parameter D : 19

4.4 Uncertainty : 20

4.5 Coarse-to-Fine Strategy : 22

5 Experimental Results 22

5.1 A Case Study : 22

5.2 Synthetic Data : 27

5.3 Real Data : 33

6 Discussions 36

6.1 Complexity : 36

6.2 How About Large Motion ? : : : : : : : : : : : : : : : : : : : 36

6.3 Multiple Object Motions : 37

6.4 Highlights With Respect to Previous Work : : : : : : : : : : : 37

7 Conclusions 38

References 40

1

List of Figures

1 Our algorithm exploits a local matching technique, and con-

verges to the closest local minimum, which is not necessarily

the optimal one : 6

2 A histogram of distances : 10

3 Inuence of curve sampling on motion estimation : : : : : : : 18

4 Computing the closest point : : : : : : : : : : : : : : : : : : : 18

5 Illustration of a perfect registration to show how to choose D : 19

6 Front and top views of the data : : : : : : : : : : : : : : : : : 23

7 Matched points in the �rst iteration before updating (front

and top views) : 24

8 Matched points in the �rst iteration after updating (front and

top views) : 24

9 Front and top views of the motion result after the �rst iteration 25

10 Matched points before and after updating in the second iter-

ation (only the front view) : 25

11 Front and top views of the motion result after ten iterations : 26

12 Evolution of the rotation and translation errors versus the

number of iterations : 27

13 Evolution of the rotation and translation errors versus the

number of iterations with a standard deviation equal to 2 : : : 29

14 Evolution of the rotation and translation errors versus the

number of iterations with a standard deviation equal to 8 : : : 30

15 Front and top views of two noisy curves with a standard de-

viation equal to 8 before and after registration : : : : : : : : : 31

16 Front and top views of two noisy curves with a standard de-

viation equal to 16 before and after registration : : : : : : : : 32

17 Images of a chair scene taken by the �rst camera from two

di�erent positions : 34

18 Superposition of two 3-D frames before and after registration:

front and top views : 35

2

1 Introduction

Geometric matching remains one of the bottlenecks in computer and robot

vision, although progress has been made in recent years for some particular

applications. There are two main applications: object recognition and visual

navigation. The problem in object recognition is to match observed data to

a prestored model representing di�erent objects of interest. The problem in

visual navigation is to match data observed in a dynamic scene at di�erent

instants in order to recover object motions and to interpret the scene. Best

and Jain [1], and Chin and Dyer [2] have made two excellent surveys of pre-

1985 work on matching in object recognition. Besl [3] surveys the current

methods for geometric matching and geometric representations while empha-

sizing the latter. Most of the previous work focused on polyhedral objects;

geometric primitives such as points, lines and planar patches were usually

used. This is of course very limited compared with the real world we live in.

Recently, curved objects have attracted the attention of many researchers

in computer vision. This paper deals with objects represented by curves,

particularly free-form curves, i.e., arbitrary space curves of the type found in

practice.

A free-form curve is represented by a set of chained points. Several match-

ing techniques for free-form curves have been proposed in the literature. In

the �rst category of techniques, curvature extrema are detected and then

used in matching [4]. However, it is di�cult to localize precisely curvature

extrema [5, 6], especially when the curves are smooth. Very small variations

in the curves can change the number of curvature extrema and their positions

on the curves. Thus, matching based on curvature extrema is highly sensi-

tive to noise. In the second category, a curve is transformed into a sequence

of local, rotationally and translationally invariant features (e.g., curvature

and torsion). The curve matching problem is then reduced to a 1-D string

matching problem [7, 8, 9]. As more information is used, the methods in

this category tend to be more robust than those in the �rst category. How-

ever, these methods are still subject to noise disturbance because they use

arclength sampling of the curves to obtain point sets. The arclength itself is

sensitive to noise.

The methods cited above exploit global matching criteria in the sense

that they can deal with two sets of free-form curves which di�er by a large

motion/transformation. This ability to deal with large motions is usually es-

3

sential for applications to object recognition. In many other applications, for

example, visual navigation, the motion between curves in successive frames is

in general either small (because the maximumvelocity of an object is limited

and the sample frequency is high) or known within a reasonable precision

(because a mobile vehicle is usually equipped with several instruments such

as odometric and inertial systems which can provide such information). In

the latter case, we can �rst apply the given estimate of the motion to the

�rst frame to produce an intermediate frame; then the motion between the

intermediate frame and the second frame can be considered to be small. In

this paper we propose a new method for the registration of curves undergoing

small motion.

The key idea underlying our approach is the following. Given that the

motion between two successive frames is small, a curve in the �rst frame is

close to the corresponding curve in the second frame. By matching points on

the curves in the �rst frame to their closest points on the curves in the second,

we can �nd a motion that brings the curves in the two frames closer (i.e.,

the distance between the two curves becomes smaller). Iteratively applying

this procedure, the algorithm yields a better and better motion estimate.

Interestingly enough, during the preparation of this paper Besl and McKay

published a paper in PAMI (issue February 1992) which exploited the same

idea [10]. Our work is an independent and much improved treatment. A

more detailed comparison is given in Sect. 6.4.

2 Problem Statement

A 3-D (space) curve segment C is a vector function x : [a; b]! R
3, where a

and b are scalar. In computer vision applications, the data of a space curve

are available in the form of a set of chained 3-D points from either a stereo

algorithm [11] or a range imaging sensor [12]. If we know the type of the

curve, we can obtain its description x by �tting, say, conics to the point

data [13, 14]. In this work, we shall use directly the chained points, i.e., we

are interested in free-form space curves without regard to particular curve

primitives.

The use of chained points is equivalent to a piecewise linear approximation

to a curve. Let xi;j (j = 1; : : : ; Ni) be the Ni chained points on the curve

Ci. The approximation error can be made arbitrarily small by increasing Ni

4

and decreasing the distances kxi;j �xi;j+1k. At every point xi;j, we compute

the tangent direction ui;j which will be used in the matching procedure. It

is not necessary in our algorithm to know precisely the tangent directions.

We use the simple estimate

ui;j = (xi;j+1 � xi;j�1)=kxi;j+1 � xi;j�1k ;

except at the beginning and end points where

ui;1 = (xi;2 � xi;1)=kxi;1 � xi;1k ;

ui;Ni
= (xi;Ni

� xi;Ni�1)=kxi;Ni
� xi;Ni�1k :

Given two 3-D frames of a scene observed at two di�erent positions, each

containing a set of curves. Let Ci (i = 1; : : : ;m) and C0k (k = 1; : : : ; n) be

the curves observed in the �rst and second frames, respectively. Let xi;j

(j = 1; : : : ; Ni) and x0k;l (l = 1; : : : ; Nk) be the points on the curves Ci and

C0j, respectively. The objective is to �nd the motion between the two frames,

i.e., R for rotation and t for translation, such that the following criterion

F(R; t) =
mX
i=1

NiX
j=1

pi;j d
2(Rxi;j + t; C0k) +

nX
k=1

NkX
l=1

qk;l d
2(RTx0k;l �RTt; Ci)

(1)

is minimized, where d(x; C) denotes the distance of the point x to the curve

C (to be de�ned below), pi;j (resp. qk:l) takes value 1 if the point xi;j (resp.

x0k;l) can be matched to a point on the curve C0k in the second frame (resp. Ci
in the �rst frame) and takes value 0 otherwise. Of course, the minimization

of Eq. (1) must be accompanied by the maximization of

mX
i=1

NiX
j=1

pi;j +
nX

k=1

NkX
l=1

qk;l :

If not, the trivial solution of Eq. (1) is achieved when pi;j = qk;l = 0 for all i,

j, k and l.

The above criteria are symmetric in the sense that neither of the two

frames prevails over the other. To economize computation, we shall only use

the �rst part of the right hand side of Eq. (1), together with the maximization

of
Pm

i=1

PNi

j=1 pi;j . In other words, the objective function to be minimized is

F(R; t) =
1Pm

i=1

PNi

j=1 pi;j

mX
i=1

NiX
j=1

pi;j d
2(Rxi;j + t; C0k) : (2)

5

This modi�cation only a�ects a little bit the accuracy of the �nal motion

estimation. It also slows down a little bit the convergence, in the sense of the

number of iterations, of the iterative algorithm described in the next section,

but speeds up the whole process.

Furthermore, we assume the motion between the two frames is small or

approximately known. In the latter case, we can �rst apply the approximate

estimate of the motion between the two frames to the �rst one to produce

an intermediate frame; then the motion between the intermediate frame and

the second frame can be considered to be small. Small depends essentially

on the scene of interest. If the scene is dominated by a repetitive pattern, the

motion should not be bigger than half of the pattern distance. For example,

in the situation illustrated in Fig. 1, our algorithm will converge to a local

minimum. In this case, other methods based on more global criteria, such

as those cited in the introduction section, must be used to recover a rough

estimation of the motion. The algorithm described in this paper can then be

used to obtain a precise motion estimate.

Fig. 1.
Our algorithm exploits a local matching technique, and converges to the clos-

est local minimum, which is not necessarily the optimal one

3 Iterative Pseudo Point Matching Algorithm

We describe in this section an iterative algorithm for curve registration by

matching points in the �rst frame, after applying the previously recovered

6

motion estimate (R; t), with their closest points in the second. A least-

squares estimation reduces the average distance between curves in the two

frames. As a point in one frame and its closest point in the other do not

necessarily correspond to a single point in space, several iterations are indis-

pensable. Hence the name of the algorithm.

3.1 Finding Closest Points

Let us �rst de�ne the distance d(x; C0k) between point x and curve C
0
k, which is

used in Eq. (2), the criterion de�ned in the last section. If C 0k is a parametric

curve (x0k : [a; b]! R
3), then

d(x; C0k) = min
u2[a;b]

d(x;x0k(u)) ; (3)

where d(x1;x2) is the Euclidean distance between the two points x1 and x2,

i.e., d(x1;x2) = kx1�x2k. In our case, C0k is given as a set of chained points

x0k;l (l = 1; : : : ; Nk). We simply de�ne

d(x; C0k) = min
l2f1;:::;Nkg

d(x;x0k;l) : (4)

See the next section for more discussions on the distance.

The closest point y in the second frame to a given point x is the one

satisfying

d(x;y) = min
k2f1;:::;ng

d(x; C0k) = min
k2f1;:::;ng

min
l2f1;:::;Nkg

d(x;x0k;l) :

The worst case cost of �nding the closest point is O(Nn
k), where N

n
k is the

total number of points in the second frame. The total cost while performing

the above computation for each point in the �rst frame is O(Nm
i Nn

k), where

Nm
i is the total number of points in the �rst frame. The use of k-D trees can

considerably speed up this process, see Sect. 4.1.

3.2 Pseudo Point Matching

For each point x we can always �nd a closest point y. However, because

there are some spurious points in both frames due to sensor capability, or

7

because some points visible in one frame are not in the other due to sen-

sor/object motion, it probably does not make any sense to pair x with y.

Many constraints can be imposed to remove such spurious pairings. For

example, distance continuity along a curve, which is similar to the �gural

continuity in stereo matching [15, 16], should be very useful to discard the

false matches. These constraints are not incorporated in our algorithm in

order to maintain the algorithm in its simplest form. Instead, we impose the

following two simple constraints, which are all unary.

The �rst is the maximum tolerance for distance. If the distance between

a point xi;j and its closest one yi;j, denoted by d(xi;j;yi;j), is bigger than the

maximum tolerable distance Dmax, then we set pi;j = 0 in Eq. (2), i.e., we

cannot pair a reasonable point in the second frame with the point xi;j. This

constraint is easily justi�ed for we know that the motion between the two

frames is small and hence the distance between two points reasonably paired

cannot be very big. In our algorithm, Dmax is set adaptively and in a robust

manner during each iteration by analyzing distances statistics. See Sect. 3.3.

The second is the orientation consistency. It can be easily shown that

the angle between the tangent of point x and that of its closest point y can

not go beyond the rotation angle between the two frames [17]. Therefore,

we can impose that the angle between the tangents of two paired points

should not be bigger than a pre�xed value �, which is the maximum of the

rotation angle expected between the two frames. In our implementation, we

set � = 60� to take into account noise e�ect in the tangent computation.

If the tangents can be precisely computed, � can be set to a smaller value.

This constraint is especially useful when the motion is relatively big.

3.3 Updating the Matching

Instead of using all matches recovered so far, we exploit a robust technique

to discard several of them by analyzing the statistics of the distances. To

this end, one parameter, denoted by D, needs to be set by the user, which

indicates when he considers the registration between two frames is good. See

Sect. 4.3 for the choice of the value D.

Let DI
max denote the maximum tolerable distance in iteration I. At this

point, each point in the �rst frame (after applying the previously recovered

motion) whose distance to its closest point is less than DI�1
max is retained,

together with its closest point and their distance. Let fxig, fyig, and fdig

8

be the resulting sets of original points, closest points, and their distances

after the pseudo point matching, and let N be the cardinal of the sets. Now

compute the mean � and the sample deviation � of the distances, which are

given by

� =
1

N

NX
i=1

di ;

� =

vuut 1

N

NX
i=1

(di � �)2 :

Depending on the value of �, we adaptively set the maximum tolerable

distance DI
max as shown below�:

if � < D /* the registration is quite good */

DI
max = �+ 3� ;

else if � < 3D /* the registration is still good */

DI
max = �+ 2� ;

else if � < 6D /* the registration is not too bad */

DI
max = �+ � ;

else /* the registration is really bad */

DI
max = � ;

endif

Here, � is the median of all the distances. That is, the number of di's less

than � is approximately equal to the number of di's larger than �.

At this point, we use the newly set DI
max to update the matching previ-

ously recovered: a paring between xi and yi is removed if their distance di
is bigger than DI

max. The pairings remained are used to compute the motion

between the two frames, as to be described below.

BecauseDmax is adaptively set based on the statistics of the distances, our

algorithm is rather robust to relatively big motion and to gross outliers (as to

be shown in the experiment section). For example, when the registration is

really bad, only half of the originally recovered matches are retained. Even if

there remain several false matches in the retained set, the use of least-squares

�Here we assume the distribution of distances is approximately Gaussian when the

registration is good. This has been con�rmed by experiments. A typical histogram is

shown in Fig. 2.

9

nu
m

be
r

 o
f

po
in

ts

distance

0 5 10 15 20 25
0

10

20

30

40

50

Fig. 2. A histogram of distances

technique yields still a reasonable motion estimate, which is su�cient for the

algorithm to converge to the correct solution.

3.4 Computing Motion

At this point, we have a set of 3-D points which have been reasonably paired

with a set of closest points, denoted respectively by fxig and fyig. Let N

be the number of pairs. Because N is usually much greater than 3 (three

points are the minimum for the computed rigid motion to be unique), it is

necessary to devise a procedure for computing the motion by minimizing the

following mean-squares objective function

F(R; t) =
1

N

NX
i=1

kRxi + t� yik
2 ; (5)

which is the direct result of Eq. (2) with the de�nition of distance given

by Eq. (4). Any optimization method, such as steepest descent, conjugate

10

gradient, or complex, can be used to �nd the least-squares rotation and

translation. Fortunately, several much more e�cient algorithms exist for

solving this particular problem. In the following, the dual number quaternion

method [18] is summarized.

A quaternion q can be considered as being either a 4-D vector [q1; q2; q3; q4]
T

or a pair (�q; q4) where �q = [q1; q2; q3]
T . A dual quaternion q̂ consists of two

quaternions q and s, i.e.,

q̂ = q+ "s ; (6)

where a special multiplication rule for " is de�ned by "2 = 0. Two important

matrix functions of quaternions are de�ned as

Q(q) =

"
q4I+K(�q) �q

��qT q4

#
; (7)

W(q) =

"
q4I�K(�q) �q

��qT q4

#
; (8)

where I is the identity matrix, and K(�q) is the skew-symmetric matrix de-

�ned as

K(�q) =

2
64

0 �q3 q2
q3 0 �q1
�q2 q1 0

3
75 :

A 3-D rigid motion can be represented by a dual quaternion q̂ satisfying

the following two constraints:

qTq = 1 and qTs = 0 : (9)

Thus, we have still six independent parameters for representating a 3-D mo-

tion. The rotation matrix R can be expressed as

R = (q24 � �qT �q)I+ 2�q�qT + 2q4K(�q) ; (10)

and the translation vector t = �p, where �p is the vector part of the quaternion

p given by

p =W(q)Ts : (11)

The scalar part p4 of p is always zero.

11

A 3-D vector x is identi�ed with the quaternion (x; 0), and we shall also

use x to represent its corresponding quaternion if there is no ambiguity in

the context. It can then be easily shown that

Rx+ t =W(q)Ts+W(q)TQ(q)x :

Thus the objective function Eq. (5) can be written as a quadratic function of

q and s

F =
1

N
[qTC1q+NsT s+ sTC2q+ const.] ; (12)

where

C1 = �2
NX
i=1

Q(yi)
TW(xi) = �2

NX
i=1

"
K(y)K(x) + yxT �K(y)x

�yTK(x) yTx

#
;

(13)

C2 = 2
NX
i=1

[W(xi)�Q(yi)] = 2
NX
i=1

"
�K(x)�K(y) x� y

�(x� y)T 0

#
;

(14)

const. =
NX
i=1

(xT
i xi + yT

i yi) : (15)

By adjoining the constraints (Eq. (9)), the optimal dual quaternion is

obtained by minimizing

F 0 =
1

N
[qTC1q+NsT s+ sTC2q+ const. + �1(q

Tq� 1) + �2(s
Tq)] ;

(16)

where �1 and �2 are Lagrange multipliers. Taking the partial derivatives

gives

@F 0

@q
=

1

N

h
(C1 + CT

1)q+ CT
2 s+ 2�1q+ �2s

i
= 0 ; (17)

@F 0

@s
=

1

N
[2Ns+ C2q+ �2q] = 0 : (18)

Multiplying Eq. (18) by q gives �2 = �qTC2q = 0, because C2 is skew-

symmetric. Thus s is given by

s = �
1

2N
C2q : (19)

12

Substituting these into Eq. (17) yields

Aq = �1q ; (20)

where

A =
1

2

�
1

2N
CT
2 C2 � C1 � CT

1

�
: (21)

Thus, the quaternion q is an eigenvector of the matrix A and �1 is the

corresponding eigenvalue. Substituting the above result back into Eq. (16)

gives

F 0 =
1

N
(const.� �1) : (22)

The error is thus minimized if we select the eigenvector corresponding to the

largest eigenvalue.

Having computed q, the rotation matrix R is computed from Eq. (10).

The dual part s is computed from Eq. (19) and the translation vector t can

then be solved from Eq. (11).

Other e�cient algorithms include quaternion method [19] and singular

value decomposition [20]. We have implemented both the quaternion method

and the dual number quaternion one. They yield exactly the same motion

estimate. One advantage of the dual quaternion method is that the matrices

C1 and C2 can be incrementally computed. Following [18], they then exhibit

better performance for the translation than the singular value decomposition

method.

3.5 Summary

We can now summarize the iterative pseudo point matching algorithm as

follows:

� input: Two 3D frames containing m curves Ci and n curves C0k, respec-

tively. Each curve C is a set of chained 3D points xj.

� output: The optimal motion between the two frames.

� procedure:

13

a) initialization

D0
max is set to 20D, which implies that every point in the �rst frame

whose distance to its closest point in the second frame is bigger than

D0
max is discarded from consideration during the �rst iteration. The

number 20 is not crucial in the algorithm, and can be replaced by a

larger one.

b) preprocessing

(i) Compute the tangent at each point of the �rst frame.

(ii) Compute the tangent at each point of the second frame.

(iii) Build the k-D tree representation of the second frame (see Sect. 4.1).

c) iteration until convergence of the computed motion

(i) Finding the closest points satisfying the distance and orientation

constraints, as described in Sect. 3.2.

(ii) Update the matching through statistic analysis of distances, as

described in Sect. 3.3.

(iii) Compute the motion between the two frames from the updated

matches, as decribed in Sect. 3.4.

(iv) Apply the motion to all points and their tangents in the �rst frame.

Several remarks should be made here. The construction and the use of

k-D trees for �nding closest points will be described in the next section. The

motion is computed between the original points in the �rst frame and the

points in the second frame. Therefore, the �nal motion given by the algorithm

represents the transformation between the original �rst frame and the second

frame. The iteration-termination condition is de�ned as the change in the

motion estimate between two successive iterations. The change in translation

at iteration I is de�ned as

�t =
ktI � tI�1k

ktIk
:

To measure the change in rotation, we use the rotation axis representation,

which is a 3-D vector, denoted by r. Let � = krk and n = r=krk, the relation

between r and the quaternion q is

q =

"
sin(�=2)n

cos(�=2)

#
:

14

We do not use the quaternions because their di�erence does not make much

sense. We then de�ne the change in rotation at iteration I as

�r =
krI � rI�1k

krIk
:

We terminate the iteration when both �r and �t are less than 1%.

4 Practical Considerations

In this section, we consider several important aspects in practice, including

search for closest points, curve sampling, choice of the parameter D, and

uncertainty.

4.1 Search for Closest Points

As can be observed in the last section, the search for the closest point to a

given point is O(N) in time, where N = Nn
k is the total number of points

in the second frame. Several methods exist to speed up the search process,

including bucketing techniques and k-D trees (abbreviation for k-dimensional

binary search tree). We have chosen k-D trees, because curves we have in

form of chained points are sparse in space. It is not e�cient enough to use

bucketing techniques because only a few buckets would contain many points,

and many others nothing.

The k-D tree is a generalization of bisection in one dimension to k di-

mensions [21]. In our case, k = 3. A 3-D tree is constructed as follows.

First choose a plane parallel to yz-plane passing through a data point P to

cut the whole space into two (generalized) rectangular parallelepipedsy such

that there are approximately equal numbers of points on either side of the

cut. We obtain then a left son and a right son. Next, each son is further

split by a plane parallel to xz-plane such that there are approximately equal

numbers of points on either side of the cut, and we obtain a left grandson

and a right one. We continue splitting each grandson by choosing a plane

parallel to xy-plane, and so on, letting at each step the direction of the cut-

ting plane alternate between yz-, xz- and xy-plane. This splitting process

yA generalized rectangular parallelepiped is possibly an in�nite volume.

15

stops when we reach a rectangular parallelepiped not containing any point;

the corresponding node is a leaf of the tree. A k-D tree can be constructed

in O(N logN) time with O(N) storage, which are both optimal [21].

We now investigate the use of the 3-D tree in searching for closest points.

In fact, given a point x in the �rst frame, instead of searching for its closest

point in the second frame, we search for all points whose distances to x is

within the maximum tolerable distance Dmax. Thus, for each point x we

have a list of candidates arranging in increasing distance order, the list being

possibly empty. This provides the user with the exibility to implementmore

sophisticated method, say relaxation, at the step of pseudo point matching.

The search algorithm is a recursive procedure. More formally, a node v of

the 3-D tree T is characterized by two items (P (v); t(v)). Point P (v) is the

point through which the space is cut into two. The parameter t(v), taking

value 0, 1, or 2, indicates whether the cutting plane is parallel to yz-, xz-, or

xy-plane. The algorithm accumulates the retrieved points in a list U external

to the procedure, initialized as empty. The search for the closest points to x

is e�ected by calling SEARCH(root(T);x;Dmax) of the following procedure:

� input: a point x, a 3-D tree T , and the maximumtolerable distanceDmax.

� output: a list U containing all points whose distances to x is within Dmax.

� procedure: SEARCH(v;x;Dmax)

| if (v == leaf) return ;

| c1 = x[t(v)] ;

| c2 = P (v)[t(v)] ; /* c2 has been used to cut the space */

| if (jc1 � c2j � Dmax) then if (kx� P (v)k � Dmax) then U (P (v) ;

| if (c1 �Dmax < c2) then SEARCH(leftson(v);x;Dmax) ;

| if (c2 �Dmax < c1) then SEARCH(rightson(v);x;Dmax) ;

Unfortunately, the worst-case search time is O(N2=3) with the 3-D tree

method (see [21, pp.77]). Other more e�cient algorithms exist, such as a

direct access method, but they require much more storage. In practice, we

observed good performance with 3-D trees. We found that the search time

depends heavily on Dmax. When Dmax is small, the search can be performed

very fast (see the experiment section). As we update Dmax during each

iteration, it becomes quite small after a few iterations.

16

4.2 Curve Sampling

As described earlier, we use chained points to represent a free-form curve,

which is equivalent to a piecewise linear approximation. We have also as-

sumed that the approximation error was small enough. However, the algo-

rithm developed in the last section is based on the use of a simpli�ed, instead

of real, de�nition of the distance between a point and a curve (see Eq. (4)).

That is, we use the minimum of all distances from a given point to each

sample point of the curve. Di�erent sampling of a curve (even the approx-

imation error is negligible) does a�ect the �nal estimation of the motion.

Take a simple example as shown in Fig. 3. The curve consists of two line

segments (Fig. 3a). The sampling in the �rst frame consists of three points

as indicated by the crosses in Fig. 3a. We have two samplings in the second

frame. The �rst sampling consists of three points as indicated by dark dots,

and the second sampling consists of �ve points by adding two additional

ones (indicated by empty dots) to the �rst sampling, as shown in Fig. 3a.

The motion result between the two frames with the �rst sampling is shown

in Fig. 3b, and that with the second sampling, in Fig. 3c. Clearly, more sam-

ples, better results. To solve the problem resulted from sampling, we should

ideally use the real distance de�nition (Eq. (3)) by considering all points (re-

ferred as curve points) on the line segments composing the curve, and use

the closest curve points instead of the closest sample points. However, we

lose the e�ciency achieved with sample points.

(a) (b) (c)

Fig. 3. Inuence of curve sampling on motion estimation

Now we describe two methods to overcome the above problem while main-

17

taining the e�ciency of the algorithm. The �rst consists in simply increasing

the number of sample points. The more the number of sample points, the

less the sampling will a�ect the �nal motion estimation. However, this causes

two problems. The �rst is the increase in the memory required. The second

is the increase in the search time because we increase also the size of the k-D

tree. Thus a tradeo� must be found. It is clear that the e�ect of sampling on

the �nal motion estimation is approximately less than a half of the average

sample interval, because in the case of a perfect registration (as shown, for

example, in Fig. 5) the distance between a point in the �rst frame and its

match in the second frame is not bigger than half of the corresponding in-

terval in the second frame. Therefore, let e (10 mm in our implementation)

be the tolerable e�ect of sampling, then if two neighboring sample points are

more than 2e away from each other, we add, between them, as many points

as necessary such that the distance between every two neighboring points is

less than or equal to 2e. This process is only needed for curves in the second

frame, and can be done in the preprocessing stage.

The second method is an approximation

x

x
x

x

2

1

0

c

Fig. 4.
Computing the closest

point

to the real de�nition of the distance between

a point and a curve (Eq. (3)). As described

in Sect. 4.1, for a given point x0, we obtain

a list of points in the second frame whose

distances to x0 are all less thanDmax. These

points are arranged in increasing distance

order. Let x1 and x2 be the �rst and second

points in the list. Instead of taking x1 as the

match of x0, we can assign a virtual point,

to be described below, to x0. The virtual point is xc, which is the closest

point on the line passing through x1 and x2 (see Fig. 4). It satis�es the

following relations

(xc � x0) � (x2 � x1) = 0 ;

(xc � x1)� (x2 � x1) = 0 ;

where � and � denote the inner product and cross product of two vectors.

Explicitly, it is

xc = x1 +
(x0 � x1) � (x2 � x1)

kx2 � x1k2
(x2 � x1) :

18

Before doing that, we should ensure that x1 and x2 are neighbors.

Each of the two methods has its own merit and drawback. We can expect

to obtain more precise estimation of motion with the second method. How-

ever, we must compute the virtual point for each point in the �rst frame and

during each iteration, while with the �rst method the additional computation

is only performed in the preprocessing stage. We have implemented the �rst

method because we can obtain an estimation with required precision.

4.3 Choice of the Parameter D

The only parameter needed to be supplied by the user is D, which indicates

when the registration between two frames can be considered to be good.

In other words, the value of D should correspond to the expected average

distance when the registration is good. When the motion is big, D should

not be very small. Because we set D0
max = 20D, if D is very small we cannot

�nd any matches in the �rst iteration and of course we cannot improve the

motion estimate. (A solution to this is to set D0
max bigger, say 30D).

The value of D has an impact on the con-

s�
�

�
�

�
�

�
�

s� � � � s

@
@

@
@

@ s

�@

�@

�@

Fig. 5.

Illustration of a per-

fect registration to

show how to choose D

vergence of the algorithm. If D is smaller

than necessary, then more iterations are re-

quired for the algorithm to converge because

many good matches will be discarded at the

step of matching update. On the other hand,

if D is much bigger than necessary, it is pos-

sible for the algorithm not to converge to the

correct solution because possibly many false

matches will not be discarded. Thus, to be

prudent, it is better to choose a small value

for D.

We have worked out a better solution to

D instead of an ad hoc choice. Let �D be the average distance between

successive points in the second frame, that is

�D =

Pn
k=1

PNk�1
l=1 kxk;l � xk;l+1kPn
k=1(Nk � 1)

:

Consider a perfect registration shown in Fig. 5. Points from the �rst frame

are marked by a cross and those from the second, by a dot. Assume that a

19

cross is located in the middle of two dots. Then in this case, the mean � of

the distances between two sets of points is equal to �D=2. Therefore, we can

expect � > �D=2 when the registration is not perfect. In our implementation,

we set D = �D which gives us satisfactory results.

4.4 Uncertainty

The importance of explicitly estimating and manipulating uncertainty is now

well recognized by the computer vision and robotics community [22, 23, 24,

25, 26]. This is extremely important when the data available have di�erent

uncertainty distribution for example in stereo where uncertainty increases

signi�cantly with depth. We have shown in [27] that accounting for uncer-

tainty in motion estimation (via, e.g., a Kalman �lter) yields much better

results.

For computational tractability and as a reasonable approximation, the

uncertainty in a 3-D point reconstructed from stereo is usually modeled as

Gaussian; that is, it is characterized by a 3-D position vector and a 3� 3 co-

variance matrix. The algorithm for motion computation described in Sect. 3.4

is very e�cient. However, it assumes each point has equal uncertainty. And

unfortunately it is di�cult to extend it to fully take uncertainty into account.

To fully take uncertainty into account, we can use for example Kalman �l-

tering techniques which have been widely and successfully applied to solve

quite a number of vision problems [28].

While I was saying di�cult to fully take uncertainty into account in the

algorithm described in Sect. 3.4, I do mean we can extend it to partially take

uncertainty into account. Indeed, we can associate, to each pairing between

the two frames, a weighting factor. Instead of minimizingEq. (5), we compute

R and t by minimizing the following function

F(R; t) =
1

N

NX
i=1

wikRxi + t� yik
2 ; (23)

where wi is the positive weighting factor associated with the pairing between

xi and yi. Under the dual quaternion representation, the objective function

F(R; t) can be written as a quadratic function of q and s

F =
1

N
[qTC1q+W sTs + sTC2q+ const.] ; (24)

20

where

C1 = �2
NX
i=1

wiQ(yi)
TW(xi) ; (25)

C2 = 2
NX
i=1

wi[W(xi)�Q(yi)] ; (26)

W =
NX
i=1

wi ; (27)

const. =
NX
i=1

wi(x
T
i xi + yT

i yi) : (28)

We can observe the similarity between Eq. (24) and Eq. (12). The quaternion

q is the eigenvector of the matrix

A =
1

2

�
1

2W
CT
2 C2 �C1 � CT

1

�

corresponding to the largest eigenvalue. The quaternion s is then given by

s = �
1

2W
C2q :

The weighting factor wi should be related to the uncertainty of Rxi+ t�

yi. Let �xi
, �yi

, and �i be the covariance matrices of xi, yi, and Rxi+t�yi.

�xi
and �yi

are given by the sensing system, e.g., stereo. �i is computed as

�i = R�xi
RT + �yi

;

where R takes the rotation matrix computed during a previous iteration as

an approximation. The trace of �i roughly indicates the magnitude of the

uncertainty of Rxi + t� yi. Therefore, we choose wi as

wi =
1

tr(�i)
=

1

tr(�xi
) + tr(�yi

)
:

Thus, the weighting factor is independent of the rotation.

21

4.5 Coarse-to-Fine Strategy

As to be shown in the next section, we �nd fast convergence of the algorithm

during the �rst few iterations that slows down as it approaches the local

minimum. We �nd also that more search time is required during the �rst

few iterations because the search space is larger at the beginning, as described

in Sect. 4.3. Since the total search time is linear in the number of points in

the �rst frame, it is natural to exploit a coarse-to-�ne strategy. During the

�rst few iterations, we can use coarser samples (e.g., every �ve) instead of all

sample points on the curve. When the algorithm almost converges, we use

all available points in order to obtain a precise estimation.

5 Experimental Results

The proposed algorithm has been implemented in C. In order to maintain

the modularity, the code is not optimized. The motion estimation algo-

rithm described in Sect. 4.4 is not used; that is, we do not take into account

measurement uncertainty in the experiments described below. In all these

experiments, the same parameters are used: e = 10 mm (see Sect. 4.2) and

D is computed as described in Sect. 4.3. It is thus never larger than 2e. The

program is run on a SUN 4/60 workstation, and any quoted times are given

for execution on that machine.

This section is divided into three subsections. In the �rst the algorithm is

applied to synthetic data. The results show clearly the typical behaviour of

the algorithm to be expected in practice. The second describes the robustness

and e�ciency of the algorithm using synthetic data with di�erent levels of

noise and di�erent samplings. The third describes the experimental results

with real data.

5.1 A Case Study

In this experiment, the parametric curve described by x(u) = [u2; 5u sin(u)+

10u cos(1:5u); 0]T is used. The curve is sampled twice in di�erent ways. Each

sample set contains 200 points. The second set is then rotated and translated

with r = [0:02; 0:25; �0:15]T and t = [40:0; 120:0; �50:0]T . We thus get two

noise-free frames. (The same noise-free data are used in the experiments

described in the next section.)

22

For each point, zero-mean Gaussian noise with a standard deviation equal

to 2 is added to its x, y and z components. We show in Fig. 6 the front and

top views of the noisy data. For visual convenience, points are linked. The

solid curve is the one in the �rst frame, and the dashed one, in the second

frame. The data are used as is; no smoothing is performed.

Fig. 6. Front and top views of the data

The �rst step is then to �nd matches for the points in the �rst frame. As

D0
max is big, each point has a match. We �nd 200 matches in total, which

are shown in Fig. 7, where matched points are linked. Many false matches

are observed. We then update these matches using the technique described

in Sect. 3.3, and 100 matches survive, which are shown in Fig. 8.

Even after the updating, there are still some false matches. Because there

are more good matches then false matches, the motion estimation algorithm

still yields a reasonable estimate. This can be observed in Fig. 9, where the

motion estimated has been applied to the points in the �rst frame. We can

observe the improvement of the registration of the two curves, especially in

the top view.

Now we enter the second iteration. We �nd at this time 176 matches,

which are shown in Fig. 10a. (Top view is not shown, because the two curves

are very close.) Several false matches are observable. After updating, 146

matches remain, as shown in Fig. 10b. Almost all these matches are correct.

Motion is then computed from these matches.

23

Fig. 7. Matched points in the �rst iteration before updating (front and top views)

Fig. 8. Matched points in the �rst iteration after updating (front and top views)

We iterate the process in the same manner. The motion result after 10

iterations is shown in Fig. 11. The registration between the two curves is

already quite good.

The algorithm yields after 15 iterations the following motion estimate:

r̂ = [2:442 � 10�2; 2:503 � 10�1; �1:484 � 10�1]T ;

t̂ = [3:879 � 101; 1:139 � 102; �4:967 � 101]T :

24

Fig. 9. Front and top views of the motion result after the �rst iteration

(a) (b)

Fig. 10.
Matched points before and after updating in the second iteration (only the

front view)

To measure the precision in motion estimation, we de�ne the rotation error

as

er = kr� r̂k=krk � 100% ; (29)

where r and r̂ are respectively the real and estimated rotation parameters,

25

Fig. 11. Front and top views of the motion result after ten iterations

and the translation error as

et = kt� t̂k=ktk � 100% ; (30)

where t is the real translation parameter and t̂ is the estimated one. In

Fig. 12, we show the evolution of the rotation and translation errors versus

the number of iterations. Fast convergence is observed during the �rst few

iterations and relatively slower later. After 15 iterations, the rotation error

is 1.6% and the translation error is 4.6%.

We show in Table 1 several intermediate results during di�erent itera-

tions. The results are divided into three parts. The second to fourth rows

indicate the execution time (in seconds) required for �nding matches, up-

dating the matching, and computing the motion, respectively. The �fth row

shows the values of Dmax used in di�erent iterations. The last row shows the

comparison of the numbers of matches found in di�erent iterations before

and after updating. We have the following remarks:

� Dmax almost decreases monotonically with the number of iterations. This is

because the registration becomes better and better, and Dmax is computed

dynamically through the statistic analysis of distances.

� The time required for �nding matches almost decreases monotonically, too.

This is because of the almost monotonic decrease of Dmax. Less search in

k-D tree is required when the search region becomes smaller.

26

E
rr

or
s

(%
)

Iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

Error in rotation
Error in translation

Fig. 12. Evolution of the rotation and translation errors versus the number of iterations

� The time required for updating the matching is negligible.

� The time required for computing the motion is almost constant, as it is

related to the number of matches (here almost constant). Furthermore,

the motion algorithm is very e�cient: about 0.05 seconds for 145 matches.

� The numbers of matches before and after updating do not vary much after

the �rst few iterations. This also implies that the Gaussian assumption of

the distance distribution is reasonable.

The total execution time is 6.5 seconds in this experiment.

5.2 Synthetic Data

In this section, we describe the robustness and e�ciency of the algorithm

using the same synthetic data as in the last section, but with di�erent levels

of noise and di�erent samplings. All results given below are the average of

ten tries.

27

Table 1. Several detail results in di�erent iterations

iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

matching time 2.20 1.30 0.62 0.33 0.25 0.28 0.22 0.17 0.15 0.17 0.15 0.12 0.13 0.13 0.12

update time 0.03 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.00 0.02

motion time 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.03 0.02 0.07 0.05 0.03 0.03 0.02 0.02

D
max

235 140 78.5 46.1 32.8 34.7 28.0 22.4 18.9 16.7 15.3 13.6 12.3 10.7 9.89

nb.
before

after

200

100

176

146

150

143

148

137

147

147

148

148

148

147

148

147

148

146

148

146

147

147

146

145

143

143

143

143

143

143

The �rst series of experiments are carried out with respect to di�erent

levels of noise. The standard deviation of the noise added to each point varies

from 0 to 20. Similar to Fig. 12, we show, as a sample, in Fig. 13 and Fig. 14

the evolutions of the rotation and translation errors versus the number of

iterations with a standard deviation equal to 2 and 8. From these results, we

observe that

� The translation error decreases almost monotonically, while the shape for

the rotation error is more complex.

� Noise has a stronger impact on the rotation parameters than on the trans-

lation parameters. When noise is small, there is in general a smaller error

in rotation than in translation. When noise is important, the inverse is

observed.

We think the above phenomena are due to the fact that the relation be-

tween the measurements and the rotation parameters is nonlinear while that

between the measurements and the translation parameters is linear.

To visually demonstrate the e�ect of the noise added and the ability of the

algorithm, we show in Fig. 15 and Fig. 16 two sample results. In each �gure,

the upper row displays the front and top views of the two noisy curves before

registration; the lower row displays the front and top views of the two noisy

curves after registration. In Fig. 15 and Fig. 16, we have added, to each x, y,

and z components of each point of the two curves, zero-mean Gaussian noise

with a standard deviation equal to 8 and 16, respectively. Even though the

curves are so noisy, the registration between them is surprisingly good.

We now summarize more results in Table 2. The rotation and translation

errors are measured in percents, and the execution time, in seconds. Each

28

E
rr

or
s

(%
)

Iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

Error in rotation

Error in translation

Fig. 13.
Evolution of the rotation and translation errors versus the number of itera-

tions with a standard deviation equal to 2

number shown is the average of 10 tries. 15 iterations have been applied. We

have the following conclusions:

� The errors in rotation and in translation increase with the increase in the

noise added to the data, as expected.

� Noise in the measurements has more e�ect in the rotation than in trans-

lation.

� The algorithm is robust. It yields a reasonable motion estimation even

when the data are signi�cantly corrupted.

� The execution time increases also with the increase in the noise added to

the data. This is because when the data are very noisy the value of Dmax

stays big, and the search have to be performed in a large space.

We now investigate the ability of the algorithm with respect to di�erent

samplings of curves. The same data are used. Zero-mean Gaussian noise with

a standard deviation equal to 2 is added to each x, y, and z components of

29

E
rr

or
 (

%
)

Iterations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

Error in rotation

Error in translation

Fig. 14.
Evolution of the rotation and translation errors versus the number of itera-

tions with a standard deviation equal to 8

Table 2. A summary of the experimental results with synthetic data

standard deviation 0 2 4 6 8 10 12 14 16 18 20

rotation error 2.25 2.12 4.63 9.62 13.73 14.31 20.47 18.07 23.87 37.04 33.20

translation error 1.77 4.36 4.55 4.84 5.70 7.81 8.93 9.89 17.15 22.00 27.17

execution time 6.27 6.82 8.58 9.26 11.12 11.86 12.59 13.35 16.40 16.56 17.32

each point of the two curves. We have already described in Sect. 4.2 the e�ect

of di�erent samplings of the curves in the second frames. Here we vary the

sampling of the curve in the �rst frame from 1 (i.e., all points) to 10 (i.e., one

out of every ten points). Ten tries are carried out for each sampling. The

errors in rotation and in translation (in percents), and the execution time (in

seconds) versus di�erent samplings are shown in Table 3. Two remarks can

be made:

� Generally speaking, the more samples there are in a curve, the less the

30

Fig. 15.
Front and top views of two noisy curves with a standard deviation equal to

8 before and after registration

error in the estimation of the rotation and translation will be. However,

the exact relation is not very clear. Consider sampling = 1 and sampling

= 10. The latter has only 20 points while the former has 200 points. The

motion error, however, is only twice as large.

� The execution time decreases monotonically as the number of sample

points decreases. The relation, however, is not linear. Fast decrease is

observed when the number of sample points is high.

In the foregoing discussions we have observed that using coarsely sam-

31

Fig. 16.
Front and top views of two noisy curves with a standard deviation equal to

16 before and after registration

pled points in the curves in the �rst frame does not a�ect too much the

accuracy of the �nal motion estimation, but it considerably speeds up the

whole process. It is natural to think about using a coarse-to-�ne strategy

such as that described in Sect. 4.5. The �nding of fast convergence of the

algorithm during the �rst few iterations (see Fig. 13 and Fig. 14) and the �nd-

ing of relatively expensive search (see Table 1) justify the following strategy.

During the �rst few iterations, we use coarser, instead of all, sample points,

which allows for �nding an estimation close to the optimal. We then use all

32

Table 3. Results with respect to di�erent samplings

fraction of points 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10

rotation error 2.12 3.44 4.19 4.88 4.09 7.52 4.75 6.09 5.98 4.90

translation error 4.36 5.14 4.27 4.75 4.11 6.67 8.54 7.45 8.52 7.34

execution time 6.82 3.53 2.41 1.85 1.52 1.28 1.11 1.01 0.89 0.83

sample points to re�ne this estimate. We have conducted ten experiments

using the same data as before by adding zero-mean Gaussian noise with a

standard deviation equal to 3. During the �rst �ve iterations, only 40 points

(one out of every �ve points) are used. These are followed by ten iterations

using all points. The average results of the ten experiments are: rotation

error = 4.56%, translation error = 4.29%, and execution time = 3.39 s. For

comparison, we performed 15 iterations using all points. The average results

of the ten tries are: rotation error = 4.68%, translation error = 4.14%, and

execution time = 7.49 s. Only little di�erence between the �nal motion esti-

mations is observed, but the algorithm is more than twice faster by exploiting

the coarse-to-�ne strategy.

5.3 Real Data

In this section, we provide an example with real data. A trinocular stereo

system mounted on our mobile vehicle is used to take images of a chair scene

(the scene is static but the robot moves). We show in Fig. 17 two images

taken by the �rst camera from two di�erent positions. The displacement

between the two positions is about 4 degrees in rotation and 100 millimeters

in translation. The chair is about 3 meters from the mobile vehicle.

The curve-based trinocular stereo algorithm developed in our labora-

tory [11] is used to reconstruct the 3-D frames corresponding to the two

positions. There are 36 curves and 588 points in the �rst frame, and 48

curves and 763 points in the second frame. We show in the upper row of

Fig. 18 the front view and the top view of the superposition of the two 3-D

frames. The curves in the �rst frame is displayed in solid lines while those

in the second frames, in dashed lines. We apply the algorithm to the two

frames. The algorithm converges after 12 iterations. It takes in total 32.5

seconds on a SUN 4/60 workstation and half of the time is spent in the �rst

33

Fig. 17. Images of a chair scene taken by the �rst camera from two di�erent positions

iteration (so we could speed up the process by setting D0
max to a smaller

value). The �nal motion estimate is

r̂ = [�1:527 � 10�3; 6:639 � 10�2; 2:894 � 10�3]T ;

t̂ = [�4:266 � 100; �1:586 � 100; �1:009 � 102]T :

The motion change is: �r = 0:78% and t = 0:53%. The result is shown in

the lower row of Fig. 18 where we have applied the estimated motion to the

�rst frame. Excellent registration is observed for the chair. The registration

of the border of the wall is a little bit worse because more error is introduced

during the 3-D reconstruction for it is far away from the cameras.

Now we exploit the coarse-to-�ne strategy. As before, we do coarse match-

ing in the �rst �ve iterations by sampling evenly one out of every �ve points

on the curves in the �rst frame, followed by �ne matching using all points.

The algorithm converges after 12 iterations and yields exactly the same mo-

tion estimation as when only doing �ne matching. The execution time, how-

ever, decreases from 32.5 seconds to 10.5 seconds, about three times faster.

If now we sample evenly one out of every ten points on the curves in the �rst

frame, and do coarse matching in the �rst �ve iterations and �ne match-

ing in the subsequent ones, the algorithm converges after 13 iterations (one

34

Fig. 18.
Superposition of two 3-D frames before and after registration: front and top

views

iteration more), and the �nal motion estimate is

r̂ = [�1:438 � 10�3; 6:653 � 10�2; 2:995 � 10�3]T ;

t̂ = [�4:282 � 100; �1:637 � 100; �1:007 � 102]T ;

which is almost the same as the one estimated using directly all points. The

motion change is: �r = 0:71% and t = 0:50%. The execution time is now 8.8

seconds.

35

6 Discussions

6.1 Complexity

As described earlier, each iteration of our algorithm consists of three main

steps. The �rst is to �nd closest points, at an expected cost of O(Nm
i logNn

k),

where Nm
i and Nn

k are the number of points in the �rst and second frames,

respectively. The second is to update the matching recovered in the �rst step,

at a cost of O(Nm
i). The last step is to compute the 3-D motion, also at a

cost of O(Nm
i). Thus the total complexity of our algorithm is O(Nm

i logNn
k).

For simplicity, we assume here Nm
i = Nn

k = N .

We now compare the complexity of our algorithm with that of the string-

based matching methods (e.g., [8]). Typically, a string-based matchingmethod

for registration of two curves each containing n points has a cost O(n log n).

Letm be the number of curves in each frame, and assume each curve contains

approximately the same number of points (i.e., n � N=m). Because there are

m possible pairings of curves in the two frames, the total cost of a typical

string-based matching method is

O(m2N

m
log

N

m
) = O(mN log

N

m
) :

A simple computation shows that if N � mm=(m�1), then mN log N
m

�

N logN . In practice, a curve contains at least two points, i.e., N � 2m.

Since 2m � mm=(m�1) for m � 2, our algorithm has a lower bound of com-

putational cost. If there is only one curve in each frame (i.e, m = 1 and

n = N), our algorithm has the same complexity as a typical string-based

matching method.

6.2 How About Large Motion ?

Because of the local property of the matching criterion used, our algorithm

converges to the closest minimum. It is thus best applied in situations where

the motion is small or approximately known, and a precise estimation of the

motion is required. In the case of large motion, the algorithm can be adapted

in two di�erent ways. The �rst way is to apply �rst the global methods

as cited in the introductory section to obtain an estimation, which is then

re�ned by applying the algorithm described in this paper. The second way is

36

to obtain a set of initial registrations by sampling the 6-D motion space, and

then apply our algorithm to each initial registration. The �nal estimation

corresponding to the global minimum error is retained as the optimal one.

This method has been used in [10] to solve the object recognition problem.

6.3 Multiple Object Motions

In a dynamic environment, there is usually more than one moving object. It

is important to have reliable algorithm for segmenting the scene into objects

using motion information. However, little work has been done so far in this

direction.

We have proposed in [29] a framework to deal with multiple object mo-

tions. It consists of two levels. The �rst level deals with the tracking of 3-D

tokens from frame to frame and the estimation of their motions. The pro-

cessing is completely parallel for each token. The second level groups tokens

into objects based on the similarity of motion parameters. Tokens coming

from a single object should have the same motion parameters. In [29] the

tokens used are 3-D line segments, and the experiments have shown that the

framework is exible and powerful. Now if we replace 3-D line segments by

3-D curves and estimate 3-D motion for each curve, the general framework

is still applicable.

6.4 Highlights With Respect to Previous Work

As noted in the introduction, independent work on curve matching was con-

ducted by Besl and McKay [10]. They use the same idea: iterativelymatching

points in one set to the closest points in another setz. The main di�erence

lies in the matching criterion. Refer to Eq. (2). In our algorithm, pi;j can

take value either 1 or 0 depending on whether the point in the �rst set has a

reasonable match in the second set or not. This is determined by the max-

imum tolerable distance Dmax, which, in turn, is set in a dynamic way by

analyzing the statistics of the distances as described in Sect. 3.3. Therefor,

our algorithm is capable of dealing with the following situations:

zBesl and McKay show two sets of data di�ering by a large motion. They then sample

the 6-D motion space to obtain a set of initial registrations, as described in Sect. 6.2.

However, they do not show the particular initial registration which leads to the �nal

result.

37

� Gross outliers in the data. The outliers are automatically discarded in the

matching and thus have no e�ect on the �nal motion estimation.

� Appearance and disappearance in which curves in one set do not appear

in the other set. This is usually the case in navigation where objects may

enter or leave the �eld of view.

� Occlusion. An object may occlude other objects, and it may itself be

occluded. This is common in both object recognition and navigation.

In the algorithm of Besl and McKay, pi;j takes always value 1. Thus, their

algorithm can only deal with the case in which the �rst set is a subset of the

second set. It is powerless in the situations described above.

Other di�erences between the two algorithms include:

� k-D trees are used in our algorithm to speed up the computation for �nding

the closest points.

� The dual quaternion method is used in our algorithm to compute the

3-D motion, which has a possibility to partially take into account the

uncertainty of data points. The singular value decomposition method is

used in their algorithm.

7 Conclusions

We have described an algorithm for the registration of free-form curves, i.e.,

arbitrary space curves of the type found in practice. We have used the

assumption that the motion between two frames is small or approximately

known, a realistic assumption in many practical applications including visual

navigation. A number of experiments have been carried out and good results

have been obtained.

Our algorithm has the following features:

� It is simple. The reader can easily reproduce the algorithm.

� It is extensible. More sophisticated strategies such as �gural continuity

can be easily integrated in the algorithm.

� It is general. First, the representation used is general for representing arbi-

trary space curves of the type found in practice. Second, the ideas behind

the algorithm are applicable to (many) other matching problems. The al-

gorithm can easily be adapted to solve for example 2-D curve matching

and 3-D surface matching.

38

� It is e�cient. The most expensive computation is the process of �nding

closest points, which has a complexity O(N logN). Exploiting the coarse-

to-�ne strategy described in Sect. 4.5 considerably speeds up the algorithm

with only a small change in the precision in the �nal estimation.

� It is robust to gross errors and can deal with appearance, disappearance

and occlusion of objects, as described in Sect. 6.4. This is achieved by ana-

lyzing dynamically the statistics of the distances, as described in Sect. 3.3.

� It yields an accurate estimation because all available information is used

in the algorithm.

� It does not require any preprocessing of 3-D point data such as for example

smoothing. The data are used as is in our algorithm. That is, there is no

approximation errorx.

� It does not require any derivative estimation (which is sensitive to noise), in

contrast with many other feature-based or string-based matching methods.

Our algorithm can only partially take the uncertainty of measurements

into account. To fully take into account the uncertainty, we should replace

the dual quaternion algorithm by other methods such as Kalman �ltering

techniques. This causes a signi�cant increase in the computational cost of

the algorithm.

Our algorithm converges to the closest local minimum, and thus is not

appropriate for solving large motion problems. Two possible extensions of

the algorithm to deal with large motions have been described in Sect. 6.2:

coupling with a global method or sampling the motion space.

In our algorithm, one parameter, the parameter D, needs to be set by

the user. It indicates when the registration can be considered to be good.

It has an impact on the convergence rate, as described in Sect. 4.3. In our

implementation, D is automatically computed using the intervals of chained

points. This method works well for all experiments we have carried out.

However, a better method probably exists. Intuitively, the parameter D is

related not only to the intervals of chained points but also to the shape of

the curves. D should be smaller for rough curves than for smooth ones. We

are currently investigating this issue.

We are currently extending the algorithm to solve surface matching prob-

lems arising in navigation. When a mobile vehicle navigates in a natural

xIt is certain that errors have been introduced during the reconstruction of 3-D points,

and that they have been propagated in the motion estimation

39

environment, a correlation-based stereo algorithm or a range �nder provides

a sequence of dense 3-D maps. Only minor modi�cations are needed in order

to produce an algorithm for registering successive 3-D maps.

Acknowledgment

The author would like to thank Olivier Faugeras for stimulating discussions

during the work, and Steve Maybank for carefully reading the draft version.

References

[1] P. Besl and R. Jain, \Three-dimensional object recognition," ACM Com-

puting Surveys, vol. 17, pp. 75{145, March 1985.

[2] R. Chin and C. Dyer, \Model-based recognition in robot vision," ACM

Computing Surveys, vol. 18, pp. 67{108, March 1986.

[3] P. J. Besl, \Geometric modeling and computer vision," Proc. IEEE,

vol. 76, pp. 936{958, August 1988.

[4] R. Bolles and R. Cain, \Recognizing and locating partially visible ob-

jects, the local-feature-focus method," Int'l J. Robotics Res., vol. 1,

no. 3, pp. 57{82, 1982.

[5] D. Walters, \Selection of image primitives for general-purpose visual

processing," Comput. Vision, Graphics Image Process., vol. 37, no. 3,

pp. 261{298, 1987.

[6] E. E. Milios, \Shape matching using curvature processes," Comput. Vi-

sion, Graphics Image Process., vol. 47, pp. 203{226, 1989.

[7] T. Pavlidis, \Algorithms for shape analysis of contours and waveforms,"

IEEE Trans. PAMI, vol. 2, no. 4, pp. 301{312, 1980.

[8] J. T. Schwartz and M. Sharir, \Identi�cation of partially obscured

objects in two and three dimensions by matching noisy characteristic

curves," Int'l J. Robotics Res., vol. 6, no. 2, pp. 29{44, 1987.

40

[9] H. Wolfson, \On curve matching," IEEE Trans. PAMI, vol. 12, no. 5,

pp. 483{489, 1990.

[10] P. J. Besl and N. D. McKay, \A method for registration of 3-D shapes,"

IEEE Trans. PAMI, vol. 14, pp. 239{256, February 1992.

[11] L. Robert and O. Faugeras, \Curve-based stereo: Figural continuity and

curvature," in Proc. IEEE Conf. Comput. Vision Pattern Recog., (Maui,

Hawaii), pp. 57{62, June 1991.

[12] R. E. Sampson, \3D range sensor-phase shift detection," Computer,

no. 20, pp. 23{24, 1987.

[13] R. Safaee-Rad, I. Tchoukanov, B. Benhabib, and K. C. Smith, \Accu-

rate parameter estimation of quadratic curves from grey-level images,"

CVGIP: Image Understanding, vol. 54, pp. 259{274, September 1991.

[14] G. Taubin, \Estimation of planar curves, surfaces, and nonplanar space

curves de�ned by implicit equations with applications to edge and

range image segmentation," IEEE Trans. PAMI, vol. 13, pp. 1115{1138,

November 1991.

[15] J. E. W. Mayhew and J. P. Frisby, \Psychophysical and computational

studies towards a theory of human stereopsis," Artif. Intell., vol. 17,

pp. 349{385, 1981.

[16] S. Pollard, J. Mayhew, and J. Frisby, \PMF: A stereo correspondence

algorithm using a disparity gradient limit," Perception, vol. 14, pp. 449{

470, 1985.

[17] Z. Zhang, O. Faugeras, and N. Ayache, \Analysis of a sequence of stereo

scenes containing multiple moving objects using rigidity constraints," in

Proc. Second Int'l Conf. Comput. Vision, (Tampa, FL), pp. 177{186,

IEEE, December 1988.

[18] M. W. Walker, L. Shao, and R. A. Volz, \Estimating 3-D location pa-

rameters using dual number quaternions," CVGIP: Image Understand-

ing, vol. 54, pp. 358{367, November 1991.

41

[19] O. Faugeras and M. Hebert, \The representation, recognition, and lo-

cating of 3D shapes from range data," Int'l J. Robotics Res., vol. 5,

no. 3, pp. 27{52, 1986.

[20] K. Arun, T. Huang, and S. Blostein, \Least-squares �tting of two 3-D

point sets," IEEE Trans. PAMI, vol. 9, pp. 698{700, September 1987.

[21] F. Preparata and M. Shamos, Computational Geometry, An Introduc-

tion. New-York: Springer, Berlin, Heidelberg, 1986.

[22] S. Blostein and T. Huang, \Error analysis in stereo determination of a

3-D point position," IEEE Trans. PAMI, vol. 9, pp. 752{765, November

1987.

[23] L. Matthies and S. A. Shafer, \Error modeling in stereo navigation,"

IEEE J. RA, vol. 3, pp. 239{248, June 1987.

[24] D. Kriegman, E. Triendl, and T. Binford, \Stereo vision and navigation

in buildings for mobile robots," IEEE Trans. RA, vol. 5, pp. 792{803,

December 1989.

[25] N. Ayache and O. D. Faugeras, \Maintaining Representations of the

Environment of a Mobile Robot," IEEE Trans. RA, vol. 5, pp. 804{819,

December 1989.

[26] R. Szeliski, \Bayesian modeling of uncertainty in low-level vision," Int'l

J. Comput. Vision, vol. 5, no. 3, pp. 271{301, 1990.

[27] Z. Zhang and O. Faugeras, \Determining motion from 3D line segments:

A comparative study," Image and Vision Computing, vol. 9, pp. 10{19,

February 1991.

[28] Z. Zhang and O. Faugeras, 3D Dynamic Scene Analysis: A Stereo Based

Approach. Springer, Berlin, Heidelberg, 1992.

[29] Z. Zhang and O. Faugeras, \Three-dimensional motion computation and

object segmentation in a long sequence of stereo frames," Int'l J. Com-

put. Vision, March 1992.

42

