
Modeling and Rendering Architecture from Photographs:

A hybrid geometry- and image-based approach

Technical Report UCB//CSD-96-893

January 19, 1996

Paul E. Debevec Camillo J. Taylor Jitendra Malik

debevec@cs.berkeley.edu camillo@cs.berkeley.edu malik@cs.berkeley.edu

545 Soda Hall 485 Soda Hall 725 Soda Hall

(510) 642 9940 (510) 642 5029 (510) 642 7597

Computer Science Division, University of California at Berkeley

Berkeley, CA 94720-1776

(510) 642 5775 (fax)

Abstract

We present an approach for creating realistic synthetic views of existing architectural

scenes from a sparse set of still photographs. Our approach, which combines both geometry-

based and image-based modeling and rendering techniques, has two components. The �rst

component is an easy-to-use photogrammetric modeling system which facilitates the recov-

ery of a basic geometric model of the photographed scene. The modeling system is e�ective

and robust because it exploits the constraints that are characteristic of architectural scenes.

The second component is a model-based stereo algorithm, which recovers how the real scene

deviates from the basic model. By making use of the model, our stereo approach can robustly

recover accurate depth from image pairs with large baselines. Consequently, our approach

can model large architectural environments with far fewer photographs than current image-

based modeling approaches. As an intermediate result, we present view-dependent texture

mapping, a method of better simulating geometric detail on basic models. Our approach

can recover models for use in either geometry-based or image-based rendering systems. We

present results that demonstrate our approach's abilty to create realistic renderings of archi-

tectural scenes from viewpoints far from the original photographs.

Keywords: Image-based modeling, image-based rendering, interactive modeling systems,

photogrammetry, reconstruction, view-dependent texture mapping, view interpolation, model-

based stereo

See also: http://www.cs.berkeley.edu/~debevec/Research/

1 Introduction

As the technology for experiencing immersive virtual environments develops, there will be

a growing need for interesting virtual environments to experience. So far, computer models

of architectural scenes have been especially popular subjects, mirroring the real-world pop-

ularity of architectural sites as places to visit. From this, there is a call for a method to

conveniently acquire photorealistic models of existing architecture.

The creation of three-dimensional models of existing architectural scenes with the aid of

the computer has been commonplace for some time, and the resulting models have proven to

be entertaining virtual environments as well as valuable visualization tools. Large-scale ef-

forts have pushed the campuses of Iowa State University, California State University { Chico,

and swaths of downtown Los Angeles [15] through the graphics pipeline. Unfortunately, the

modeling methods employed in such projects are very labor-intensive. They typically involve

surveying the site, locating and digitizing architectural plans (if available), and converting

existing CAD data (again, if available). Moreover, the renderings of such models are notice-

ably computer-generated; even those that employ liberal texture-mapping generally fail to

resemble real photographs.

Recently, creating models directly from photographs has received increased interest in

computer graphics. Since real images are used as input, such an image-based system has

an advantage in producing photorealistic renderings as output. Some of the most promising

of these systems [31, 22] rely on the computer vision technique of computational stereopsis

to automatically determine the structure of the scene from the multiple photographs avail-

able. As a consequence, however, these systems are only as strong as the underlying stereo

algorithms which recover the structure of the scene. This has caused problems because

state-of-the-art stereo algorithms have a number of signi�cant weaknesses; in particular, the

images analyzed by the algorithm need to be very similar for useful results to be obtained.

Because of this, the image-based techniques presented have used images that were taken a

short distance apart relative to the depth of objects in the scene, and in the case of [22],

have also employed signi�cant amounts of user input (see section 2.4) per image pair. These

concessions to the weakness of stereo algorithms bode poorly for creating large-scale, freely

navigable virtual environments from photographs. First, capturing the data for a realisti-

cally renderable model could require an impractical number of closely spaced photographs,

and second, deriving the depth from the photographs could require an impractical amount

of user input.

Our research aims to make the process of modeling architectural scenes more convenient,

more accurate, and more photorealistic than the methods currently available. To do this,

we have developed an approach that combines the strengths of both geometry-based and

image-based methods, as illustrated in Fig. 1. Our approach to modeling and rendering ar-

chitecture requires only a sparse set of photographs and can produce realistic renderings from

arbitrary viewpoints. In our approach, a basic geometric model of the architecture is recov-

ered interactively with an easy-to-use photogrammetric modeling system, and the remaining

geometric detail is recovered automatically through stereo correspondence. The �nal images

can be rendered with current image-based rendering techniques. Because only photographs

are required, our approach is neither invasive nor does it require architectural plans, CAD

models, or specialized instrumentation such as surveying equipment, GPS sensors or range

2

Modeling
Program

model

Rendering
Algorithm

rendered images

user input (images)

Geometry−Based
System

Model−Based
Stereo

depth maps

Image
Warping

rendered images

user inputimages

basic model

Photogrammetric
Modeling Program

Hybrid System

Stereo
Correspondence

Image
Warping

rendered images

(user input)

Image−Based
System

depth maps

images

Figure 1: Schematic of how our hybrid approach (center) combines geometry-based and

image-based approaches to modeling and rendering architecture from photographs. The

geometry-based approach illustrated places the majority of the modeling task on the user,

whereas the image-based approach places the majority of the task on the computer. Our

method divides the modeling task into two stages, one that is interactive, and one that is

automated. The dividing point we have chosen capitalizes on the strengths of both the

user and the computer to produce the best possible models and renderings using the fewest

number of photographs.

The dashed line in the geometry-based schematic indicates that images may optionally be

used in a modeling program as texture-maps. The dashed line in the image-based schematic

indicates that in some systems user input is used to initialize the stereo correspondence

algorithm. The dashed line in the hybrid schematic indicates that view-dependent texture-

mapping (as discussed in Section 5) can be used without performing stereo correspondence.

3

scanners.

2 Background and Related Work

The process of reconstructing three-dimensional structures from two-dimensional images

has long been a principal endeavour of the �eld of computer vision, and the process of

rendering such recovered structures is a subject which has recently received increased interest

in computer graphics. Although no general technique exists to derive models from images,

four particular areas of research have provided results that are applicable to the problem of

modeling and rendering architectural scenes. They are: Determining Structure fromMultiple

Views, Stereo Correspondence, Modeling from Range Images, and Image-Based Rendering.

2.1 Determining Structure from Multiple Views

Given the 2D projection of a point in the world, its position in 3D space could be anywhere

on a ray extending out in a particular direction from the camera's optical center. However,

when the projections of a su�cient number of points in the world are observed in multiple

images from di�erent positions, it is theoretically possible to deduce the 3D locations of the

points as well as the positions of the original cameras, up to an unknown factor of scale.

This problem has been studied in the area of photogrammetry, the discipline of measuring

the world using photographic images, mainly for producing topographic maps. Back in 1913,

Kruppa [18] proved the fundamental result that given two views of �ve distinct points, one

could recover the rotation and translation between the two camera positions as well as the

3D locations of the points (up to a scale factor). More recently, the problem has been studied

vigorously in computer vision under the title of structure from motion. Both its mathematical

and algorithmic aspects have been explored starting from the fundamental work of Ullman

[38] and Longuet-Higgins [20], in the early 1980s. Faugeras's book [10] provides a synthesis

of the state of the art as of 1992. A key realization was that the recovery of structure is

quite sensitive to noise in image measurements, and that the problem is made additionally

di�cult when the translation of the camera is small or when the scene points lie in nearly

degenerate con�gurations.

Attention has turned to using more than two views with image stream methods such as

[35] or recursive approaches [39, 6]. When a scaled orthography approximation is appro-

priate, [35] has shown excellent results, but a general solution for the case of perspective

projection remains elusive. In general, linear algorithms for the problem fail to make use

of all available information while nonlinear minimization methods are prone to di�culties

arising from local minima in the parameter space. An alternative formulation of the problem

tailored to structured environments [33] has used line segments instead of points for the as

image features, but the previously stated concerns were shown to remain largely valid. For

purposes of computer graphics, there is yet another problem: the models recovered by these

algorithms consist of sparse point �elds and individual line segments, which are not directly

renderable as photorealistic models.

In our approach, we exploit the fact that we are trying to recover geometric models of

architectural scenes, not arbitrary three-dimensional point sets. This enables us to include

4

additional constraints not typically available to structure-from-motion algorithms and over-

come the problems of numerical instability that plague such approaches. We demonstrate

our approach's successful use in an interactive system for building architectural models from

photographs.

2.1.1 Camera Calibration

Determining structure from multiple views is a simpler problem when the cameras are cal-

ibrated, that is, their intrinsic parameters (see [10]) are known. A camera's intrinsic pa-

rameters do not depend on its position in space and include the focal length, the center of

projection, and the aspect ratio of the image pixels. Real camera lenses can also introduce

signi�cant nonlinear radial distortion into images (an e�ect modeled in [17]), which is usu-

ally well-approximated by a simple parametric mapping. A camera's extrinsic parameters,

in contrast, relate the camera's frame of reference to the world coordinate system by a 3D

rigid transformation. Camera calibration is a well-studied problem both in photogrammetry

and computer vision; successful methods include [36] and [9]. Recent results in computer

vision [8] recover projective structure without calibrated cameras, but can not recover all

aspects of a�ne and euclidean structure without calibration information. In our work we

have used calibrated cameras.

2.2 Computational Stereo: determining correspondences in mul-

tiple views

The geometrical theory of structure form multiple views relies on being able to solve the

correspondence problem, which is to identify the points in two images that are projections

of the same point in the world. Humans solve this problem, seemingly e�ortlessly, in the

process of binocular stereopsis. Two slightly di�erent pictures of the world are imaged on

the two retinas and the visual cortex solves the correspondence problem to produce a vivid

perception of depth. Two terms used in reference to stereo are baseline and disparity. The

baseline of a stereo pair is the distance between the camera locations of the two images.

Disparity refers to the di�erence in image location between corresponding features in the

two images, which is projectively related to the depth of the feature in the scene.

Solving the correspondence problem with computer algorithms has proved hard in spite

of years of research on the problem [3, 7, 11, 16, 21, 25, 26]. The major sources of di�culty

include:

1. Foreshortening. Surfaces in the scene viewed from di�erent positions will be fore-

shortened di�erently in the images, causing the image neighborhoods of corresponding

pixels to appear dissimilar. Such dissimilarity can confound stereo algorithms that use

local similarity metrics to determine correspondences.

2. Occlusions. Depth discontinuities in the world can create half-occluded regions in an

image pair, which also poses problems for local similarity metrics.

3. Lack of Texture. Where there is an absence of image intensity features it is di�cult

for a stereo algorithm to correctly �nd the correct match for a particular point, since

5

many point neighborhoods will be similar in appearance.

In our approach, we address all three of these problems by making use of the geometric

model recovered in our interactivemodeling system. The model enables us to warp the images

to eliminate unequal foreshortening and to predict major instances of occlusion before trying

to �nd correspondences; it also suggests a reasonable default disparity value when there is a

lack of texture in the scene. Occlusions are further handled during the stereo correspondence

process by an iterative grouping and disparity re�nement stage. In section 6 we show how

the algorithm is able to successfully determine stereo correspondences, even with baselines

that are large with respect to the distance of the objects in the scene.

2.3 Modeling from Range Images

Instead of the anthropomorphic approach of using multiple images to reconstruct scene struc-

ture, an alternative technique is to use range imaging sensors [4] to directly measure depth

to various points in the scene. Early versions of these sensors were slow, cumbersome and

expensive. Altough many improvements have been made, the most convenient application

currently is for human scale objects and not for architectural scenes. Algorithms for combin-

ing multiple range images from di�erent viewpoints have been developed both in computer

vision [42, 30, 28] and in computer graphics [14, 37]. In many ways, range image based

techniques and photographic techniques are complementary and have their relative advan-

tages and disadvantages. Some advantages of modeling from photographic images are that

(a) 35mm cameras are inexpensive and widely available and (b) for some architecture that

no longer exists all that is available are photographs. Furthermore, range images alone are

insu�cient for producing renderings of a scene; photometric information from photographs

is also necessary.

2.4 Image-Based Rendering

In an image-based rendering system, the model consists of a set of images of a scene and their

corresponding z-bu�ers, or depth maps. The key observation in image-based rendering is that

when the depth of every point in an image is known, the image can be re-rendered from any

nearby point of view by projecting the pixels of the image to their proper 3D locations and

reprojecting them into a new virtual camera. Thus, the computer generates a new image of

the scene by warping the data in the images according to their depth values. A principal

attraction of image-based rendering is that it o�ers a method of rendering arbitrarily complex

scenes with a constant amount of computation required per pixel. Using this property, [41]

demonstrated how regularly spaced synthetic images (with their computed depth maps)

could be warped and composited in real time to produce a virtual environment.

Recently, [22] presented a real-time image-based rendering system that used panoramic

photographs with depth computed, in part, from stereo correspondence. The system suc-

cessfully demonstrated how a single real image could be re-rendered from nearby points of

view. A principal �nding of the paper was that extracting reliable depth estimates from

stereo is \very di�cult". The method was nonetheless able to obtain acceptable results for

nearby views using user input to aid the stereo depth recovery: the correspondence map for

6

each image pair was seeded with 100 to 500 user-supplied point correspondences and also

post-processed. Even with user assistance, the images used still had to be taken from close

together: the largest baseline described in the paper was �ve feet.

The requirement that samples be close together is a serious limitation to generating a

freely navigable virtual environment. Covering the size of just one city block (approximately

300 by 300 feet) would require 3,600 panoramic images spaced �ve feet apart. While image

compression could make the storage of such a large amount of image data possible, acquiring

so many photographs is clearly impractical. Moreover, even a dense lattice of ground-based

photographs would only allow renderings to be generated from within a few feet of the

original camera level, precluding any virtual
y-bys of the scene. Extending the dense

lattice of photographs into three dimensions would clearly make the acquisition process even

more di�cult. The approach described in this paper takes advantage of the structure in

architectural scenes so that it requires only a sparse set of photographs. For example, our

approach has yielded a virtual
y-around of a building from just twelve photographs.

3 Overview

In this section we outline the main components of our approach to modeling and rendering

architectural scenes from photographs. The key insight that distinguishes our approach from

a standard computer vision structure from motion/stereopsis formulation (and enables us

to bypass the di�culties discussed in Section 2) is that we are dealing with a particular

domain|architectural scenes|which has a particular set of characteristics that can be used

to make the problem simpler. Instead of posing the problem as one of recovering the 3D

positions of an arbitrary set of features, we formulate the problem as recovering a model of

the scene at two levels of resolution:

1. A coarse model of the scene. The coarse model is recovered as an arrangement

of geometric primitives via an interactive photogrammetric modeling system. For this

model, geometric details such as friezes, molding, and statuary are ignored. The result

is a model with relatively few parameters (e.g. forty-�ve for the clock tower model in

Fig. 2) that one can recover robustly from the images of the scene. Since the scene

model contains relatively few parameters, the reconstruction is very robust, unlike a

traditional structure-from-multiple-views algorithm.

2. A detailed model of the scene. Here the geometric details that were ignored in the

interactive modeling stage are computed as displacements from the coarse model. To

recover these displacements, we use a model-based stereo algorithm. Unlike previous

approaches, we exploit the availability of a coarse model to simplify the problem of

computing stereo correspondences: the model is used to pre-warp the images to factor

out unequal foreshortening and and eliminates all image disparity where there are no

deviations from the coarse model. As a principal result, we show that this warping

operation is as simple as projecting the images onto the model.

Our approach is successful not only because it synthesizes these geometry-based and

image-base techniques, but because it splits the task of modeling from images into sub-tasks

7

which are easily accomplished by a person (but not a computer algorithm), and sub-tasks

which are easily performed by a computer algorithm (but not a person.) The correspondences

for the reconstruction of the coarse model of the system are provided by the user in a

interactive way; for this purpose we have designed and implemented Fa�cade (Section 4), a

photogrammetric modeling system that makes this task quick and simple. Typically, the

correspondences the user must provide are few in number per image and easy to observe. By

design, the high-level model recoved by the system is precisely the sort of scene information

that would be di�cult for a computer algorithm to discover automatically. The geometric

detail recovery is performed by an automated stereo correspondence algorithm (Section 6),

which has been made feasible and robust by the pre-warping step provided by the coarse

geometric model. In this case, corresponding points must be computed for a dense sampling

of image pixels, a job too tedious to assign to a human, but feasible for a computer to perform

using model-based stereo.

Of course, many computer graphics systems (e.g. [1]) and applications (e.g. Doom by Id

Software) already make use of a well-known technique to simulate detail in coarse geometric

models: texture-mapping. As an intermediate result (Section 5), we relate our work to the

process of texture mapping, and develop a new rendering method, called view-dependent

texture mapping, that uses textures obtained from multiple views of the model to provide a

better illusion of depth than traditional texture mapping allows.

Our synthesis of geometry- and image-based techniques can create realistic renderings

of an architectural scene with a relatively sparse set of photographs (for example, three

photographs are used for the rendering in Fig. 3, twelve for Fig. 12, and four for Fig. 19).

To be more speci�c, we present a method to accurately recover dense depth measurements

using images that are taken far apart relative to the objects in the scene. Such large baselines

allow high-precision scene depth measurement, which makes it possible to render coherent

novel views far away from the original camera locations. In the absence of this framework,

the only demonstrated way to create freely navigable environments from photographs is to

acquire an inconveniently large number of closely spaced photographs.

4 The Interactive Modeling System

In this section we present Fa�cade, a simple interactive modeling system that allows a user to

construct a geometric model of a scene from a set of digitized photographs. In Fa�cade, the

user constructs a parameterized geometricmodel of the scene while the program computes the

parameters that best make the model conform to the photographs. We �rst describe Fa�cade's

user interface, and then present the underlying model representation and algorithms.

4.1 User Interface

Constructing a geometric model of an architectural scene using Fa�cade is an incremental and

straightforward process. Typically, the user selects a small number of photographs to begin

with, and models the scene one piece at a time. The user may re�ne the model and include

more images in the project until the model meets the desired level of detail.

Fig. 2 shows the two types of windows used in the Fa�cade program: image viewers and

8

model viewers. The user supplies input to the program by instancing the components of

the model, marking features of interest in the images, and indicating which features in the

images correspond to which features in the model. Fa�cade then computes the sizes and

relative positions of the components of the model that best �t the features marked in the

photographs.

Figure 2: An image viewer and a model viewer from the Fa�cade modeling system. The left

window shows a single photograph of Berkeley's clock tower, the Campanile, with features

the user has marked shown in green. The right window shows the recovered model, the

parameters of which have been computed by Fa�cade's reconstruction algorithm. Note that

only the left pinnacle has been marked|the remaining three (including one not visible) have

been recovered by encoding symmetry into the model. Although Fa�cade allows any number

of images to be used, in this case the constraints in the model have made it possible to

recover an accurate 3D model from a single photograph.

Components of the model, called blocks, are parameterized geometric primitives such as

boxes, prisms, and surfaces of revolution. A box, for example, is parameterized by its length,

width, and height. The user models each part of the scene as such a primitive; the user may

also create new block classes if desired. What the user does not need to specify are the

numerical values of the blocks' parameters; these parameters are recovered automatically

from the features marked in the photographs.

The user may choose to constrain the sizes and positions of any of the blocks. In Fig.

2, most of the blocks have been constrained to have equal length and width. Additionally,

the four pinnacles have been constrained to have the same dimensions. Blocks may also be

placed in constrained relations to one other. For example, many of the blocks in Fig. 2 have

9

been constrained to sit centered and on top of the block below. Such constraints are speci�ed

using a graphical 3D interface. When such constraints are given, they are automatically used

by Fa�cade to simplify the reconstruction problem.

The user marks edge features in the images using a simple point-and-click interface;

features may be marked with sub-pixel accuracy by zooming into the images. Fa�cade uses

edge rather than point features since they are easier to localize and less likely to be completely

obscurred. Only a section of any particular edge needs to be marked, so it is possible to

make use of partially visible edges. Fa�cade is able to compute accurate reconstructions with

only a portion of the visible edges marked in any particular image, particularly when the

user has embedded constraints in the model. We have also investigated a gradient-based

technique as in [23] to further assist the user.

With the edges marked, the user needs to specify which features in the model correspond

to which features in the images. This is accomplished by clicking on an edge in the model and

then clicking on the corresponding edge in one of the images. The user can rotate their view

of the model into a perferred orientation to make the process of forming correspondences

easier.

At any time, the user may instruct the computer to reconstruct the model. The computer

then solves for the parameters of the model that cause it to align with the observed features

in the images. During the reconstruction, the computer also determines and displays the

locations from which the original photographs were taken. For simple models consisting of

just a few blocks, a full reconstruction takes only a few seconds; for more complex models, a

full reconstruction can take a fewminutes. For this reason, the user can instruct the computer

to employ faster but less precise reconstruction algorithms during the intermediate stages of

modeling.

To verify the the accuracy of the recovered model and camera positions, Fa�cade can

project the model into the original photographs. Typically, the projected model deviates

from the photographs by less than a pixel. Fig. 3(a) shows the results of projecting the

edges of the model in Fig. 2 into the original image.

Lastly, the user may generate novel views of the model by positioning a virtual camera

at any desired location. Fa�cade will then use either the view-dependent texture-mapping

method of Section 5 or the detail recovery method of Section 6 to render a novel view of the

scene from the desired location. Fig. 2(b) shows an aerial rendering of the model using the

view-dependent texture-mapping method.

4.2 Model Representation

In Fa�cade, an architectural scene is represented as a set of polyhedral blocks. Each block

has a set of parameters which de�ne its size and shape. The coordinates of the vertices

of these polyhedra with respect to the block's internal frame of reference are expressed as

a linear functions of the block parameters. For example, in the wedge primitive shown

in Fig. 4, the coordinates of the vertex Po can be computed using the expression Po =

(�width;�height; length)T. Each block also has an associated bounding box whose exents

are also expressed as linear functions of the block parameters. For example, the minimum

x-extent of the block shown in Fig. 4, wedgeMIN
x , can be computed from the expression

wedgeMIN
x = �width.

10

(a) (b)

Figure 3: (a) The results of reprojecting the recovered model from Fig. 2 onto the original

photograph through the recovered camera position. The model conforms precisely to the

original image, which is an indication that the building has been accurately reconstructed.

(b) A synthetic view of the Campanile generated using the view-dependent texture-mapping

method described in Section 5. A real photograph from this position would be di�cult to

take since the camera position is 250 feet above the ground.

Y

P

X
Z

wedgeMIN

wedge
MAX

MAX
wedge

Z
 = length

 = height
Y

 = -width
X

o

Figure 4: A wedge block with its associated internal parameters and bounding box.

11

Each class of block used in our modeling program is de�ned in a simple text �le. Each

block �le speci�es the parameters of the block, the parameter coe�cients needed to compute

the vertices of the block and the extents of its bounding box, and the connectivity of the

block's vertices, edges, and faces. If desired, the user can add a custom block to their project

by authoring (or procedurally generating) a new block �le.

roof

first_storey

y

xz

ground_plane

y

xz

y

xz y

xz
entrance

ground_plane

first_storey

roof entrance

g (X)
1

g (X)
2

(a) (b)

Figure 5: (a) A simple geometric model of a building. (b) The model's tree representation

that would be used in Fa�cade. The nodes in the tree represent geometric primitives while

the links contain the spatial relationships between the blocks.

The blocks in Fa�cade are organized in a hierarchical tree structure as shown in Fig.

5(b). Each node of the tree represents an individual block, except for the root of the tree

which serves only to establish the world coordinate frame. The links in the tree contain the

spatial relationships between blocks, called relations. Similar tree representations are used

throughout computer graphics to model complicated objects in terms of simple geometrical

primitives.

The relation between a block and its parent can always be represented in terms of a

rotation matrix R and a translation vector t. This representation requires six degrees of

freedom: three for each of R and t. In architectural scenes, however, the relationship between

two blocks often has a simple form that can be represented with fewer parameters, and Fa�cade

allows the user to embed such constraints on R and t into the model. The rotation R between

a block and its parent can be speci�ed in one of three ways:

1. An unconstrained rotation (three degrees of freedom)

2. A rotation about a particular coordinate axis (one degree of freedom)

3. No rotation, or a �xed rotation (zero degrees of freedom)

Fa�cade also allows the user to specify constraints on each component of the translation

vector t. The user can either leave the translation along a given dimension unconstrained, or

force the bounding boxes of the two blocks to align themselves in some manner along that

dimension. For example, in order to ensure that the roof block in Fig. 5 lies on top of the

�rst storey block, the user could specify that the maximum y extent of the �rst storey block

12

should be aligned with the minimum y extent of the roof block. With this constraint, the

translation along the y axis is computed (ty = (first storeyMAX
y � roofMIN

y)) rather than

solved for.

Each parameter of each instantiated block is actually a reference to a named symbolic

variable, as illustrated in Fig. 6. As a result, two parameters of di�erent blocks (or of the

same block) can be equated by having each parameter reference the same symbol. This

facility allows the user to equate two or more of the dimensions in a model, which makes

modeling symmetrical blocks and repeated structure more convenient. Importantly, these

constraints reduce the number of degrees of freedom in the model, which, as we will show,

simpli�es the structure recovery problem.

Block2

 Block1
BLOCKS

height

length

type: wedge

width

height

width

length

type: box

name: "building_width"
value: 10.0

value: 20.0
name: "building_length"

value: 2.0

value: 4.0
name: "first_storey_height"

name:"roof_height"

VARIABLES

Figure 6: Implementation of the dimensions of a block primitive in terms of symbol refer-

ences. A single variable can be referenced in multiple places in the model, allowing constraints

of symmetry.

Once the blocks and their relations have been parameterized, it is straightforward to

derive expressions for the world coordinates of the block vertices. Consider the set of edges

which link a speci�c block in the model to the ground plane as shown in Fig. 5. Let

g1(X); :::; gn(X) represent the rigid transformations associated with each of these links, where

X represents the vector of all the model parameters. The world coordinates Pw(X) of a

particular block vertex P (X) is then:

Pw(X) = g1(X):::gn(X)P (X) (1)

Similarly, the world orientation vw(X) of a particular line segment v(X) is:

vw(X) = g1(X):::gn(X)v(X) (2)

In these equations, the point vectors P and Pw and the orientation vectors v and vw are

represented in homogeneous coordinates.

Modeling the scene with polyhedral blocks, as opposed to points, line segments, surface

patches, or polygons, is advantageous for a number of reasons:

� Most architectural scenes are well modeled by an arrangement of geometric primitives.

13

� Blocks implicitly contain common architectural elements such as parallel lines and right

angles.

� Manipulating block primitives is convenient since they are at a suitably high level of

abstraction; individual features such as points and lines are less manageable.

� A surface model of the scene is readily obtained from the blocks, so there is no need

to infer surfaces from discrete features.

� Modeling in terms blocks and relationships greatly reduces the number of parameters

that the reconstruction algorithm needs to recover.

The last point is crucial to the robustness of our reconstruction algorithm, and is illus-

trated best with an example. The model in Fig. 2 is parameterized by just 45 variables.

If each block in the scene were unconstrained (in its dimensions and position), the model

would have 240 parameters; if each line segment in the scene were treated independently,

the model would have 2,896 parameters. This reduction in the number of parameters greatly

enhances the robustness and e�ciency of the system as compared to traditional structure

from motion algorithms.

4.3 Reconstruction Algorithm

The reconstruction algorithm used in Fa�cade works by minimizing an objective function O
that sums the disparity between the projected edges of the recovered model and the edges

observed in the images, i.e. O =
P
Err i where Err i represents the disparity computed

for edge feature i. Estimates for the unknown model parameters and camera positions are

obtained by minimizing the objective function with respect to these variables. Our system

uses the the error function Err i presented in [33], which is described below.

v

d

<R, T>

image edge

image plane

Global Frame of Reference

3D line

m

Figure 7: Projection of a straight line onto a camera's image plane.

14

Fig. 7 shows how a straight line in the model projects onto the image plane of a camera.

The straight line can be de�ned by a pair of vectors hv; di where v represents the direction of

the line and d represents a point on the line. These vectors can be computed from equations

2 and 1 respectively. The position of the camera with respect to world coordinates is given

in terms of a rotation matrix Rj and a translation vector tj. The normal vector denoted by

m in the �gure is computed by the following expression:

m = Rj(v � (d� tj)) (3)

The projection of the line onto the image plane is simply the intersection of the plane

de�ned by m with the image plane, located at z = �f where f is the focal length of the

camera. Thus, the image edge is de�ned by the equation mxx+myy �mzf = 0.

Fig. 8 shows how the disparity between the observed image edge f(x1; y1); (x2; y2)g and

the predicted image line is calculated for each correspondence. Points on the observed edge

segment can be parameterized by a single scalar variable s 2 [0; l] where l is the length of

the edge. We let h(s) be the function that returns the shortest distance from a point on the

segment, p(s), to the predicted edge.

Observed edge segment

h2

mx * x + my*y -f*mz = 0
Predicted line:

h1

(x1, y1)

(x2, y2)

P(s)
h(s)

Figure 8: The error function used in the reconstruction algorithm. The heavy line represents

the observed edge segment (marked by the user) and the lighter line represents the model

edge predicted by the current camera and model parameters.

With these de�nitions, the total error between the observed edge segment and the pre-

dicted edge is calculated as:

Error =
Z l

0

h2(s)ds =
l

3
(h2

1
+ h1h2 + h2

2
) = mT (ATBA)m (4)

where:

m = (mx;my;mz)
T

A =

x1 y1 1

x2 y2 1

!

15

B =
l

3(m2

x +m2

y)

1 0:5

0:5 1

!

The objective function O is simply the sum of these error terms. This non-linear objective

function is minimized using a variant of the Newton-Raphson method described in [32]. Our

optimization technique is also similar to the one developed in [29].

The minimization procedure involves calculating the gradient and Hessian of the objec-

tive function with respect to the parameters of the camera and the model. As we have

shown, it is simple to construct symbolic expressions for m in terms of the unknown model

parameters. The minimization algorithm di�erentiates these expressions symbolically and

evaluates them to obtain the gradient and Hessian at each step. This procedure is computa-

tionally inexpensive since the expressions for d and v obtained from Equations 2 and 1 are

not complicated.

4.4 Computing an Initial Estimate

The objective function described in the previous section is non-linear with respect to the

model and camera parameters and consequently can have local minima. If the algorithm

begins at a random location in the parameter space, it could just as easily converge to a local

minimum instead of the globally best solution. In order to overcome this problem we have

developed a method to directly compute a good initial estimate for the model parameters

and camera positions that is near the globally best solution. In practice, our initial estimate

method consistently keeps the nonlinear minimization algorithm from converging to a local

minimum.

Our initial estimate method consists of two procedures performed in sequence. The �rst

procedure estimates the camera rotations while the second estimates the camera translations

and the parameters of the model. Both initial estimate procedures are based upon an

examination of Equation 3. From this equation the following constraints can be deduced:

mTRjv = 0 (5)

mTRj(d� tj) = 0 (6)

Given an observed edge uij the measured normal m0 to the plane passing through the

camera center is:

m0 =

0
B@

x1
y1
�f

1
CA�

0
B@

x2
y2
�f

1
CA (7)

From these equations, it can be deduced that any model edges of known orientation

constrain the possible values for Rj. Since most architectural models contain many such

edges, each camera rotation can be usually be directly estimated from the model independent

of the model dimensions and independent of the camera's location in space. Our method

does this by minimizing the following objective function O1 that sums the extents to which

the rotations Rj violate the constraints arising from Equation 5:

16

O1 =
X
i

(mTRjvi)
2; vi 2 fx̂; ŷ; ẑg (8)

Once initial estimates for the camera rotations are computed, Equation 6 is used to

obtain initial estimates for the remaining parameters determining the structure of the model

and the locations of the cameras. Equation 6 re
ects the constraint that all of the points

on the line de�ned by the tuple hv;di should lie on the plane with normal vectorm passing

through the camera center. This constraint is expressed in the following objective function

O2 where Pi(X) and Qi(X) are expressions for the vertices of an edge of the model.

O2 =
X
i

(mTRj(Pi(X)� tj))
2 + (mTRj(Qi(X) � tj))

2 (9)

In the special case where all of the block relations in the model have a known rotation,

this objective function becomes a simple quadratic form which is easily minimized by solving

a set of linear equations.

Once initial estimates have been obtained, the non-linear minimization over the entire

parameter space is applied to produce the best possible recovery of all the unknown pa-

rameters. Typically, the minimization requires fewer than ten iterations and adjusts the

parameters of the model by at most a few percent. In our experience, the recovered models

align closely with the original photographs. The next section presents such results.

4.5 Results

Figs. 2 and 3 showed the results of using Fa�cade to reconstruct a clock tower from a single

image. Figs. 9, 10, and 11 show the results of using Fa�cade to reconstruct a high school

building from twelve photographs. (The model was originally constructed from just �ve

images; the remaining images were added to the project for purposes of generating renderings

using the techniques of Section 5.) The photographs were taken with a calibrated 35mm still

camera with a standard 50mm lens and digitized with the PhotoCD process. Images at the

1536� 1024 pixel resolution were processed to correct for lens distortion, then �ltered down

to 768 � 512 pixels for use in the modeling system. Fig. 10 shows that the recovered model

conforms to the photographs to within a pixel, indicating an accurate reconstruction. Fig.

11 shows some views of the recovered model and camera positions.

5 Rendering the Model with View-Dependent Texture-

Mapping

In this section we present view-dependent texture-mapping, an e�ective method of rendering

the scene that involves projecting the original photographs onto the model. This form of

texture-mapping is most e�ective when the model conforms closely to the actual structure of

the scene, and when the original photographs show the scene in similar lighting conditions.

In Section 6 we will show how view-dependent texture-mapping can be used in conjunc-

tion with model-based stereo to produce realistic renderings when the recovered model only

approximately models the structure of the scene.

17

Figure 9: Three of the twelve photographs used to reconstruct a high school building. The

green lines indicate the edges the user has marked.

Figure 10: The edges of the reconstructed model, projected through the recovered camera

positions and overlaid on the corresponding images. The recovered model conforms to the

photographs to within a pixel in all twelve images, indicating that the building has been

accurately reconstructed.

18

(a) (b)

(c)

Figure 11: A high school building model, reconstructed from twelve photographs. (a) Over-

head view. (b) Rear view. (c) Aerial view showing the recovered original camera positions.

Two nearly coincident cameras can be observed in front of the building; their corresponding

photographs were taken from a second
oor window of the building across the street.

19

Since the camera positions of the orginal photographs are recovered during the modeling

phase, projecting the images onto the model is straightforward. In this section we �rst

describe how we project a single image onto the model, and then how we merge several image

projections to render the entire model. Unlike traditional texture-mapping, our method

projects di�erent images onto the model depending on the user's viewpoint. As a result, our

view-dependent texture mapping can give a better illusion of additional geometric detail in

the model.

5.1 Projecting a Single Image

The process of texture-mapping a single image onto the model can be thought of as replacing

each camera with a slide projector that projects the original image onto the model 1. When

the model is not convex, it is possible that some parts of the model will shadow others with

respect to the camera. Such shadowed regions could be determined using an object-space

visible surface algorithm, such as [5], or an image-space ray casting algorithm, such as in [2].

We use an image-space shadow map algorithm based on [40] since such an algorithm can be

implemented e�ciently using standard polygon rendering hardware.

Fig. 12, upper left, shows the results of mapping a single image onto the high school

building model. The recovered camera position for the projected image is indicated in the

lower left corner of the image. Because of self-shadowing, not every point on the model

within the camera's viewing frustum is mapped. The original image has been resampled

using bilinear interpolation; schemes less prone to aliasing are surveyed in [13].

5.2 Compositing Multiple Images

In general, each photograph will view only a piece of the model. Thus, it is usually necessary

to use multiple images in order to render the entire model from a novel point of view. The

top images of Fig. 12 show two di�erent images mapped onto the model and rendered from a

novel viewpoint. Some pixels are colored in just one of the renderings, while some are colored

in both. These two renderings can be merged into a composite rendering by considering the

corresponding pixels in the rendered views. If a pixel is mapped in only one rendering,

its value from that rendering is used in the composite. If it is mapped in more than one

rendering, the renderer has to decide which image (or combination of images) to use.

It would be convenient, of course, if the projected images would agree perfectly where

they overlap. However, the images will not necessarily agree if there is unmodeled geometric

detail in the building, or if the surfaces of the building are not perfectly Lambertian2. In this

1In the art exhibit Displacements [24], Michael Naimark performed such a replacement literally. The
model he used was the scene itself, painted white to catch the light of a �lm projector.

2The images may also fail to agree for reasons not associated with the architecture itself: if there are
errors in image alignment, uneven exposure between the photographs (due to di�erent camera settings or
lens vignetting), or if the pictures were taken under di�erent lighting conditions. Also, one image may view
the area to be rendered at a higher magni�cation than another, which will cause the resampled images to
di�er in their spatial frequency content. For purposes of this discussion we assume that the photographs are
properly aligned, evenly exposed under similar lighting, and that each image views the area to be rendered
with adequate spatial resolution to produce the desired novel view. These assumptions are most easily met
when high-resolution images are taken with a calibrated camera during a single session.

20

Figure 12: The process of assembling projected images to form a composite rendering. The

top two pictures show two images projected onto the model from their respective recovered

camera positions. The lower left picture shows the results of compositing these two renderings

using our view-dependent weighting function. The lower right picture shows the results of

compositing renderings of all twelve original images. Some pixels near the front edge of the

roof not seen in any image have been �lled in with the hole-�lling algorithm from [41].

21

case, the best image to use is clearly the one with the viewing angle closest to that of the

rendered view. However, using the image closest in angle at every pixel means that neigh-

boring rendered pixels may be sampled from di�erent original images. When this happens,

specularity and unmodeled geometric detail can cause visible seams in the rendering. To

avoid this problem, we smooth these transitions through weighted averaging as in Fig. 13.

a2

a1

virtual view

view 1

view 2

model

Figure 13: The weighting function used in view-dependent texture mapping. The pixel in

the virtual view corresponding to the point on the model is assigned a weighted average

of the corresponding pixels in actual views 1 and 2. The weights w1 and w2 are inversely

inversely proportional to the magnitude of angles a1 and a2. Alternately, more sophisticated

weighting functions based on expected foreshortening and image resampling can be used.

Even with this weighting, neighboring pixels can still be sampled from di�erent views at

the boundary of a projected image, since the contribution of an image must be zero outside

its boundary. To address this, the pixel weights are ramped down near the boundary of the

projected images. Although this method does not guarantee smooth transitions in all cases,

we have found that it eliminates most artifacts in renderings and animations arising from

such seams.

If an original photograph features an unwanted car, tourist, or other object in front of

the architecture of interest, the unwanted object will errantly be projected onto the surface

of the model. To prevent this from happening, the user may mask out the object by painting

over the obstruction with a reserved color. The rendering algorithm will then set the weights

for any pixels corresponding to the masked regions to zero, and decrease the weights of the

pixels near the boundary as before to minimize seams. Any regions in the composite image

which are occluded in every projected image are �lled in using the hole-�lling method from

[41].

In the discussion so far, projected image weights are computed at every pixel of every

projected rendering. Since the weighting function is smooth (though not constant) across

at surfaces, it is not generally not necessary to compute it for every pixel of every face of

the model. For example, using a single weight for each face of the model, computed at the

face's center, produces acceptable results. By coarsely subdividing large faces, the results

are visually indistinguishable from the case where a unique weight is computed for every

pixel. Importantly, this technique suggests a real-time implementation of view-dependent

texture mapping using a texture-mapping graphics pipeline to render the projected views,

22

(a) (b) (c) (d)

Figure 14: View-dependent texture mapping. (a) A detail view of the high school model.

(b) A rendering of the model from the same position using view-dependent texture mapping.

Note that although the model does not capture the slightly recessed windows, the windows

appear properly recessed because the texture map is sampled primarily from a photograph

which viewed the windows from approximately the same direction. (c) The same piece of

the model viewed from a di�erent angle, using the same texture map as in (b). Since the

texture is not selected from an image that viewed the model from approximately the same

angle, the recessed windows appear unnatural. (d) A more natural result obtained by using

view-dependent texture mapping. Since the angle of view in (d) is di�erent than in (b), a

di�erent composition of original images is used to texture-map the model.

and �-channel blending to composite them.

For complex models where most images are entirely occluded for the typical view, it

can be very ine�cient to project every original photograph to the novel viewpoint. Some

e�cient techniques to determine such visibility a priori in architectural scenes through spatial

partitioning are presented in [34].

6 Detail Recovery with Model-Based Stereo

The modeling system described in Section 4 allows the user to create a basic model of a scene,

but in general the scene will have additional geometric detail not captured in the model. In

our approach, the additional geometric detail is recovered automatically from the images

with a model-based stereo algorithm. Unlike a traditional stereo algorithm, our model-based

stereo algorithm measures deviations of the scene from an approximate model. This model

serves to place the images into an common frame of reference that makes the stereo depth

recovery much more e�ective. Like a traditional stereo algorithm, given two images (labeled

the key and o�set), our stereo algorithm computes a depth map for the scene from the point

of view of the key image.

As with any stereo algorithm, our algorithm works by determining correspondences be-

tween points in the key and o�set images that are projections of the same point in the scene.

Given a point in the key image, a correlation-based stereo algorithm attempts to determine

the corresponding point in the o�set image by comparing (using some form of correlation)

small pixel neighborhoods around the points. However, using correlation as the only fac-

tor in �nding correspondences is rarely successful because of foreshortening, occlusions, and

23

lack of texture as outlined in Section 2.2. Because of this, most stereo algorithms also use

additional contraints, such as the epipolar constraint, the ordering constraint, and piecewise

continuity:

The epipolar constraint. For every point P in the scene there is an epipolar plane which

passes through P and the centers of the key and o�set cameras. This epipolar plane

intersects the two camera image planes in epipolar lines as shown in Fig. 15. From the

�gure, it can be seen that corresponding points must always lie along corresponding

epipolar lines in the two images. Thus, when the camera positions are known, the

stereo algorithm only needs to search along a point's corresponding epipolar line to

�nd the point's correspondence. This reduces the search for correspondences from two

dimensions to just one. We will show how our model-based stereo approach can take

advantage of this constraint as conveniently as a traditional stereo algorithm.

The ordering constraint. This constraint enforces the observation that corresponding

points usually appear in the same order on the epipolar lines, that is, the disparity of

points along an epipolar line is monotone. The advantage of this assumption is that it

often helps the stereo alogorithm avoid bogus correspondences. In addition, it can be

implemented e�ciently using a dynamic programming technique [3]. The disadvantage

is that this constraint is violated in situtations where a su�ciently narrow object close

to the camera, such as a pole, is observed in front of a larger object further away. In

our case, the modeling process usually breaks the scene into surfaces that obey the

ordering constraint. When this is the case, the warping step of our model-based stereo

algorithm generates images that obey the ordering constraint.

Piecewise continuity. For the typical image, a correct depth map consists of regions of

continuously varying depth (corresponding to coherent objects) separated by depth

discontinuities (corresponding to object boundaries). A stereo algorithm can exploit

this constraint of piecewise continuity by requiring that neighboring pixels have similar

depths, except across object boundaries. This constraint applies particularly well to

the regular geometry characteristic of architectural scenes.

There are a number of obstacles that a stereo algorithm must overcome in order to

produce meaningful disparity values; some of these obstacles are discussed in Section 2.2.

For our application, the key and o�set images will typically be taken from widely varying

viewpoints relative to the depth of objects in the scene, which is a particularly di�cult

case for current stereo approaches for several reasons. First, the disparities between the key

and o�set images can be large which means that the stereo algorithm must investigate a

large number of potential matches for each pixel in the key image. Second, corresponding

regions in the two images will typically be viewed from di�erent directions and thus exhibit

varying degrees of foreshortening. This poses a signi�cant di�culty for simple window-

based correlation schemes since corresponding image neighborhoods will be scaled di�erently.

Third, the two images may have very di�erent patterns of occlusion | the entire side of a

building may be visible in one image but not the other. Again, such a signi�cant di�erence

between the images is di�cult for a traditional stereo algorithm to handle.

24

Epipolar Lines

Epipolar Plane

Key
Image Offset

Image

Key
Camera Center

Offset
Camera Center

Baseline

P

P’

P’’

p

qq’’ q’

Figure 15: The epipolar geometry of a stereo pair. A point in an image, p, and the two

camera centers determine an epipolar plane in space. The intersection of this plane with

either image plane forms an epipolar line. When a point in the scene is observed in just the

key image at p, it could actually be located at P , P 0, P 00, or any other point along the same

ray. Clearly, P , P 0, and P 00 all project to p's epipolar line in the o�set image at q, q0, and

q00. Thus, the correct match for p in the o�set image must lie along the o�set's epipolar line

corresponding to p.

25

We overcome these problems by taking advantage of a coarse geometric model of the

scene of the sort produced by the interactive technique of Section 4. Neighborhoods in the

key and o�set images are not compared directly; instead, the model is used to pre-warp

the o�set image into a new image, called the warped o�set image, which has the following

signi�cant properties:

1. Any region in the scene which lies on the coarse geometricmodel will have zero disparity

between the key image and the warped o�set image.

2. Disparity between the images depends only on the di�erence between the scene and

the model.

3. Di�erences in foreshortening between regions in the key and warped o�set images are

substantially reduced.

4. Any occlusions present in the model will be indicated in the warped o�set image.

5. A simple linear epipolar geometry is maintained despite the warping. In fact, the

epipolar lines of the warped o�set image are simply the epipolar lines of the key image.

Most importantly, this warping is easily accomplished by the following method: the o�set

image is projected onto the model and rendered from the point of view of the key image. Fig.

16 illustrates this warping with a fa�cade that has been coarsely modeled as a
at surface.

The key and warped o�set images appear similar|far more similar than the key and o�set

images appear. The di�erences between the key and warped o�set image (which will be

quanti�ed by the stereo algorithm) are due entirely to how the actual fa�cade deviates from

the coarse model. Warping with respect to a single plane (as opposed to an entire model)

has also been used to simplify image motion analysis in [27].

6.1 Establishing Stereo Correspondences

Once the o�set image is warped, the stereo algorithm is ready to begin comparing pixel

neighborhoods in order to establish stereo correspondences. However, the stereo algorithm

needs to know, for any pixel in the key image, which pixels in the warped o�set are geomet-

rically possible matches. In traditional stereo, the set of possible matches is indicated by the

o�set image's corresponding epipolar line, as in Fig. 15. However, the warped o�set image

is nonuniformly projected and reprojected in a way that clearly does not preserve the same

epipolar geometry. Because of this, we investigated exactly what sort of epipolar geometry

exists after the warping step. We were pleased to discover that the epipolar geometry re-

mains linear, regardless of the shape of the model. In fact, we discovered that the epipoles

of the warped o�set image are identical to the epipoles of the original key image. This result

can be established mathematically as follows:

Proposition 1 Let ek represent the epipole, the image of the center of projection of the

o�set camera in the key image. The disparity between a point in the key Image, pk and its

correspondent in the warped o�set image, qk is directed towards the epipole in the key image,

ek.

26

(a) Key Image (b) Warped O�set Image (c) O�set Image

Figure 16: (a) and (c) are two pictures of the entrance to the Peterhouse college chapel in

Cambridge, England. The Fa�cade system was used to model the fa�cade as a
at surface and

to recover the relative camera positions. In (b), the warped o�set image is produced by using

the o�set image to texture map the geometric model as viewed from the position of the key

image. In our model-based stereo approach, correspondence is performed between the key

and warped o�set images instead of the key and o�set images. This is advantageous because

the key and warped o�set images are typically very similar in appearance; any di�erences

are due to the unmodeled geometric detail.

P

Q = λP

qk pk
po

KEY OFFSET

geometric
model

epipole, ek

actual
structure

Figure 17: The epipolar geometry for model-based stereo.

27

Proof:

Fig. 17 shows a representation of an epipolar plane in a typical stereo con�guration.

The center of projection of the o�set camera de�nes the origin of our coordinate frame of

reference. P 2 <3 represents the coordinates of a point in the world, pk 2 P 2 represents the

projection of that point into the key image.

The 3x4 projection matrix Mk which de�nes how points in the world are mapped into

the key image can be written as follows:

Mk = Ak(R T) (10)

Where Ak 2 <3�3, R 2 SO(3) and T 2 <3. The projection of the point P onto the key

image, pk can then be computed from the following expression.

pk = Mk

P

1

!
= AkRP +AkT: (11)

The epipole in the key image ek is de�ned as the image of the center of projection of the

o�set camera in the key image.

ek = Mk

0

1

!
= AkT: (12)

The point Q represents the projection of point P onto the geometric model, that is

Q = �P for some � 2 <; qk is the image of the point Q on the warped o�set image.

qk =Mk

Q

1

!
= �AkRP +AkT = �pk + (1 � �)ek: (13)

From equations (11), (12) and (13):

(ek � pk) � qk = (ek � pk) � (�pk + (1 � �)ek) = 0 (14)

Equation (14) proves that pk, qk and ek are collinear which implies that the disparity

between a point in the key Image, pk and its correspondent in the warped o�set image, qk is

directed towards the epipole in the key image, ek. 2

E�ectively, Proposition 1 proves that the image warping process takes the points on

an epipolar line in the o�set image and maps them onto the corresponding epipolar line

in the key image. The stereo algorithm that we have developed makes use of this fact

by dividing the key image into a series of epipolar lines and determining correspondences

along each of these lines independently [10, 20]. The similarity of regions in the key and

warped o�set images is evaluated using normalized correlation, and a dynamic programming

approach is used to enforce the ordering constraint on the resulting disparity map [3]. After

a disparity map has been computed for the epipolar line, a smoothing procedure is invoked

which attempts to merge neighboring regions with similar disparities in order to produce a

smoother disparity map. This process also �lls in half-occluded regions in the key image

with appropriate disparity values. Fig. 18 shows the disparity map produced for the key

image in Fig. 16.

28

6.2 Stereo Results and Rerendering

Figure 18: An unretouched disparity map produced for the image in Fig. 16(a), using our

model-based stereo algorithm. In this image, points determined to lie closer to the front of

the face are shown in lighter shades. For nearly all of the points, the depth appears to be

computed accurately. In comparison, we found that naive correlation-based approaches were

unable to compute reasonable depth estimates for more than half of the points.

Once a depth map has been computed for a particular image, we can rerender the scene from

novel viewpoints using the methods described in [41, 31, 22]. Furthermore, when several

images and their corresponding depth maps are available, we use the weighting function

developed in the view-dependent texture-mapping method of section 5 to composite multiple

renderings. The images in Fig. 19 were produced through such compositing.

Figure 19: Novel views of the scene generated from four original photographs. These are

frames from an animated movie in which the fa�cade rotates continuously. The depth is

computed frommodel-based stereo and the renderings are made using image-based rendering

combined with view-dependent texture-mapping.

29

7 Conclusion

There are a several improvements and extensions that can be made to our approach. First,

surfaces of revolution (such as domes, columns, and minarets) represent an important compo-

nent of architecture that should be handled more e�ectively in the Fa�cade modeling system.

(The copper
ames atop the pinnacles in Fig. 2 are approximated by polyhedra with 48 faces

each.) Fortunately, there has been much work ([12], [19] [43]) that presents methods of re-

covering such structures from photographs. Curved objects are also entirely consistent with

our approach to recovering additional detail through model-based stereo: the image warping

process and the epipolar constraint in Observation 1 are valid for any model geometry.

Second, our stereo algorithm should be extended to recognize and model the photometric

properties of the materials in the scene. The system should be able to make better use of

photographs taken in varying lighting conditions, and it should be able to render images of

the scene as it would appear at any time of day, in any weather, and with any con�guration

of arti�cial light. Already, the recovered model can be used to predict shadowing in the

scene with respect to an arbitrary light source. However, a full treatment of the problem

will require estimating the photometric properties (i.e. the Bi-directional Re
ectance Dis-

tribution Functions) of the surfaces in the scene, and updating the image-warping methods

to render non-Lambertian materials.

To conclude, we have presented a new, photograph-based approach to modeling and

rendering architectural scenes. Our approach, which combines both geometry-based and

image-based modeling and rendering techniques, is built from two components that we have

developed. The �rst component is an easy-to-use photogrammetric modeling system which

facilitates the recovery of a basic geometric model of the photographed scene. The second

component is a model-based stereo algorithm, which recovers precisely how the real scene

deviates from the basic model. Our method makes use of view-dependent texture mapping,

a method we developed for using multiple images to better simulate geometric detail on

basic models. Through judicious use of images, models, and human assistance, our approach

is more convenient, more accurate, and more photorealistic than current geometry-based or

image-based approaches for modeling and rendering real-world architectural scenes.

7.1 Acknowledgments

This research was supported by a National Science Foundation Graduate Research Fellowship

and grants from Interval Research Corporation, the California MICRO program, and JSEP

contract F49620-93-C-0014. The authors also wish to thank Carlo Sequin, Tim Hawkins,

and David Forsyth for their valuable help in revising this report.

References

[1] Kurt Akeley. Realityengine graphics. In SIGGRAPH '93, pages 109{116, 1993.

[2] A. Appel. Some techniques for shading machine renderings of solids. In Proceedings of
the Spring Joint Computer Conference, pages 37{45, 1968.

30

[3] H. H. Baker and T. O. Binford. Depth from edge and intensity based stereo. In
Proceedings of the Seventh IJCAI, Vancouver, BC, pages 631{636, 1981.

[4] P. Besl. Active optical imaging sensors. In J. Sanz, editor, Advances in Machine Vision:
Architectures and Applications. Springer Verlag, 1989.

[5] F. C. Crow. Shadow algorithms for computer graphics. In SIGGRAPH '77, pages
242{247, 1977.

[6] James L. Crowley, Patrick Stelmaszyk, Thomas Skordas, and Pierre Puget. Measure-
ment and integration of 3-D structures by tracking edge lines. International Journal of
Computer Vision, 8(1):29{52, July 1992.

[7] D.J.Fleet, A.D.Jepson, and M.R.M. Jenkin. Phase-based disparity measurement.
CVGIP: Image Understanding, 53(2):198{210, 1991.

[8] O.D. Faugeras, Q.-T. Luong, and S.J. Maybank. Camera self-calibration: theory and
experiments. In European Conference on Computer Vision, pages 321{34, 1982.

[9] O.D. Faugeras and G. Toscani. The calibration problem for stereo. In Proceedings IEEE
CVPR 86, pages 15{20, 1986.

[10] Olivier Faugeras. Three-Dimensional Computer Vision. MIT Press, 1993.

[11] W. E. L. Grimson. From Images to Surface. MIT Press, 1981.

[12] A. Gross and T. Boult. Recovery of generalized cylinders from a single intensity view.
In Proceedings of the Image Understanding Workshop, pages 319{330, 1990.

[13] Paul S. Heckbert. Survey of texture mapping. IEEE Computer Graphics and Applica-
tions, 6(11):56{67, November 1986.

[14] H. Hoppe, T. DeRose, T. DUchamp, M. Halstead, H. Jin, J. McDonald, J. Schweitzer,
and W. Stuetzle. Piecewise smooth surface reconstruction. In ACM SIGGRAPH 94
Proc., pages 295{302, 1994.

[15] William Jepson, Robin Liggett, and Scott Friedman. An environment for real-time
urban simulation. In Proceedings of the Symposium on Interactive 3D Graphics, pages
165{166, 1995.

[16] D. Jones and J. Malik. Computational framework for determining stereo correspon-
dence from a set of linear spatial �lters. Image and Vision Computing, 10(10):699{708,
December 1992.

[17] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model for computer
graphics. In SIGGRAPH '95, 1995.

[18] E. Kruppa. Zur ermittlung eines objectes aus zwei perspektiven mit innerer orientierung.
Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. Ila., 122:1939{1948, 1913.

[19] J. Liu, J. Mundy, D. Forsyth, and C. Rothwell. E�cient recognition of rotationally
symmetric surfaces and straight homogeneous generalized cylinders. In Proc. IEEE
Conf. on Comp. Vision and Patt. Recog., pages 123{128, 1993.

[20] H.C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two pro-
jections. Nature, 293:133{135, September 1981.

31

[21] D. Marr and T. Poggio. A computational theory of human stereo vision. Proceedings
of the Royal Society of London, 204:301{328, 1979.

[22] Leonard McMillan and Gary Bishop. Plenoptic modeling: An image-based rendering
system. In SIGGRAPH '95, 1995.

[23] Eric N. Mortensen and William A. Barrett. Intelligent scissors for image composition.
In SIGGRAPH '95, 1995.

[24] Michael Naimark. Displacements. San Francisco Museum of Modern Art, 1984.

[25] H. K. Nishihara. Practical real-time imaging stereo matcher. Optical Engineering,
23(5):536{545, 1984.

[26] S. B. Pollard, J. E. W. Mayhew, and J. P. Frisby. A stereo correspondence algorithm
using a disparity gradient limit. Perception, 14:449{470, 1985.

[27] Harpreet S. Sawhney. Simplifying motion and structure analysis using planar parallax
and image warping. In International Conference on Pattern Recognition, 1994.

[28] H. Shum, M. Hebert, K. Ikeuchi, and R. Reddy. An integral approach to free-formed
object modeling. ICCV, pages 870{875, 1995.

[29] Steven Smith. Geometric Optimization Methods for Adaptive Filtering. PhD thesis,
Harvard University, Division of Applied Sciences, Cambridge MA, September 1993.

[30] M. Soucy and D. Lauendeau. Multi-resolution surface modeling from multiple range
views. In Proc. IEEE Computer Vision and Pattern Recognition, pages 348{353, 1992.

[31] R. Szeliski. Image mosaicing for tele-reality applications. In IEEE Computer Graphics
and Applications, 1996.

[32] Camillo J. Taylor and David J. Kriegman. Minimization on the lie group so(3) and
related manifolds. Technical Report 9405, Center for Systems Science, Dept. of Electrical
Engineering, Yale University, New Haven, CT, April 1994.

[33] Camillo J. Taylor and David J. Kriegman. Structure and motion from line segments in
multiple images. IEEE Trans. Pattern Anal. Machine Intell., 17(11), November 1995.

[34] S. J. Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and
ordering large radiosity computations. In SIGGRAPH '94, pages 443{450, 1994.

[35] Carlo Tomasi and Takeo Kanade. Shape and motion from image streams under orthog-
raphy: a factorization method. International Journal of Computer Vision, 9(2):137{154,
November 1992.

[36] Roger Tsai. A versatile camera calibration technique for high accuracy 3d machine
vision metrology using o�-the-shelf tv cameras and lenses. IEEE Journal of Robotics
and Automation, 3(4):323{344, August 1987.

[37] Greg Turk and Marc Levoy. Zippered polygon meshes from range images. In SIGGRAPH
'94, pages 311{318, 1994.

[38] S. Ullman. The Interpretation of Visual Motion. The MIT Press, Cambridge, MA,
1979.

32

[39] Thierry Vieville and Olivier Faugeras. Feed-forward recovery of motion and structure
from a sequence of 2d-lines matches. In International Conference on Computer Vision,
page 517. IEEE, December 1990.

[40] L Williams. Casting curved shadows on curved surfaces. In SIGGRAPH '78, pages
270{274, 1978.

[41] Lance Williams and Eric Chen. View interpolation for image synthesis. In SIGGRAPH
'93, 1993.

[42] Y.Chen and G. Medioni. Object modeling from multiple range images. Image and
Vision Computing, 10(3):145{155, April 1992.

[43] Mourad Zerroug and Ramakant Nevatia. Segmentation and recovery of shgcs from a
real intensity image. In European Conference on Computer Vision, pages 319{330, 1994.

33

