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A vision–based 3–D scene analysis system is described that is capable to model complex

real–world scenes like buildings automatically from stereoscopic image pairs. Input to the

system is a sequence of stereoscopic images taken with two standard CCD Cameras and TV

lenses. The relative orientation of both cameras to each other is known by calibration. The

camera pair is then moved throughout the scene and a long sequence of closely spaced views

is recorded. Each of the stereoscopic image pairs is rectified and a dense map of 3–D surface

points is obtained by area correlation, object segmentation, interpolation, and triangulation.

3–D camera motion relative to the scene coordinate system is tracked directly from the image

sequence which allows to fuse 3–D surface measurements from different viewpoints into a

consistent 3–D model scene. The surface geometry of each scene object is approximated by a

triangular surface mesh which stores the surface texture in a texture map. From the textured

3–D models, realistic looking image sequences from arbitrary view points can be synthesized

using computer graphics.
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1 Introduction

Modeling of 3–D scenes from 2D image sequences has been a research topic for a long time

as Aggarwal and Nandhakumar showed in their overview of this field (Aggarwal and Nandha-

kumar, 1988). The goal of such modeling is to extract a compact description of the scene for

purposes of reconstruction (Blake and Zissermann, 1987), recognition (Marr and Nishihara,

1978), or data compression (Harashima and Kishino, 1991). When analyzing complex scenes

with multiple moving flexible objects a complete description of all properties of the scene is

necessary. In previous works the different properties 3–D object shape, 3–D object motion, and

object surface texture were treated separately. Great effort went into developing algorithms

that estimate 3–D object shape from various sources, termed shape from motion, stereo,

texture, and others (Jarvis, 1983). On the other hand research was conducted to find solutions

to the problem of rigid object motion (Netravali and Salz, 1985). Only recently the problem

of nonrigid bodies and nonrigid motion was addressed (Pentland and Horowitz, 1991).

An important scene property needed for visualization is the photometric surface description.

People in the field of image communication, multi media, flight and driving simulation, and

virtual reality demand the construction of complete realistic environments. Sometimes it is

even more important to have a good surface texture description than to obtain a refined 3–D

geometry. Texture maps that store real views of the object appearance can be used for that

purpose (Koch, 1990).

Automatic evaluation of all scene properties, camera position and 3–D object geometry as well

as photometric surface mapping, for the purpose to reconstruct 3–D scene models for visualiza-

tion, are discussed in this contribution. To overcome the problem of simultaneous estimation

of object geometry and camera position, a calibrated stereoscopic image sequence is recorded.

From each image pair the geometry is measured and from the sequence information relative

camera motion can be extracted. All measurements obtained from the image sequence need



then to be integrated into a consistent 3–D scene model that contains not only the scene

geometry but also texture maps of the object surface. Visual simulations of the scene from this

complete scene model can be performed with computer graphics.

2 Concept of 3–D Scene Analysis System

The structure of the scene analysis process is shown in Fig. 1. Four main modules (image

analysis pipeline, control interface, motion compensated prediction, and 3–D model storage)

can be identified. Central to the system is the image analysis pipeline that computes a model

scene Mk from a stereoscopic image pair Lk, Rk at time instant k and from the accumulated

sequence information contained in the model storage Mk–1. Sequence information is included

into the analysis pipeline by motion compensated prediction at all stages. The scene model

Mk–1 is transformed from frame k–1 into the current camera position at frame k by compensa-

tion of the camera motion. From the transformed model the predictions of disparity, segmenta-

tion, and object geometry are computed and merged with the new measurements to yield a

depth map of the new scene model Mk.

In order to obtain an efficient 3–D surface description and to treat hidden surfaces properly,

the depth map is converted into a triangular surface mesh. In addition, the surface texture for

each triangular surface patch, which represents the photometric information, is stored in Mk.

From the geometric and photometric information realistic looking image sequences I*
k can be

synthesized.

The analysis pipeline is controlled by a user interface, which takes commands from the opera-

tor and supplies the analysis procedures with the proper parameters. This interface allows to

insert prior scene knowledge into the analysis process. It is planned that this control interface

will be replaced by a knowledge based system that automatically adapts the analysis parame-

ters based on high level scene knowledge.  
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Fig.1: Structure of 3–D scene analysis from stereoscopic sequences.
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In the following sections the procedures for the image analysis pipeline and the 3–D motion

compensated prediction are explained in more detail.

3 The Image Analysis Pipeline

The analysis of a stereoscopic image pair is split into correspondence analysis and object

generation. Correspondence analysis tries to locally estimate image plane correspondences

while during object generation areas in the image that belong to physically connected regions

are merged by similarity measures. Each region is interpolated to yield a dense depth map and

the measurements are triangulated and transformed into object space.

3.1 Correspondence analysis

The input to the system at time instant k is a stereo pair Lk, Rk.  In a preprocessing step the

stereoscopic camera is calibrated and each image pair is rectified to obtain an image pair where

the camera axes are parallel and both cameras are displaced along horizontal image plane

coordinates only. The calibration estimates radial lens distortion and the external orientation

parameters of both cameras from a calibration pattern using a bundle block adjustment (Jacob-



son, 1992). A projective transformation can be computed from the calibration parameters that

warps the images to standard geometry. This image rectification greatly simplifies correspon-

dence analysis and the search space is reduced to parallel horizontal epipolar lines E.

From the rectified images a disparity map Dk is obtained by correlation matching techniques.

The quality of the match and therefore the quality of each displacement value is recorded in

a confidence map Ck.The correspondence analysis is split into three parts. First a candidate for

a corresponding point is identified in one image, then the corresponding candidate in the other

image is searched for along the epipolar lines E and third the most probable candidate match

between both images is selected based on a quality criteria. This search is repeated for each

candidate, that is for each pixel. To select candidates the image grey level gradient g is

evaluated. The image gradient is a vector field pointing into the direction of changing image

texture like grey level edges. Only areas exceeding a minimum image gradient value |g| > gmin

can be candidates for correspondence. The quality of the candidate can be estimated when

comparing the gradient direction with the search direction. Edges perpendicular to the search

direction can be located best while edges parallel to the search direction cannot be located at

all. This quality measure C1 can be calculated in Eq. (1). Candidates with C1 = 0 can not be

estimated while candidates with C1 = 1 have highest confidence in estimation.

The estimation of C1 is carried out for each image pixel. Each pixel with a gradient quality

measure of C1 > 0 will be selected as candidate. For each candidate a small measurement

window (typically 7*7 pixel) around the candidate position in one grey level image is chosen

and the corresponding grey level distribution is searched for in the other image. The search

space is reduced to a one–dimensional search along the epipolar line between minimum and

maximum disparity values derived from the known minimum and maximum scene distance.

The search space may be extended to +/– 1 horizontal lines to account for calibration inaccura-

cies. The normalized cross correlation (NCC) is calculated between the candidates to select the



Fig. 2: Stereoscopic disparity analysis of image pair  ”house”.

a) left original image b) disparity map 
(dark = far from camera,
 light =  near to camera, 
 black = undefinded regions)

d) confidence map 
   of disparity measurement 
   (dark = low confidence, 
   light = high confidence)

most probable corresponding candidate along the search line. The most probable candidate

pair is the pair with maximum cross correlation.

In complex scenes there may be multiple maxima or false maxima in the search space due to

occlusions, repeated structures or image noise. This ambiguity can be reduced when unique-

ness and ordering constraints are exploited. These constraints are based on the fact that there

can be no more than one match between left and right image points and that matches are in order

for physical surfaces (Marr, 1982). These constraints are employed in an optimum search

procedure using dynamic programming that matches all correspondences between left and

right image that lie on the same epipolar line. The dynamic programming algorithm was

adapted from the work of (Cox et al., 1992). The disparity value obtained for each candidate

is recorded in a disparity map.  

The NCC is additionally used to define the correspondence quality. Selected corresponding

pairs with low NCC are corresponding points with low confidence. Therefore a second quality

measure C2 in Eq. (1) can be defined that reflects the correspondence measurement confidence.

Experiments have shown that candidates below a minimum threshold NCCmin (NCCmin being

approximately 0.5) are most often false matches that should be discarded. The confidence

quality is therefore defined to be zero below NCCmin and NCC elsewhere.
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Both quality measures can be merged to one measure  Cc = C1 . C2 with {0 � Cc � 1} that

contains the combined quality measure for each candidate. The confidence measure Cc is

recorded for each candidate pixel in a confidence map. Fig. 2 demonstrates the correspondence

analysis for the image pair ”house”. Disparity values between 50 and 90 pixel were measured.

Fig. 2a shows the left of both input images, Fig. 2b the measured disparity map and Fig. 2d the

corresponding confidence map. Light grey levels in Fig. 2b show large disparities (fore-

ground) and dark grey levels indicate small disparities (background). Light values in the

confidence image indicate high, dark values low measurement confidence. Black regions are

regions where the confidence measure is zero and where no measurement was possible.

3.2 Scene segmentation, Interpolation and Triangulation

The correspondence analysis yields a disparity map based on local depth measurement only.

These measurements are corrupted by noise and must be merged to regions that describe

physical object surfaces. Based on similarity measures the segmentation divides the viewed

scene into object surfaces. As similarity measure the local surface orientation which is com-

puted from the estimated disparities is used to group pixels into regions that belong to the same

surface. The region boundaries are then corrected from the grey level image with a contour

approximation by assuming that physical object boundaries most often create grey level edges

in the image. The object segmentation for the image pair ”house” is shown in Fig. 3a with each

surface having a distinct label marked as grey level in the map. The segmentation areas

correspond to the front (1) and side wall (2), the roof (3), and foreground (4) and background

(5) areas. To show the fit of the segmentation, the true edges of the house were superimposed

as line drawing.

Disparity Interpolation



Fig. 3: Segmentation and interpolation of image pair  ”house”.

a) object segmentation map, each grey level 
     labels one object surface

b) Thin plate interpolation of disparity map 
(dark = far from camera, light = near to camera)
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The disparity measurements are noisy and there exist gaps in the surface that need to be filled.

Once the disparity map is segmented into object regions all measurements of one region are

interpolated by a thin plate surface model that calculates the best quadratic surface approxima-

tion of the disparity map based on the uncertain depth measures. Each disparity measurement

has an uncertainty attributed to it which serves as a weight of the measurement. A multi grid

surface reconstruction algorithm (Terzopoulos, 1988) was chosen to calculate the interpolation

with a finite element approximation. It is assumed that each segmented area contains a smooth

coherent surface that can be modeled as a thin plate with a certain stiffness and that inside such

a region the disparity measurements are corrupted by noise. The physical model of a thin plate

can be formulated as a variational functional of the Euler–Lagrange equation �2d(x,y) = 0 with

additional constraints at the boundaries. The interpolation solves the problem of minimizing

the potential energy function of the thin plate that is deformed by the disparity measurements.

The result of the disparity interpolation is shown in Fig. 3b for the scene ”house”. From the

discrete and noisy disparity measurements in Fig. 2c together with the associated confidence

values in Fig. 2d and the segmentation mask from Fig. 3a, a continuous and dense disparity

interpolation for each segmented region was performed that filled the gaps and smoothed the

disparity estimates. Disparity discontinuities are preserved at the segmentation boundaries.



Triangulation

The interpolated depth map contains the visible scene geometry measured from a single

camera view point. Whenever the scene contains occluded surfaces then the camera must be

moved around the objects and the measurements from multiple view points must be included.

For that purpose the 2D depth map is first converted into a 3–D surface description that can

be modified to include hidden surfaces. The transformation is very simple because the images

are rectified and relative 3–D–coordinates are obtained relative to the left camera center. The

camera centers are displaced by the basis b in x–direction and both cameras have the same focal

length f. In this case the relative object coordinate P(x,y) for each pixel (x, y) in the left image

with corresponding disparity value d(x, y) is recorded in a depth map Pk.
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The depth map can be converted into a piecewise continuous, parametric 3–D surface descrip-

tion by spanning a wireframe in space for each segmented object surface. For each object

region the depth map is approximated by triangular, planar surface patches. The triangular

mesh was chosen because it is capable to approximate arbitrary surface geometries without

singularities. On the surface of each triangular patch the object surface texture is stored in a

texture map from which a naturally looking view of the original objects can be synthesized with

texture mapping. In Fig. 4a the generation of the wireframe for the house is shown. For each

triangular patch the corresponding image texture is stored and used to synthesize computer

generated views which is shown in Fig. 4b and c. The surface geometry was computed from

the interpolated disparity map while the surface texture was taken from the left original image.

4 3–D motion estimation using analysis by synthesis

In this section an algorithm to directly estimate 3–D scene motion from a monocular or

stereoscopic image sequence is described shortly. A complete discussion of the algorithm can

be found in (Koch, 1993).



a)  Triangular surface mesh
      of walls and roof

Fig. 4: Triangulation, texture mapping and image synthesis.

b) texture mapping of scene texture 
   onto the triangular surface model

c) synthesized image from 
   another view point

An object is defined as a rigid 3–D–surface in space that is spanned by a set of N control points.

A set of six motion parameters is associated with each object. Object motion is defined as

rotation of the object control points around the object center followed by a translation of the

object center, measured between two successive image frames k–1 and k. The object center G

is the mean position vector of all N object control points. Each object control point Pi(k–1) at

frame k–1 is transformed to its new position Pi(k) in frame k according to the general motion

Eq. (3) between frame k–1 and k.
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Object rotation can be expressed by a rotation vector R = (Rx, Ry, Rz)T that describes the

successive rotation of the object around the three axes (x, y, z)T parallel to the scene coordinate

system centered at G. From this vector the rotation matrix [RG] is derived when the identical

matrix [I ] is rotated around the coordinate axes with Rx first, Ry second and Rz last. Because

[RG] is derived from the rotation vector R, the six parameters of T and R suffice to describe

the 3–D object motion.



The only information available to the analysis system is the surface texture projected onto the

camera target throughout the image sequence. From this sequence the motion parameters have

to be derived. Assume a scene with an arbitrarily shaped, moving textured object observed by

a camera during frames k–1 and k. The object moves between frame k–1 and k according to

the general motion Eq. (3) with motion parameters R and T. A point on the object surface,

called observation point P(k–1), holds the surface intensity I1, which is projected onto p1 in the

image plane at frame k–1. At frame k P(k–1) is moved to P(k), still holding I1 that is now

projected onto p2. In image frame k the surface intensity I1 will now be projected at image

position p2, whereas the image intensity at point p1 has changed to I2.

The image displacement vector d = p2 – p1 is called optical flow vector and describes the

projection of the observation point displacement P(k) – P(k–1) onto the image plane. When

assuming a linear dependency of the surface texture between I1 and I2 and a brightness

constancy constraint between frame k–1 and k it is possible to predict I2 from I1 and its

corresponding image intensity gradients and hence to estimate d from the measurable differ-

ence  I2 – I1. I2 is measured at position of p1 at frame k, whereas I1 is taken from image position

p1 at frame k–1. When approximating the spatial derivatives as finite differences the optical

flow vector d  = (dx, dy)T can be predicted from the image gradients g = (gx, gy)T and the

temporal image intensity difference DIp1 = I2 – I1 between frame k and k–1 at p1 in Eq. (4):

      ����� �� � � �� �� �	 � �	 � �
 � �
� �� �	 � ���	 � ��	�� �
 � ���
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� (4)

In Eq. (4) d is related to intensity differences. Substituting the perspective projection of P(k–1)

and P(k) for p1 and p2 in Eq. (4) yields a direct geometric to photometric transform that relates

the spatial movement of P between frame k–1 and k to temporal intensity changes in the image

sequence at p1.

         �Ip1 � f �gx��P(k)x

P(k)z
�P(k�1)x

P(k�1)z
�� f �gy��P(k)y

P(k)z
�

P(k�1)y

P(k�1)z
� (5)



With this approach, rigid 3–D object motion can be estimated directly from the image sequence

when the object shape P(k–1) is known. Assuming that rotation between successive images is

small, [RG] can be linearized and P(k) is substituted in Eq. (5) as a function of the unknown

parameter R and T as derived in Eq. (3) :

DIp1 .Pz
2   =   f . gx . Pz  . Tx +  f . gy . Pz  . Ty –  [ DIp1

.Pz  + f.Pxgx  +  f.Pygy ] . Tz  

–   [ DIp1
.Pz

. (Py – Gy)  + f.Px
.gx

. (Py – Gy) + f.Py
.gy . (Py – Gy) + f.Pz

.gy
. (Pz – Gz) ] . Rx   

+   [ DIp1
.Pz

. (Px – Gx)  + f.Px
.gx

. (Px – Gx) + f.Py
.gy . (Px – Gx) + f.Pz

.gx
. (Pz – Gz) ] . Ry  

+   [  f.Px
.gy

. (Px – Gx)  – f.Pz
.gx . (Py – Gy)] . Rz

with  (Px, Py, Pz)T = P(k–1).                            (6)

For 3–D motion estimation the object shape is assumed to be known. An initial estimate of the

scene shape was generated from stereoscopic image analysis. When the initial estimate fails

this dependency may affect the analysis and will sometimes lead to estimation errors. As long

as the initial shape approximation is reliable, however, this dependency can be neglected.

When a stereoscopic image sequence is available, then both images of the pair can be used to

further improve the motion estimation. The left image coordinate system is used as reference

system and measurements are taken from the left camera as before in Eq. (6). Measurements

taken from the right camera will be transformed according to Eq. (7), where an observation

point PR(k) is expressed relative to the left camera coordinate system.

PR(k) � [RLR] � PL(k) � TLR

� [RLR] � �[RG] � (PL(k�1) �GL(k�1))� T �GL(k�1)
� � TLR

� [RLR] � [RG] � �PL(k�1) �GL(k�1)
� � [RLR] � �T �GL(k�1)

� � TLR (7)

with:  [RLR], TLR �  Transformation from left to right  camera coordinate system

The Transformation ([RLR], TLR ) is known from calibration and is particularly easy for

rectified images. The motion Eq. (7) for the right image can be inserted in Eq. (5) as before and

the measurement equation for the right image is derived which doubles the number of indepen-

dent measurements for motion estimation.

At least six distinctive observation points that lead to six linear independent equations are

needed to solve for the six motion parameters R and T. In real imaging situations the measure-



ments of the spatial and temporal derivatives are noisy and some of the observation points

selected may be linear dependent of each other. To cope with those conditions more than six

observations are evaluated and a linear regression is carried out using least squares fit.

4.1 Accumulation of multiple depth maps into a common 3–D scene model

For each image pair of the sequence a depth map Dk was calculated by stereoscopic analysis

together with its associated confidence map Ck. 3–D camera motion between successive

frames was estimated which allows to register the image pairs relative to another. The goal of

sequence accumulation is to fuse the depth measurements from the image sequence into a

consistent 3–D scene model to improve estimation quality. Consistency is achieved by com-

pensating the camera motion from frame k–1 to k. The scene model is transformed into frame

k with the estimated motion parameters. From the model geometry in this position a prediction

of the disparity map d*k  can be computed and compared with the measured disparity map dk

to detect geometric errors.

Depth measurements are improved by weighted depth accumulation from the motion compen-

sated sequence of depth maps. For each observation point P of the surface there exist a

confidence value Cc from Eq. (1) that expresses the measurement accuracy. The confidence

value Cc is converted into the weight S according to Eq. (8) that can easily be accumulated

throughout the sequence. Each observation point holds not only its position Pk–1 in space but

also its corresponding confidence weight Sk–1 = S*
k. Pk–1 is transformed to P*

k according to

Eq. (3) and its projection (x,y) in the image is computed. The disparity dk, measured in frame

k at image position (x,y) with corresponding weight Sk, is converted to a depth measurement

Pk and fused with P*
k in a weighted accumulation to compute the improved depth estimate

Pknew and weight Sknew:
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5 Conclusion

A system for automatic 3–D scene analysis was discussed. The system is capable to analyze

scenes from an arbitrarily moving stereoscopic video camera system. It segments the scene into

smooth surfaces and stores the true 3–D geometry of the scene in a 3–D scene model, including

surface texture. Camera motion is tracked throughout the sequence and measurements from

different view points are integrated into the model data base.

The system implementation is not jet finished. With the current implementation, we are not

able to add new scene contents (e.g. from moving around a corner of a house) automatically

into the model to include truly occluded surfaces. We are further investigating the impact of

erroneous model shape on the camera tracking algorithm and we are working to improve shape

accumulation further through Kalman filtering. Some of the analysis parameters for disparity

estimation, image segmentation, and surface mesh generation were chosen prior to the analysis

process. An important additional step towards fully automated scene analysis will be the

extension of the control interface with knowledge based scene interpretation, a project we are

currently investigating.
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