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Abstract

A model based multiresolution motion analysis technique is presented. The projection onto

the image plane of the motion of a point in three space is used in a derivative based optical


ow formulation. This can then be solved using the method of least squares to compute the
six parameters describing the motion of the body (three rotational and three translational

components) initially at a high scale and then re�ned with increasing resolution These may be

calculated due to prior knowledge of the depth of points in the scene from an explicit volumetric
model of the object being viewed. This is speci�ed at a single resolution and then extrapolated

through scale. This enables the creation of a texture mapped approximation of the input frames

at each scale to be used in the coarse-to-�ne estimation of the motion parameters. The object
is assumed not to deform through time.
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1 Introduction

The analysis of motion has many applications. It is a key element in video compression, where it is

used for prediction of subsequent frames and �nds many other applications including robot guidance

and object tracking.

The analysis starts from a pixel resolution motion �eld due to the change in grey level intensity

in the image and is often referred to as optical 
ow [16]. It should be noted that this does not

always correspond to the true projected scene motion due to a combination of the illumination

characteristics and the lack of surface texture on certain objects. It is however what is observed in

an image sequence.

A variety of techniques have been proposed for the analysis of motion. These can be broadly

classi�ed according to whether they attempt to estimate a dense 
ow �eld at all points in the

images, which necessitates the use of additional constraints such as smoothness of variation in the


ow �eld, or for a sparse set of features, which entails the problem of establishing correspondence

between features in the two images [1] [10] [14] [15]. The correspondence problem was noted by

Marr [11] and also exists in other areas of vision including stereo and image registration. It will

not be considered further here. Dense 
ow �elds generally rely on the use of additional constraints

such as smoothness of variation in the 
ow �eld [6]. These are required because of the so called

aperture problem, that only one component of the 
ow �eld may be measured directly, that in the

direction of the luminance gradient at that point. This regularising term (the smoothness constraint)

is balanced against the problem constraint (in this case the spatiotemporal derivative formulation

to be explained in section 2) to overcome this ill-posedness.

Presented here is a new algorithm for motion estimation of rigid bodies within a multiresolution

framework. Section 2 presents an overview of the least squares approach to three dimensional

motion estimation based on a spatiotemporal derivative formulation of optical 
ow at a single scale.

Section 3 explains the multiresolution volumetric model representation to be employed. Section 4

then explains the new algorithm which couples the model repsentation and the least squares motion

estimation to propagate motion parameters in a coarse to �ne manner through scale. Results are

reported in section 5. Section 6 discusses the implications of the various approaches taken here,

some issues to be resolved and expands on some future directions that this work may take.

2 Motion Estimation at a Single Resolution

2.1 The Geometry of Motion

As stated above, the present work currently relies on the assumption of rigid body motion, that is,

the motion of a point from ~x to ~x0 may be represented by

~x
0 = R~x+ T (1)

where R represents a rotation in terms of the Eulerian angles and is a product of three matrices,

each corresponding to a rotation about one axis,

R =

0
@ cos � sin� 0

� sin� cos � 0

0 0 1

1
A
0
@ 1 0 0

0 cos � sin �

0 � sin � cos �

1
A
0
@ cos 0 � sin 

0 1 0

sin 0 cos 

1
A (2)

and T is the translational component of the motion

0
@ tx

ty

tz

1
A. Under the assumption that the changes

in Euler angles are small (denoted by ��, �� and � ) a linearisation can be introduced using the
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approximations sin�� � ��, and cos �� � 1. Equation 2 then becomes

R =

0
@ 1 �� �� 

��� 1 ��

� ��� 1

1
A

= I+

0
@ 0 !z �!y
�!z 0 !x

!y �!x 0

1
A�t (3)

where !x, !y and !z are the angular velocities about the axes and I is the identity matrix. This

yields the rigid body motion equations (under the assumption of in�nitesimal motion)

x
0

= x+ !zy�t � !yz�t+ vx�t

y
0

= y � !zx�t+ !xz�t+ vy�t

z
0

= z + !yx�t� !xy�t + vz�t (4)

A perspective projection is de�ned in terms of the focal length of the camera f , the image plane

coordinates (X;Y ) and the world coordinates (x; y; z) by similar triangles as

X = xf=z

Y = yf=z (5)

The projection of a three dimensional motion onto the two dimensional image plane (u; v) under a

perspective projection (assuming f = 1) for in�nitesimal motion is given by [9] [13]�
u

v

�
=

�
dX

dt
dY

dt

�

=
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0

�X

�t

Y
0

�Y

�t

!

=

�
XY �(1 +X

2) Y X=z 0 1=z

(1 + Y
2) �XY �X �Y=z 1=z 0

�
0
BBBBBB@

!x

!y

!z

tz

ty

tx

1
CCCCCCA

= CU (6)

2.2 Least Squares Solution Using Optical Flow

Optical 
ow is the change in image intensity due to apparent motion [16]. Its computation is ill-posed

in that only one component may be calculated, that in the direction of the luminance gradient at that

point. This is commonly referred to as the aperture problem. Additional constraints must thus be

used if both components are to be recovered. In this work, optical 
ow is not computed per se, but is

used in conjunction with ( 6) above and a priori knowledge available from a model of the object being

viewed. There exist many approaches to optical 
ow computation (e.g. [1] [2] [7] [10] [6] [5]) and the

approach used here is derivative based (see [6]) which yields the brightness constraint equation

fxu+ fyv + ft = 0 (7)

where fx, fy and ft denote the derivatives of the image vector f with respect to the spatial and

temporal coordinates (i.e. @f
@x
, @f
@y
, and @f

@t
respectively). This can be used in conjunction with ( 6)
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motion true estimated

parameter value value

!x 0.0 0.0007

!y 0.0 -0.0004

!z 0.0 0.0013

tz 0.0 6.0845

ty -9.0 -1.0354

tx 0.0 -0.2036

Table 1: Motion parameters estimated at the highest resolution only

to give

(rf )TCU + ft = 0 (8)

where rf is the vector of spatial derivatives. Let G = (rf )TC, then ( 8) can be written as the

linear equation

GU = �ft (9)

De�ning a cost function

E =k GU+ ft k
2 (10)

the least squares solution for the motion parameters may be obtained as follows

@E

@U
= 2GT(GU+ ft) = 0 (11)

Therefore

2GTGU+ 2GTft = 0 (12)

U = �(GTG)�1GT ft (13)

This is the basis of the approach in [9]. The problem with this formulation is the inadequacy of the

linearisation used to derive it. For example Table 1 shows the estimates from the application of ( 13)

in the image plane i.e. at a single scale. The accuracy of the estimates can be improved by iteration,

provided the initial error is not too large, but a more robust approach is to use a multiresolution

method.

3 Model Representation

As stated above, motion may be computed as a consequence of a priori knowledge about the depth

of points in the scene. Alternatively work is ongoing in trying to simultaneously estimate motion

and the 3-d structure of the scene (e.g. [12]). In the current work depth of points is assumed

known. This is due to the use of a model of the object under observation. The model is a volumetric

representation in which voxels are assigned a numeric value indicating their level of membership of

the object. This will enable the model to be extrapolated through scale thus allowingmultiresolution

motion estimation. The scale-space model is constructed by a process of successive smoothing and

sub-sampling analogous to low-pass image pyramids (e.g. [3]) to construct an oct-tree.

So the value of a node in the tree (i.e. a voxel (i; j; k) at level l) where the base is regarded as

level 0, and using a 5x5x5 Gaussian weighting function for the smoothing, is calculated from

f(i; j; k; l) =

2X
m=�2

2X
n=�2

2X
o=�2

w(m;n; o)f(2i+m; 2j + n; 2k+ o; l � 1) (14)
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The smoothing mask is built from the separable �lters suggested by Burt and Adelson [3]. In one

dimension the �lter coe�cients are (0:05; 0:25; 0:4; 0:25; 0:05).

In order to obtain an image as a projection of a volume de�ned in terms of voxel's level of

membership of an object it is necessary to de�ne a projection rule as, due to the smoothing, the

values of voxels at coarse scales may take values anywhere in the range from 0 � 100% of object

membership. In fact, all that is required is a depth map and this is obtained from the depth of the

voxel whose object membership exceeds a pre-de�ned threshold along the line of sight from the centre

of projection through each image pixel. To obtain the projected image itself, the three- dimensional

gradient is calculated for this voxel and the resultant image intensity set as the cosine of the angle

between the line of sight and this gradient vector. The gradient is computed by convolving the volume

with three 3-d �lters in the style of the Sobel edge detectors (thus the (1; 2; 1) local smoothing across

the axis whose derivative component is being computed and (1; 0;�1) di�erencing along the direction

in which the derivative is being calculated, see [4]), one for each component of the gradient. Under

a perspective projection this will inevitably necessitate interpolation in three dimensions in order to

obtain the values of voxels at sub-voxel locations. The image intensities are only required however

for generating a synthetic sequence and are not used during the motion estimation algorithm. It

should be noted that the model is only de�ned once, at the �nest resolution. In this case the object

membership function (the values at each voxel) will be binary. As a consequence of the smoothing,

the model will only have distinct surfaces at this highest resolution.

4 The algorithm

The least squares approach outlined above computes the rigid body motion parameters at a sin-

gle scale. The multiresolution approach propagates motion parameters through scale according to

Equation ( 15).

Ûl =Uljl+1 +Al(Ul �Uljl+1) (15)

where

Ul = �(GT

l
Gl)

�1GT (ft)l (16)

is the motion estimate at a single scale l. Uljl+1 is the propagated parameter vector from the level

above (l+1) and the second term in equation ( 15) is the innovation term on the current level l. The

scale-space propagation of the motion estimation permits this linearisation of an essentially non-

linear problem. In the simplest case, the Kalman gain, Al is set to unity, but in general should take

into account the e�ects of noise which will primarily a�ect the derivatives at the highest resolutions.

Given two frames of an image sequence, and a model of the object being viewed, the various

pyramids are constructed; the oct-tree model representation described above (Section 3) and a low

pass image pyramid constructed on each of the original images. Motion estimation is then computed

at the coarsest resolution by �tting the motion parameters using least squares to the optical 
ow

�eld obtained from the spatiotemporal derivatives (�gure 1). These parameters are then used to

reposition the model on the level below and create an estimate for the level below (�gure 2). In fact,

the model is �rst translated to the centre of the volume, before being rotated and translated to its

�nal position. This avoids clipping which can otherwise result during the rotation. The estimate is

created by texture mapping the appropriate level of the pyramid from the �rst input image using the

new depth map (from the newly positioned model). This texture mapping is implemented according

to a rearrangement of equation 6, Thus,

�
u

v

�
= �

�
XY �(1 +X

2) Y X=z 0 1=z

(1 + Y
2) �XY �X �Y=z 1=z 0

�
0
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1
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(17)
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first input frame second input frame model

difference

derivative
spatial derivative

temporal

derivative
spatial

parameters
3-d motion

least squares
motion estimation

depth

Figure 1: The initial motion estimation at the coarsest scale

where z is the new depth. This will calculate, for each pixel in the image, the location in the

previous image (to sub pixel accuracy) from which it came. Its grey level may then be set using

bilinear interpolation. Having created the estimate for the level below, the algorithm continues in

a coarse to �ne manner computing the motion parameters between the texture mapped images and

the second frame low pass pyramid. These are then used to texture map the level below (Figure 2).

The multiresolution approach results in only small values for the parameters being computed at each

scale as on each level an approximation of the second frame is available (from the motion parameters

of the level above).

Once the texture mapped image for the �nest resolution has been created (using the parameters

from the previous pyramid level) motion is computed again for the �nal time and this is used to

create the texture mapped estimate of the original sequence. In summary,

1. Construct 2-d image pyramids on the two input frames.

2. Construct the pyramid for the model (in the correct initial position).

3. Compute the 3-d motion parameters using Equation 13 between the coarsest scales of the

pyramids built on the input frames.

4. For l = coarsest resolution to 1,

(a) Using the computed 3-d motion parameters from level l + 1, rotate and translate the

model on the current level l.

(b) Use the depth from the newly positioned model, and the 3-d motion parameters from

level l + 1 to compute the 2-d projected motion �eld at level l.

(c) Texture map level l of the 2-d pyramid built on the �rst input frame using the 
ow vectors

computed above.
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3-d motion
parameters from
coarser scale

project

3-d motion
parameters from
coarser scale

repositioned
model

First frame
at this scale

2-d motion
parameters

texture mapped approximation
of the motion

Second frame
at this scale

spatial
derivative temporal

derivative

spatial
derivative

3-d motion
parameters

texture map

(rotate and translate)
3-d transformation

Least squares estimation
of 3-d motion parameters

new depth

difference
new depth

Figure 2: Motion estimation at single scales (except the coarsest)
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para- true level

meter value 3 2 1 0

!x 0.0 0.0 -0.0034 -0.0034 -0.0026

!y 0.0 -0.0032 0.0019 0.0024 0.0021

!z 0.15 0.1579 0.1464 0.1489 0.1507

tz 0.0 -0.3315 -0.5292 -0.5834 -0.6057

ty 0.0 -0.0680 1.2201 1.2875 0.9807

tx 0.0 0.7836 1.5283 1.1795 0.9233

Table 2: the estimated motion and correct values at each scale relating to the rotation example

para- true level

meter value 3 2 1 0

!x 0.0 0.0065 0.0095 0.0123 0.0130

!y 0.0 -0.0045 -0.0045 -0.0048 -0.0051

!z 0.0 0.0421 0.0224 0.0138 0.0109

tz 0.0 3.2318 3.3864 3.5470 3.5602

ty -9.0 -6.6451 -9.6957 -11.554 -11.729

tx 0.0 -1.9098 -1.6109 -1.5608 -1.4522

Table 3: the estimated motion and correct values at each scale relating to the vertical translation

example

(d) Compute the 3-d motion parameters using Equation 13 between the texture mapped

image and level l of the 2-d pyramid built on the second input frame.

5. With the 3-d motion parameters, texture map the �nest resolution of the �rst input image

pyramid to create the �nal motion estimate.

A requirement of the algorithm is that the model is initially placed at the correct position of the

object in the �rst frame.

5 Results

The results of this algorithm applied to synthetic sequences are shown in Figures 3 and 4. Displayed

are the two input frames, the motion estimate (texture mapped), the error, and the 
ow needles

indicating the locations from which each pixel originated (used in the texture mapping). Tables 2

and 3 show the motion parameters computed at each scale.

6 Discussion

Optical 
ow computed using the spatiotemporal derivatives of an image su�ers from some well

known problems [2]. These include the problem of how to compute the derivatives and aliasing

inaccuracies with motions of more than half a pixel per frame. The multiresolution approach allows

far greater displacements because at high scales the equivalent displacement is su�ciently small.

Derivative calculation is approximated using adjacent di�erencing of pixels in the �rst image (for

the spatial derivatives) using two 3� 3 convolution kernels presented in [19] or between frames (for

the temporal derivative). These methods are obviously susceptible to noise, especially the temporal

derivative which involves no averaging (simply the di�erence between the pixel at the appropriate
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First frame Second frame

Error between estimate
and second frameEtimateComputed

Figure 3: The output from the motion estimation algorithm for a rotation about the z-axis
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First frame Second frame

Computed Estimate
Error between estimate

and second frame

Figure 4: The output from the motion estimation algorithm for a vertical translation of the object
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position in each frame). It would therefore be desirable to replace the derivative based approach

with an alternative such as a correlation based approach (e.g. [8]).

Under the present formulation, a linearisation is introduced into the rotation matrix using the

approximations sin � � � and cos � � 1 for small �. This allows the formulation of the linear

Equation 9. However, this obviously results in increasing errors for larger rotations. An alternative

might be to use the full rotation matrix without the simplifying approximations.

There are also issues to be addressed regarding the representation of the model. The current

method relies on the use of a threshold to determine the exact location of the object boundaries

at coarse scales as the object membership values of each voxel are only binary for the de�nition

of the model at the highest resolution. Although it might be possible to use some form of three

dimensional texture, it is unclear how this could be achieved. The most likely candidate to replace

this would seem to be some form of mesh or deformable surface which could deform to the surface

contours (e.g. [17]).

The initialisation of the model is yet to be resolved. Currently it is placed in the correct position

(aligned with the object in the �rst frame). It may be possible to start with the model's pose known

and calculate the motion between this and the �rst frame in the sequence.

Alternatively it may be feasible to simultaneously estimate the depth and motion parameters.

[18] presents an iterative two stage algorithm in which the motion parameters are estimated at the

�rst iteration and then used to update the depth estimation as the second step.

7 Conclusion

A new approach to motion estimation based on a multiresolution model has been presented. The

model provides a priori knowledge of the scene depth thus enabling the calculation of three dimen-

sional motion parameters without additional constraints. Results from synthetic image sequences

have been presented and possible future directions for the work have been discussed.
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