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Abstract

This paper presents algorithms for stereo reconstruction from uncalibrated binocular ste-

reo views using correspondences of curves between the two images. We mainly consider

curves which are projections of planar 3-D curves although some of our methods work
without this restriction as well. First a brief description of reconstruction algorithms
based on point correspondences is given. Then we introduce a coordinate system which

is invariant to the unknown camera parameters. Compared to similar constructions re-
ported in the literature our method has the advantage that no restrictions concerning
the relative position of the cameras (e.g. parallel optical axes) are necessary. Using this
coordinate system we show how to reduce the reconstruction from conic correspondences
to the point based case. Next the case of general curves is considered. By applying a
simple tangent construction we obtain for a given pair of corresponding curves at least

two pairs of matching curve points. By �tting at these points an osculating conic we get
pairs of matching conics which reduces the problem to conics based stereo reconstruction.
All these algorithms rely on the assumption that the epipolar geometry (encoded in the
fundamental matrix) is known. We discuss how to recover the epipolar geometry from co-
nic correspondences. The appendix contains some useful results concerning normal forms

of pairs of conics.



Chapter 1

Introduction

Research in the last few years (e.g. [4, 6, 8, 23, 17, 18, 2, 13]) has demonstrated that
many stereo based 3D vision tasks like obstacle avoidance, object recognition or motion
and structure estimation can be accomplished with an uncalibrated stereo rig. Obviously
this is advantageous since camera calibration is an awkward process which cannot always
be performed reliably (e.g. for autonomous vehicles).

Basically all stereo techniques aim at inferring 3D information from correspondences esta-
blished between appropriate features in the two images. These features must be extracted
in a preprocessing step and the correspondences must be established. Even if fully cali-
brated cameras are assumed many techniques for 3D reconstruction are restricted to point
or line features. In this case reconstruction can be achieved by conventional triangulation

techniques (cf. [5] and the extensive bibliography cited there).

In [21, 11] reconstruction using correspondences of planar conics is discussed for the case
of calibrated stereo. [12] extends these techniques to the reconstruction of quadric surfaces
from the occluding contour, whereas [22] puts the focus on robustness issues in conic based
reconstruction from fully calibrated views.

Most authors addressing the problem of uncalibrated stereo use discrete points as features
(e.g. [4, 13, 6]). In [7, 8] the case of line features is considered. This is a progress since
lines are easier to detect than points. Furthermore establishing the correspondences is

facilitated since there are normally fewer lines than points in an image.

In this paper we consider the problem of 3D reconstruction from uncalibrated stereo

views using curve correspondences. First a brief description of reconstruction algorithms

based on point correspondences is given. Then we introduce a coordinate system which is

invariant to the unknown camera parameters. Compared to similar constructions reported
in the literature our method has the advantage that no restrictions concerning the relative

position of the cameras (e.g. parallel optical axes) are necessary. Using this coordinate
system we show how to reduce the reconstruction from conic correspondences to the

point based case. Next the case of general curves is considered. By applying a simple

tangent construction we obtain for a given pair of corresponding curves at least two pairs
of matching curve points. By �tting at these points an osculating conic we get pairs of

1



1. Introduction 2

corresponding conics. This reduces the problem to conics based stereo reconstruction from

uncalibrated views. Due to the fact that the stereo setup is uncalibrated no complete 3D

reconstruction can be achieved. If no a-priori knowledge about the scene (e.g. coplanarity

of curves) is available then a reconstruction up to a projectivity can be achieved. This is

in analogy with results for the point based case ([4, 6]).

For the aforementioned tangent construction we need the epipolar geometry (encoded in

the fundamental matrix) of the stereo rig. We present a method for determining the fun-

damental matrix and the coordinates of the epipoles from the correspondences of a pair of

planar conics, i.e. in every image we can identify two conics and correspondences between

the conics can be established. These image conics are assumed to be the projections of

two planar conics in 3D space.

In the appendix we summarize basic facts from projective geometry and prove some new

results concerning normal forms of pairs of conics.



Chapter 2

Basic Concepts

2.1 Statement of the problem

We consider a threedimensional scene consisting of a set of curves. We take a stereo
pair of images with an uncalibrated stereo rig, i.e. we have no information about the

relative displacement of the two cameras (external parameters) and the internal camera
parameters (focal lengths, principal points, etc..). The question is addressed what kind
of 3D reconstruction can be achieved from such a stereo pair under the assumption that
correspondences between a subset of curves in the images can be established. A typical
setup is shown in Figure 2.1.

1

2

1

1

2

2

Figure 2.1: A typical setup for stereo reconstruction from curve correspondences. The

established correspondences are indicated by the numbers 1; 2.
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2. Basic Concepts 4

First we assume that the epipolar geometry of the stereo rig is known and show how we

can achieve a 3D reconstruction up to projective transformation. Afterwards we discuss

how to recover the epipolar geometry from correspondences of planar conics (algebraic

curves of second order), i.e. we assume that the image curves are projections of at curves

in 3D.

2.2 Terminology

In this section we �x our terminology and introduce some basic concepts from projective

geometry. We model the camera planes as two-dimensional complex projective spaces

IP 2 (using complex instead of real spaces is not an essential point but it facilitates the

subsequent mathematical analysis). The elements of IP 2 are homogeneous three vectors

x = (x1; x2; x3)
T , i.e. all vectors of the form �x = (�x1; �x2; �x3)

t; � 2 C n f0g represent

the same point in IP 2. Vectors x are written as column vectors. In order to indicate that
a pair of points in the two images corresponds to the same point in 3D we use a prime,
i.e. x, x

0

are image coordiantes from the left and right camera respectively which are
projections of one 3D point. We model 3-D space as threedimensional projective space
IP 3 and denote the homogeneous coordinates for points in IP 3 by uppercase vectors like

X = (X1;X2;X3;X4). Furthermore we denote by hX1;X2i the line spanned by the two
points X1;X2 and by hX1;X2;X3i the plane spanned by the three points X1;X2;X3.

Let M(IP 2) be the set of all 3� 3 matrices with complex entries which are de�ned up to
a common scale factor, i.e. two matrices A;B represent the same element of M(IP 2) if a
� 2 C nf0g exists with A = �B. By GL(IP 2) we denote the set of all matricesA 2 M(IP 2)
with detA 6= 0. A matrix A 2 M(IP 2) is called symmetric if it is left unaltered under

matrix transposition, AT = A.

For a symmetric matrix C 2 M(IP 2) the conic C is de�ned as the following subset of IP 2:

C := fx 2 IP 2
j xTCx = 0g: (2:1)

A conic C is called nondegenerate if the describing matrixC is nonsingular (C 2 GL(IP 2)),

otherwise C is called degenerate. For every matrix A 2 M(IP 2) and every symmetric
matrix C 2 M(IP 2) it is easy to see that the matrix ATC A is also symmetric. Therefore
C! ATC A maps conics to conics.

Apart from points x 2 IP 2 and conics we have also to work with lines. For a given vector

l = (l1; l2; l3)
T the set of points x 2 IP 2 which are solutions of the equation xT l = 0 form

a line in IP 2. We call l a coordiante vector for that line.

2.3 Summary of point based algorithms

We denote 3D points by uppercase letters in boldface, e.g. M, whereas the projections

of a 3D point M onto the two retinas are denoted by m and m
0

respectively. When
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assuming the usual pinhole model for the two cameras the relationship between 3D and

2D can be described by two projection matrices P;P
0

. This are 4� 3 matrices so that for

any 3D point M

m = PM and m
0

= P
0

M: (2:2)

We consider three di�erent coordinate systems. One for the 3D description and the other

two for describing the image planes. Futhermore we assume that �ve 3D points in general

position (i.e. no four coplanar) are given. We denote these points by Mi; 1 � i � 5 and

the projections bymi;m
0

i; 1 � i � 5. Since we are assuming uncalibrated cameras neither

the 3D coordiante system, the image coordinate systems nor their mutual relations are

�xed. This can be rephrased in two di�erent ways. On the one hand we can say that our

intended `reconstruction' must be invariant with respect to transformations of these three

coordinate systems. On the other hand we can say that we assume that the coordinate

systems have some standard forms so that the description of the vectors Mi; mi; m
0

i is
especially simple. We de�ne �ij = 1 if i = j and �ij = 0 if i 6= j. Then we can introduce

a 3D and two 2D coordinate systems so that

Mi = (�i1; �i2; �i3; �i4)
T
81 � i � 4

M5 = (1; 1; 1; 1)T

mi =m
0

i = (�i1; �i2; �i3)
T
81 � i � 3

m4 =m
0

4 = (1; 1; 1)T :

(2.3)

The remaining points m5; m
0

5 can be expressed in terms of appropriate cross ratios of
mi; m

0

i; 1 � i � 4. Assuming the knowledge of the epipoles e; e
0

it is shown in [4] how to
determine from equations (2.2) and the standard forms in equations (2.3) the projection
matrices P;P

0

. Given the projection matrices and a pair of matching points m; m
0

it is

not di�cult to compute the 3D coordinates M by using the equations (2.2).

The important point to note is that the fact that the stereo rig is uncalibrated is exploited

to introduce `standard coordinate systems' for the analytical description. This removes
all ambiguities due to unknown internal and external camera parameters.

2.4 The fundamental matrix

In order to apply the methods described in section 2.3 it is necessary to determine the
coordinates of the epipoles. For this purpose it is advantageous to use the fundamental

matrix F which is the most important tool for the reconstruction from uncalibrated views

(cf. [4]). This matrix is a generalization of the essential matrix introduced by Longuet-
Higgens in [10] for computing the relative camera displacement from image corespondences



2. Basic Concepts 6

obtained by calibrated cameras. For a given binocular stereo rig the fundamental matrix

F is a 3 � 3 matrix of rank 2 with the following properties ([5]):

a) if x, x
0

are a pair of matching points, then

x
0TFx = 0: (2:4)

b) We denote by e; e
0

the coordiantes of the epipoles in the two camera planes. Then

�
e

0TF
�T

= Fe = 0: (2:5)

0 is the vector (0; 0; 0)T .

If we set l = Fx then equation (2.4) reduces to x
0T l = 0 which can be interpreted as the

equation of a line in the primed coordinate system. Therefore the fundamental matrix
maps points from one image to lines in the other image. All these lines which are called
epipolar lines go through the epipole e

0

. A reformulation of this fact is to say that for a
point x the corresponding point x

0

must be on the epipolar line Fx.

By using the equation (2.4) it is possible to determine F from eight point matches. Once

F is known the epipoles can be determined via the equations (2.5).



Chapter 3

Reconstruction from curve

correspondences and known

epipoles

3.1 Invariant Coordinates

In this section we build a coordinate system which is invariant to the unknown camera

parameters. We show the relation between these coordinates and homogeneous 3-D pro-
jective coordinates, for a general con�guration of cameras. The derivation was inspired by
the work in [4, 13, 6, 1], but to the best of our knowledge it is more general than previous
derivations.

We �rst build an invariant coordinate system in 3-D. We assume for the moment that

the positions of the two camera centers O;O0 in 3-D are known. We also know the
positions of some three non-collinear points X1;X2;X3. It is assumed that the �ve points
O;O0;X1;X2;X3 are in general position (i.e. no four coplanar). These �ve points are
used as a basis for a projective invariant coordinate system in 3-D space. This system
can be build as follows.

First create the three planes which have the line OO0 in common and pass through the

three Xi. Namely, we have the three planes

hO;O0;X1i; hO;O
0;X2i; hO;O

0;X3i:

Given some other 3-D point X, we can build a fourth plane containing hO;O0

i, namely

hO;O0;Xi. We now have a set of four planes containing the same line hO;O0

i, so we can

calculate their cross ratio. We take this cross ratio as the �rst invariant coordinate P1 of
the point X. The other two invariant coordinates P2; P3 can be de�ned in a similar way

by using sets of planes having a di�erent common line. P2, for example, is determined by
choosing hO;X1i as the common line, building the four planes that contain this line and

7



3. Reconstruction from curve correspondences and known epipoles 8

the remaining four points O0;X2;X3;X, and �nding the cross ratio of these planes. P3 is

determined in the same way by replacing the common line hO;X1i above with hO
0;X1i.

Since the coordinates were de�ned by cross ratios, they are invariant to a 3-D projective

transformation of theX coordinates. It is well known ([16], p. 127) that the cross ratios Pi

as de�ned above, can be used as homogeneous coordinates in the corresponding projective

space. That is, we can write a four-component vector P as

P = (P1; P2; P3; 1)
T :

The invariant homogeneous coordinates P are related to the Cartesian homogeneous coor-

dinates X = �(X;Y;Z; 1)T by a projective transformation, namely a 4� 4 linear matrix:

P = AX:

The transformation A is determined by the coordinates of the �ve reference (basis) points,
O;O0;Xi, in the two coordinate systems.

The interesting fact here is that the vectorP can be calculated from a stereo pair of uncali-

brated cameras, given the projections of the �ve basis points. Therefore, theX coordinates
can be reconstructed from uncalibrated cameras only up to a projective transformation
A. This transformation contains camera parameters that cannot be measured from the
image, such as the 3-D positions of the camera centers. Since P is independent of A, it
is invariant to such unknown camera parameters.

We now want to �nd the relation between the 3-D coordinates P above and the 2-D
coordinates of the given image pair. The projections of X in the two images are denoted
by x, x0 respectively. The camera centers O;O0 are projected as e0, e (the epipoles)
respectively. To deal with the �rst coordinate P1, we look at the projection of the four
planes that were used to de�ne it. These four planes hO;O0;Xii; hO;O

0;Xi are projected

on the two images as lines he;xii; he;xi and he0;x0ii; he
0;x0i respectively. We can now

de�ne an invariant coordinate p1 for x in the �rst image as the cross ratio of the four
concurrent lines he;xii, he;xi. Similarly for a coordinate p01 for x0 in the second image.

The lines used to de�ne p1 and the lines for p01 are projections of the same planes used
for P1. Therefore they have the same cross ratio and we can write

P1 = p1 = p01:

For the other components of P the equality between the two images does not hold since we
do not use the same planes for both images. However, there is still an equality between

the 3-D and the corresponding 2-D coordinate. The coordinate P2 was de�ned above

using the four planes

hO;O0;X1i; hO;X2;X1i; hO;X3;X1i; hO;X;X1i
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having the common line hO;X1i. These planes are projected on the �rst image as the

concurrent lines

he;x1i; hx2;x1i; hx3;x1i; hx;x1i:

The cross ratio of these lines can be de�ned as a coordinate p2 in the �rst image, which

is equal to the 3-D coordinate P2:

P2 = p2:

Similarly, for the other image one can show

P3 = p02:

where p02 is de�ned in the same way as p1, interchanging the roles of O, O0.

In summary, we have the 2-D invariant coordinates (p1; p2; 1)
t in the �rst image, (p1; p

0

2; 1)
t

in the second image, with the relation to the 3-D coordinates given by

P = (P1; P2; P3; 1)
T = (p1; p2; p

0

2; 1)
T : (3:1)

As we see from the right hand side in equation (3.1), the vector P can be calculated by
measuring quantities of the two images (given the epipoles). This is true for any choice
of camera con�gurations{ the camera planes do not have to coincide as in some previous
treatments. The positioning of the camera planes is immaterial since it does not enter

the calculation of the cross ratios.

A reconstruction of a shape from uncalibrated cameras can proceed as follows. We assume
that we know the position of the two epipoles in the images, e; e0 and three matching basis
point projections, xi, x

0

i. For any additional pair x;x0 we can now �nd the 3-D invariant
vector P using the equations above. This vector di�ers from the the 3-D coordinates X by

some unknown (but �xed) projectivityA as mentioned before. Therefore, reconstruction
from uncalibrated cameras can be done up to a 3-D projective transformation of the
coordinates X.

3.2 Reconstruction from Matching Conics

We show here a method for reconstructing general scenes from an uncalibrated stereo

pair, given matching conics and the epipoles. As we have seen, knowing the epipoles, we
need only three more matching points in order to be able to reconstruct any other point
in the scene (up to a projectivity). Therefore we have to �nd three matching points. Two

matching points are obvious: the points of contact with the conic of the tangents drawn

from the epipole (cf. Figure 3.1). Since tangents and epipoles match, these two points

match also. For �nding a third point, there are two cases:
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i) The fundamental matrix F is known (in addition to the epipoles). In this case

we can pass through the epipole a line l that cuts the conic in two points, q1;q2.

Using the fundamental matrix, we �nd the matching line l
0

in the other image (as

l
0

= Fq1). Finding the intersection of l
0

with the conic in the second image, we

have the two intersection points q
0

1;q
0

2, which match q1;q2.

ii) The fundamental matrix is unknown. In this case we need to use another matching

conic (or a known matching point).

In the remainder of this section we calculate the intersections of a line with a conic and

�nd the contact points of the tangents drawn from a given point. The treatment is based

on that in ([16], p.182).

y

z

q

q

1

2

r

r

a

b

a

b

l

l

Figure 3.1: Calculating the intersections and contact points of a line with a conic.

We use non-homogeneous triplets of coordinates, x = (x1; x2; 1). We represent the line

with the help of two �xed points, y; z. For our case we will identify y with the epipole,

y = e. A variable point x along the line can be represented as the linear combination

x = �y + �z

with the parameters �; � satisfying � + � = 1. To �nd the intersection of this line with
the conic, we substitute the above line in the conic equation xtCx = 0. We obtain
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(ytCy)�2 + 2(ytCz)�� + (ztCz)�2 = 0:

We want to solve the above equation along with the condition � + � = 1. The values

we �nd for �; � give the intersection points q1;q2. The above equation is a quadratic

equation for �=�, with two solutions s1; s2. Thus we obtain

�1

1 � �1
= s1:

which is easily solved for �1. Similarly for s2.

The case in which the intersections q1;q2 coincide gives us the tangent line. For this case

to occur, the discriminant of the quadratic equation above has to vanish:

(ytCz)2 � (ytCy)(ztCz) = 0

We hold y �xed (the epipole) and use z as the line variable. The above expression can

be decomposed into a product of two factors linear in z, the tangent lines.

We can �nd the tangents in a simpler and more direct way (without �nding intersections).
We move the origin to the epipole. All lines through the origin can be expressed as

l(�) = (�; 1; 0):

With the free parameter � here being the slope. We substitute this in the line conic,
namely the inverse of C:

D = C�1:

and obtain a quadratic equation in �:

D11�
2 + 2D12� +D22:

Using either method we obtain two tangent lines la; lb. The contact points ra; rb of the
tangents with the conic can be found as the epipolar points of the above lines:

ra = laD; rb = lbD:

These contact points match for the two images and can be used for reconstruction.
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3.3 Reconstruction from General Curves

In this section we consider the 3-D reconstruction from a stereo pair, given one matching

curve and the epipolar geometry. Matching curves is easier than matching points, since

there are fewer of them and they are more distinctive.

Instead of matching points, we use derivatives of the curve at any point on the curve. We

do not need to have any known matching points. We describe here the extreme case in

which no matching points are known and we rely totally on derivatives. However, `hybrid'

methods involving both matching points and derivatives are not hard to devise using the

present example and may be even more useful.

Since the epipolar geometry is given, we can draw a line from the epipole to intersect the

given curve at point x in one image. A matching epipolar line intersects the curve in the

other image at a matching point x0. Obviously the epipolar line Fx may intersect the

curve in more than one point. This may introduce ambiguities which can make it di�cult

to establish the point correspondences. Instead of intersecting lines we can also consider
tangent lines from the epipole to the curve. This reduces the possible ambiguities but
it is still possible that the correspondences cannot be established uniquely. However, in
most practical cases it will not be too di�cult to resolve these ambiguities at least for the
tangents by some heuristics.

The basic idea is now to construct a conic that osculates the given curve at x, and a
matching conic osculating the matching curve in the other conic at x0. Thus the problem
is reduced to the problem solved earlier, namely the reconstruction from one given pair
of matching conics plus the epipolar geometry.

The conic in each image has to be determined uniquely. If we rely totally on derivatives,
it means that the derivatives of the given curve have to be equal to those of the conic at

the point of their contact x, up to fourth order. If a matching point (or line) is known,
we need only a second derivative equality. Alternatively, we can use the above method of
drawing epipolar lines to �nd another pair of matching points, say y;y0. We can then �nd
a conic that osculates the curve at both x and y, which would require only a second order
derivative at each point. Finding a third point z reduces the situation to the common

one of three matching points eliminating the need for derivatives (or conics) altogether.

We will only summarize here the case in which the osculating conic is determined uniquely
by the derivatives at x (or x0). A full treatment of this and the `hybrid' cases of conic

�tting is given in [19, 20].

The �rst stage is to �t to the data a high order polynomial that represents the given curve

f :

f(x; y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 + a6x
3 + a7x

2y +

a8xy
2 + a9y

3 + a10x
4 + a11x

3y + a12x
2y2 + a13xy

3 + a14y
4 = 0:
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This quartic implicit polynomial gives a reasonable accurate �t that enables us to calculate

derivatives. To simplify the treatment, we next move to a canonical Euclidean system.

Namely, we move the origin to the contact point x, and we rotate the axes so that the x axis

is tangent to the curve at x. This is easy to accomplish by a Euclidean transformation

that sets a1 = a2 = 0 in the polynomial f above. The remaining coe�cients ai are

transformed to new ones in this system, �ai.

The derivatives in this system are easy to calculate. The zeroth and �rst one vanish

because of the choice of the coordinate system. The higher derivatives are a follows.

Setting a2 = 1, denoting dn =
1
n!

dny

dxn
(0) and dropping the bar from �ai we have

d2 = �a3

d3 = �a6 � d2a4

d4 = �a10 � d2a7 � d22a5 � d3a4:

In our Euclidean canonical system the osculating conic has only three free coe�cients
since it passes through the origin and is tangent to x there. We can write it as

c0x
2 + c1y

2 + c2xy + y = 0:

This conic is determined by the condition that its derivatives at the origin are equal to

those of the original curve, i.e. the conic coe�cients ci are determined by dn. Given dn it
is easy to �nd the conic:

c0 = �d2

c1 = �(d2d4 � d23)=d
3
2

c2 = �d3=d2:

Thus the conic coe�cients have been found. We can now return to the original coordinate

system and transform the conic to that system.



Chapter 4

Recovering the epipolar geometry

from conic correspondences

As we have seen in the previous sections it is possible to solve the problem of projective
reconstruction from curve correspondences as soon as the coordinates of the epipoles

in the two camera planes are known. We now present a technique for recovering the
epipoles and the fundamental matrix F from the correspondence of nondegenerate conics
(algebraic curves of second order). It is assumed that these conics are the projections of
nondegenerate planar conics in 3D space. A typical setup is shown in Figure 2.1.

4.1 The basic idea

In this section we describe the basic idea in an informal way. Later on we will develop the
theory rigorously. Let us assume for the moment that we have a pair of nondegenerate
corresponding conics C;C

0

in the two camera planes and that we know the coordinates of

the epipoles e; e
0

. From e we can draw two tangents to the conic C. This gives us the two
tangent points x1, x2 on the conic C. These two tangent lines form a degenerate conic of
rank two (a cone, cf. Figure A.1) which we denote by K. In an analogous manner we get
points x

0

1, x
0

2 and a cone K
0

in the other image by drawing the tangents from the epipole

e
0

to the conic C
0

. All this is shown in Figure 4.1.

We say that the cones K;K
0

are associated with the conics C;C
0

. As already mentioned

x1, x
0

1 and x2, x
0

2 are corresponding points, i.e. every pair is the projection from one 3D
point to the respective camera planes. The basic idea for recovering the epipoles is to

express the the cone K in two di�erent ways. First we use the aforementioned tangent
construction for expressing K in terms of the epipole e and the conic C. Second we

exploit the restrictions imposed by the epipolar geometry to express K in terms of the

fundamental matrix F and a symmetric matrix C
0

l derived from the conic C
0

. This will

give us an equation of the form K = FTC
0

lF where the left hand side is expressed in
terms of e;C and the right hand side in terms of F;C

0

. All equations will be quadratic

14
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1
x

2
x

1
x

2
x

'

'

e

e'

Conic

Cone

Conic

Cone

C

K

C'

K'

Figure 4.1: Constructing corresponding points and associated cones by drawing tangents
from the epipoles e; e

0

to the conics C;C
0

.

in the components of the unknowns e;F. Since we have twelve unknowns (nine from F

and three from e) and every corresponding pair of conics yields six equations we should
be able to solve for e;F from the correspondence of two conics.

4.2 Linking conics and associated cones

The purpose of this section is to describe analytically the relation between conics and
associated cones. We �rst collect some useful formulas from projective geometry and

explain afterwards how to exploit the restrictions coming from epipolar geometry.
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4.2.1 Cones and Line Conics

Given a conic C in IP 2 and a point x outside C we can construct a cone K by drawing

the two lines through x which are tangent to C. As shown in ([16], p. 183) the matrixK
with components Kij is given by (note that we use the Einstein summation convention):

Kij = (Cklx
kxl)Cij � (Ckix

k)(Cljx
l): (4:1)

This can also be written in matrix/vector notation (keep in mind that the matrix C is

symmetric, CT = C):

K = xTCxC�CxxTC: (4:2)

In order to take advantage of the restrictions imposed by the epipolar geometry we need

the so called line conic. For a nondenerate conic C we can draw for every point x 2 C on
the conic exactly one line through x which is tangent to C. The set of all lines which are
tangent to a conic C is also a conic. This means that for every nondegenerate conic C it

is possible to construct a nondegenerate symmetric matrix Cl so that the set of solutions
of the quadratic equation lTCll coincides with the set of line coordinates describing lines
which are tangent to the conic C. Cl is called the line conic associated to the conic C.
In order to construct the line conic Cl one needs the cofactors C

ij of the matrix C. For
a given matrix C and integers r; s 2 IN; r; s � dimC we construct the reduced matrix

C(r;s) by removing row r and column s from C. The cofactor C ij is then de�ned by

C ij := (�1)i+j detC(i;j): (4:3)

As shown in ([16], p. 173) the components Clij of the line conic Cl are given by

Clij = C ij: (4:4)

4.2.2 Combining conic correspondences with the epipolar geo-

metry

Now we are ready to prove our central result which allows the recovery of the epipolar

geometry from correspondences of nondegenerate conics. We assume that we have esta-

blished the correspondence of two nondegenerate conics C and C
0

in the two images. We

denote the epipoles by e and e
0

. As described in section 4.2.1 we construct two cones K

and K
0

by drawing the tangents to C;C
0

which pass through the epipoles e; e
0

. Let F be
the fundamental matrix of the stereo setup and letCl;C

0

l be the line conics corresponding
to the conics C;C

0

.



4. Recovering the epipolar geometry from conic correspondences 17

Theorem 4.1 Let C and C
0

be a pair of corresponding nondegenerate conics. We denote

the epipoles by e and e
0

. Let K and K
0

be the two cones constructed by drawing the

tangents to C;C
0

which pass through the epipoles e; e
0

. Let F be the fundamental matrix

of the stereo rig and let C
0

l be the line conic corresponding to the conic C
0

. The cone K

determined by the epipole e and the conic C can be described by:

1. using the conic C and the epipole e:

K = eTCeC�CeeTC (4:5)

2. using the line conic C
0

l and the fundamental matrix F:

K = FTC
0

lF: (4:6)

By interchanging in equations (4.5), (4.6) primed with unprimed quantities and F with

FT it is also possible to express the cone K
0

in two di�erent ways.

Proof: Equation (4.5) is a trivial reformulation of equation (4.2). Since F has rank two
the matrix FTC

0

lF has also rank two (the line conic C
0

l has rank three) and describes
therefore a cone. In order to prove the equivalence of (4.5) and (4.6) it is enough to show
that the two cones have the same apex a and to identify two further points x1; x2 which
lie on both cones so that the three points a; x1; x2 are not collinear. The apex a of a
cone K is characterized by the condition Ka = 0. This makes it easy to show that the

epipole e is the apex for the two cones in (4.5), (4.6) (note that Fe = 0, cf. equation
(2.5)). Let x1, x2 be the two points on the conic C which are on the tangent from e to C.
Trivially these points are on the cone K described in equation (4.5). We have to prove
that

xT
i F

TC
0

lFxi = 0 8i = 1; 2: (4:7)

We set l
0

i := Fxi. The fundamental matrix F maps points from the unprimed image to
lines in the primed image which pass through the epipole so that the matching point lies

on this line. The points corresponding to x1, x2 are on the conic C
0

. Therefore the lines

l
0

1, l
0

2 are on the line conic C
0

l which means l
0T
i C

0

ll
0

i = 0 8i = 1; 2. 2

4.3 Computing the fundamental matrix and the epi-

poles

By using the results from Theorem 4.1 it is possible to determine the fundamental matrix
F and the epipoles e; e

0

from conic correspondences. Every pair of matching conics C;C
0

yields according to Theorem 4.1 the following matrix equation:
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FTC
0

lF = eTCeC�CeeTC: (4:8)

Since all matrices are symmetric this yields six equations. The rank of the matrices is two,

therefore the equations cannot be independent. The correspondence of a pair of conics

gives twelve equations which we can eventually solve for the twelve unknowns F; e. Since

F has rank two the `unknowns' are also dependent.

If we have F; e then the coordinates of the other epipole e
0

can be determined as follows.

We draw the tangents from the epipole e to the conic C. The two points where the

tangents touch the conic are denoted by x1; x2. The intersection point of the two epipolar

lines Fx1; Fx2 in the primed image is the epipole e
0

.

In order to solve the equations (4.8) for F; e it is advantageous to make use of the standard

forms for pairs of conics developed in Theorem A.3. It is possible to obtain a solution

numerically by a constrained minimization algorithm (note that F; e are not independent,

cf. equation (2.5)). First simulations have indicated that a straightforward implementa-
tion is not stable and requires a good initial guess. Furthermore it is at present an open

question how to solve the equations (4.8) analytically and how to characterize possible
ambiguities.



Chapter 5

Summary and Conclusion

We have investigated in this paper methods for 3-D reconstruction from uncalibrated
stereo views using correspondences of curves. This extends previous work which was
based on correspondences of points or lines. First we have introduced a coordinate system
which is invariant to the (unknown) camera parameters. This construction may be useful
in other contexts as well. Based on this coordiante system we have shown how to achieve a

3-D reconstruction from an uncalibrated stereo pair using correspondences of conics. This
was extended afterwards to the case of general curves. A prerequisite for these methods
was the knowledge of the epipolar geometry. We have presented a method for determining
the fundamental matrix and the coordinates of the epipoles from the correspondences of
a pair of conics. We have not discussed in this paper implementation details or questions

concerning the robustness of the solutions. This are important points for further work.
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Appendix A

Geometric equivalence and normal

forms of conics

Two conics C1; C2 with describing matrices C1;C2 are called geometrically equivalent if
a nonsingular matrix A 2 GL(IP 2) exists with C1 = ATC2A. The signi�cance of this

concept lies in the fact that geometrically equivalent conics only di�er with respect to the
coordinate systems which are used for their analytical description. How is it possible to
decide whether two conics are geometrically equivalent or not? The answer is provided
by the following classi�cation theorem (cf. [9]).

Theorem A.1 Two conics C1; C2 with describing matrices C1;C2 are geometrically equi-

valent if and only if rank C1 = rank C2. Every conic C in IP 2 is geometrically equivalent

to one of following conics which are called normal forms:

rank C Equation Description

0 0 = 0 IP 2

1 x21 = 0 (double) line

2 x21 + x22 = 0 pair of lines

3 x21 + x22 � x23 = 0 circle

For the applications in this paper for the reconstruction from conic correspondences in

uncalibrated views only the cases rank C = 2 and rank C = 3 will be relevant. Figure

A.1 shows the two normal forms and some transformed conics.

In the case rank C = 2 we will also use the term cone instaed of conic. Apart from normal

forms for single conics we will also need normal forms for pairs of nondegenerate conics.
For tackling these probblems we have to use results concerning invariants of pairs of conics.
An invariant I(C1;C2) of two conics C1;C2 is a function of the conic coe�cients which
remains unchangend under transformations of the conic pair, i.e. for every nonsingular

matrix A 2 GL(IP 2) we have

I(ATC1A;A
TC2A) = I(C1;C2):

20
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rank C = 2

rank C = 3

Transformed ConicsNormal Form

Figure A.1: Normal forms and transformed conics for the cases rank C = 2 and rank C =

3.

It is well known (cf. [16, 14]) that a pair of nondegenerate conics C1;C2 in IP 2 has the
following two basic invariants:

I1(C1;C2) =

�
detC1

detC2

�1

3

Trace(C�1
1 C2)

I2(C1;C2) =

�
detC2

detC1

�1

3

Trace(C1C
�1
2 ):

(A.1)

An important point for our purposes is that the values of the invariants I1; I2 from equa-
tion (A.1) characterize a pair of nondegenerate conics C1;C2 uniquely up to projective
transformation. That means precisely the following.

Theorem A.2 Let two pairs of nondegenerate conics (C1;C2) and (D1;D2) in IP 2 be

given. If the values of the invariants I1; I2 coincide for the two pairs of conics, i.e.

I1(C1;C2) = I1(D1;D2) and I2(C1;C2) = I2(D1;D2) then there exists a nonsingular

matrix A 2 GL(IP 2) with (C1;C2) = (ATD1A;A
TD2A).

Theorem A.2 enables us to prove some useful results concerning normal forms of pairs of
conics. What we are interested in is to �nd for a pair of nondegenerate conics (C1;C2)

a nonsingular matrix A 2 GL(IP 2) so that the transformed pair (ATC1A;A
TC2A) has a

particularly simple form. We will show that it is possible to �nd matrices A 2 GL(IP 2)

so that the transformed conics are diagonal. These diagonal forms are not unique. In
order to give a compact description of the arising ambiguities we need some additional
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terminology. We denote by I1; I2 the values of the invariants of equation (A.1) for the

two nondegenerate conics (C1;C2). We de�ne a polynomial f(x) (x a complex variable )

as follows:

f(x) := x3 + I1x
2 + I2x+ 1: (A:2)

Let R(f) denote a root of the polynomial f , i.e. f(R(f)) = 0. For a root R(f) the

quadratic polynomial gR(f)(x) is de�ned by:

gR(f)(x) := x2 � x(I1 �R(f)) + I2 + I1R(f) +R(f)2: (A:3)

Using the polynomials from equations (A.2), (A.3) it is possible to give a complete des-

cription of all possible diagonal forms of pairs of nondegenerate conics.

Theorem A.3 Let (C1;C2) be a pair of nondegenerate conics and denote by I1; I2 the

values of the invariants of equation (A.1) for these conics. Let (D1;D2) be a pair of

diagonal matrices of the following form:

D1 = diag (1; 1;�1)

D2 = diag (a; b; c)

with a =
�1

R(f)R(gR(f))
; b = R(gR(f)); c = R(f):

(A.4)

Then there exists a nonsingular matrix A 2 GL(IP 2) with (C1;C2) = (ATD1A;A
TD2A).

Proof: The parameters a; b; c are constructed in such a manner that they describe the
set of all solutions of the following system of equations (veri�cation by direct calculation
or using MAPLE):

I1 = a+ b� c

I2 =
1

a
+

1

b
+

1

c

�1 = abc

(A.5)

A direct calculation gives for the values of the invariants (equation (A.1)) for the pair of

conics (D1;D2):
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I1(D1;D2) = a+ b� c

I2(D1;D2) =
1

a
+

1

b
+

1

c

This yields together with equations (A.5) I1(C1;C2) = I1(D1;D2) and I2(C1;C2) =

I2(D1;D2). Since the values of the two fundamental invariants coincide for (C1;C2) and

(D1;D2) the assertion follows from Theorem A.2. 2

The most useful interpretation of Theorem A.3 for our purposes is the following. Given a

pair of conics in the camera plane it is always possible to introduce new image coordinates

so that one conic becomes a circle around the origin and the other conic an ellipse around

the origin. Some of these normal forms are shown in Figure A.2. We note that it is

essential here that we work in the complex projective space IP 2 since we have to determine
the roots of the polynomials f; gR(f) (equations (A.2), (A.3)) which are in general complex.

Figure A.2: Examples of normal forms for pairs of conics.



Appendix B

List of Symbols

IP n n�dimensional complex projective space
x homogeneous coordinates of a point in IP 2

X homogeneous coordinates of a point in IP 3

l homogeneous coordinates of a line

hX1;X2i line spanned by the two points X1;X2

hX1;X2;X3i plane spanned by the three points X1;X2;X3

0 vector (0; 0; 0)T

M(IP 2) set of all projective 3� 3 matrices
GL(IP 2) set of all nonsingular projective 3� 3 matrices

C conic in IP 2

Cl line conic associated to the conic C
C symmetric matrix in M(IP 2) describing a conic
Cij component of the matrix C
C ij cofactor of the matrix C
C(r;s) reduced matrix

Cl symmetric matrix in M(IP 2) describing a line conic
R(f) root of a polynomial f
F fundamental matrix of the stereo rig

e; e
0

coordinates of the epipoles in the two images

P; P
0

projection matrices from 3D to the two retinas

24



Bibliography

[1] E. B. Barrett, M. H. Brill, N. N. Haag, P. M. Payton Invariant Linear Methods in

Photogrammetry and Model-Matching. In: J. L. Mundy, A. Zisserman (eds.), Geo-

metric Invariance in Computer Vision, pp. 277-292, MIT Press 1992.

[2] P.A. Beardsley, A. Zisserman, D.W. Murray Navigation using A�ne Structure from

Motion. Proc. ECCV'94, Lecture Notes in Computer Science No. 801, pp. 85-96,

Springer 1994.

[3] O. D. Faugeras, Q.-T. Luong, S. J. Maybank Camera Self-Calibration: Theory and

Experiments. Proc. ECCV'92, Lecture Notes in Computer Science No. 588, pp. 321-

334, Springer 1992.

[4] O. D. Faugeras What can be seen in three dimensions with an uncalibrated stereo rig?

Proc. ECCV'92, Lecture Notes in Computer Science No. 588, pp. 563-578, Springer

1992.

[5] O. D. Faugeras Three-dimensional computer vision: a geometric viewpoint. MIT

Press 1993.

[6] R. I. Hartley, R. Gupta, T. Chang Stereo from uncalibrated cameras. Proc. of the
IEEE Internatioanl Conference on Computer Vision and Pattern Recognition, pp.

761-764, 1992.

[7] R. I. Hartley Projective reconstruction from line correspondences. Proc. of the IEEE

Internatioanl Conference on Computer Vision and Pattern Recognition, 1994.

[8] R. I. Hartley Projective reconstruction and Invariants from Multiple Images. IEEE

PAMI, vol. 16, no. 10, pp. 1036-1041, 1994.

[9] S. Lang Linear Algebra. Addison-Wesley 1966.

[10] H. C. Longuet-Higgins A computer algorithm for reconstructing a scene from two

projections. Nature, 293, pp. 133-135, September 1981.

[11] S. D. Ma Conics Based Stereo, Motion Estimation and Pose Determination. Inter-

national Journal of Computer Vision, vol. 10, no. 1, pp. 7-25, 1993.

25



BIBLIOGRAPHY 26

[12] S. D. Ma, X. Chen Reconstruction of Quadric Surface from Occluding Contour. Proc.

of the 12'th International Conference on Pattern Recognition, vol.I, pp. 27-31, Jeru-

salem, Israel 1994.

[13] R. Mohr, T. Vi�elle, L. Quan Relative 3D reconstruction using multiple uncalibrated

cameras. Proc. Int. Conference on Computer Vision and Pattern Recognition, pp.

543-548, 1993.

[14] J. L. Mundy, A. Zisserman (Eds.) Geometric Invariance in Computer Vision. MIT

Press 1992.

[15] J. L. Mundy, A. Zisserman (Eds.) Applications of Invariance in Computer Vision

II. Proceedings of the second ESPRIT-ARPA/NSF Workshop on Invariance, Ponta

Delgada, Azores, 1993.

[16] C. E. Springer Geometry and Analysis of Projective Spaces. Freeman 1964.

[17] L. Van Gool, T. Moons, M. Proesmans, M. Van Diest A�ne Reconstruction from

Image Pairs Obtained by a Traslating Camera. Proc. of the 12'th International Con-
ference on Pattern Recognition, vol.I, pp. 290-294, Jerusalem, Israel 1994.

[18] T. Vi�elle, Q.-T. Luong Computing motion and structure in image sequences without

calibration. Proc. of the 12'th International Conference on Pattern Recognition, vol.I,
pp. 420-425, Jerusalem, Israel 1994.

[19] I. Weiss Local projective and a�ne invariants. Technical Report CAR-TR-612, Uni-
versity of Maryland, Center for Automation Research, 1992.

[20] I. Weiss Di�erential Invariants without Derivatives. in: Proceedings 11'th Interna-
tional Conference on Pattern Recognition, Conference C, 394-398, Den Haag 1992.

[21] M. Xie, M. Thonnat A Theory of 3D Reconstruction of Heterogeneous Edge Pri-

mitives from Two Perspective Views. Proc. ECCV'92, Lecture Notes in Computer
Science No. 588, pp. 715-719, Springer 1992.

[22] M. Xie On 3D Reconstruction Strategy: A Case of Conics. Proc. of the 12'th In-
ternational Conference on Pattern Recognition, vol.I, pp. 665-667, Jerusalem, Israel

1994.

[23] C. Zeller, O. D. Faugeras Application of Non-Metric Vision to Some Visual Guided

Tasks. Proc. of the 12'th International Conference on Pattern Recognition, vol.I, pp.
132-136, Jerusalem, Israel 1994.


