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Abstract: Edges, corners and vertices are strong and useful features in com-

puter vision. This paper deals with the development of an e�cient model

based approach in order to detect and characterize precisely these important

features. The key of our approach is �rst to propose some e�cient models

associated to each of these features and second to e�ciently extract and char-

acterize these features directly from the image. The models associated to each

feature include a large number of intrinsic parameters (Grey level intensities,

location, orientation of the line segments: : : ) but also an important parameter

which is associated to the blurring e�ect due to the acquisition system. The

important problem of the initialization phase in the minimization process is

also considered and an original and e�cient solution is proposed. In order

to test and compare the reliability, the robustness and the e�ciency of the

di�erent proposed approaches, a large number of experiments involving noisy

synthetic data and real images have been carried out. Finally, a comparative

study of this approach and the classic corner operators is presented.
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Caract�erisation de Primitives Image �a l'aide

d'une Approche par Mod�eles

R�esum�e : Les contours, coins et jonctions triples sont des primitives image

tr�es utiles en vision par ordinateur. Ce rapport pr�esente le d�eveloppement d'une

m�ethode �a base de mod�eles pour caract�eriser ces primitives importantes. L'id�ee

mâ�tresse de cette approche consiste �a d�e�nir des mod�eles correspondant �a cha-

cune des primitives et ensuite �a les caract�eriser de mani�ere robuste directement

�a partir des images. Les mod�eles d�e�nis incluent un grand nombre de para-

m�etres radiom�etriques et g�eom�etriques mais aussi un important param�etre qui

est associ�e �a l'e�et de lissage introduit par le syst�eme d'acquisition. Le pro-

bl�eme important de l'initialisation du processus de caract�erisation it�erative est

aussi consid�er�e et une solution originale et e�cace est propos�ee. A�n de tester

et de comparer la validit�e, la robustesse et l'e�cacit�e des di��erentes approches

pr�esent�ees, un grand nombre d'exp�erimentations sur des images synth�etiques

bruit�ees et des images r�eelles ont �et�e e�ectu�ees. Finalement, une �etude com-

parative de cette approche par rapport �a des d�etecteurs classiques de coins est

pr�esent�ee.

Mots-cl�e : Vision bas niveau, formation des images
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4 T. Blaszka & R. Deriche

1 Introduction

Feature extraction is one of the most important areas in computer vision. A

great deal of e�ort has been spent by the computer vision community on this

problem and in particular on the problem of edge detection where an extensive

literature has been developed from Marr and Hildreth's work [23] to Canny [7]

or Deriche's work [9]. Corners and vertices as features are also very important

and represent another class of relevant information in computer vision. All

these features are used for applications in stereo, automatic visual obstacle

avoidance, identi�cation and pose determination of three dimensional objects,

displacement vector measuring and an accurate localization of these features

is well appreciated and of great interest. Several approaches to the problem of

detecting corners and junctions points have been reported in the literature in

the last few years.

A �rst group involves �rst extracting edges as a chain code, and then search-

ing for points having maxima curvature [1], [11], [25], performing a polygonal

approximation on the chains and then search for the line segment intersections

[20]. or using an explicit line detector model and exploiting the spatial context

to detect junctions [24].

The second group consists of approaches that work directly on grey-level

images. These techniques are based either on heuristic techniques [26] or on the

measurement of the gradients and of the curvatures of the surface. Among the

most popular corner detectors are those proposed by Beaudet [2],Dreschler

and Nagel [15], Kitchen and Rosenfeld [21],Zuniga and Haralick [34], Noble

[27], Harris and Stephen [19]. Recently on considering geometric properties

of isophotes and in particular their invariance under general invertible (non

linear) intensity transformation, Ter Haar Romeny [32] proposed to use the

gradient of isophote curvature as a good candidate for a T junction detector.

Despite the fact that third order derivatives are required in the estimation of

this measure, good and promising experimental results are shown. One may

note also the interesting approach developed recently by Brunnstrom [6] who

considered how junction detection and classi�cation can be performed in an

active visual system.

A third group of approaches is emerging, mainly characterized by the use of

di�erential geometry and the development of model based approaches to char-

INRIA



Characterizing Image Features 5

acterize accurately these features. Hence, using di�erential geometry, Guiducci

[18] characterized corners in an image by three parameters which are the ampli-

tude A of the wedge, its aperture angle � and a parameter � that is a measure

of the smoothness of the wedge. Analytical expressions for these 3 parameters

are then derived to estimate them directly from the grey level image intensity.

Deriche and Giraudon [12] considered a corner model and studied analytically

its behavior once it has been smoothed using the well-known Gaussian �l-

ter. This allowed them to clarify completely the behavior of some well known

cornerness measure based approaches used to detect these points of interest.

In particular, most of the classical approaches presented in the second group

have been shown in [12] to detect points that do not correspond to the exact

position of the corner. A new scale-space based approach that combine useful

properties from the Laplacian of Gaussian and the local maxima of the deter-

minant of the Hessian matrix (Beaudet's measure [2]) has been proposed in

order to correct and detect exactly the corner position. An extension of this

approach to the problem of trihedral vertex characterization has been devel-

oped in [17]. David Beymer [5] analyzed junctions de�ned as the intersection

points of three or more regions in an image. A gradient analysis near junction

was performed, by examing a mathematical model for a T junction, providing

a framework for a junction detection method that reconstructs junctions from

edge maps by growing endpoints. Rohr [30] proposed an interesting approach

for the modeling and identi�cation of a certain class of characteristic intensity

variations including step edges, corners and more complex junctions types. A

general analytical model is proposed and �tted directly to the image intensi-

ties to determine the position of grey value structures to sub-pixel accuracy

and also additional attributes such as the width of the grey value transitions.

The application of this method to real images demonstrates that the identi�ed

model functions agree fairly well with the original grey-value structures, but

it has been found that this approach is computationally very expensive. Also

one can notice that some important questions have not been addressed. No

attempt has been made to propose an e�cient way to deal with the problem

of the automatically choice of the window size for the �t and the problem of

the initialization phase in the minimization process has not been addressed in

depth.

RR n�2422



6 T. Blaszka & R. Deriche

This paper presents an approach which is a natural extension of the work

started in [12], [17] and [30]. We propose to locate and characterize features as

edges, corners and vertices directly from the image by searching the parameters

of the model that best approximate the observed grey level image intensities.

The model associated to each feature include a large number of intrinsic pa-

rameters (grey level intensities, position and orientation of the feature: : : ) but

also an important parameter which is related to the blurring e�ect due to the

acquisition system. Berzins [4] �rst employed the idea of a model to analyze the

accuracy of Laplacian edge detector. This idea has been proven to be powerful

in better understanding of the structure behavior in a scale space approach and

has been adopted later by Bergholm [3], who used an explicit model of grey

value corner to evaluate the displacement of the corner points depending on

the � parameter of the used Gaussian �lter. De Michelli etal [8] have used also

this idea to present a comparative study between zero-crossing and gradient

approaches on corner and trihedral vertex.

In this paper, the focus is on the problem of determining e�ciently the

model parameters of the considered feature directly from the grey level image

intensities. Due to the large amount of time required by the direct approach

that assumes the blur of the imaging acquisition system to be describable by a

2D Gaussian �lter [30], some alternative and e�cient solutions are considered

and developed in detail in this paper. The �rst idea is to replace the Gaussian

�lter by an exponential �lter derived from optimality considerations in edge

detection [10] and which can easily be made very close to the Gaussian. Using

this �lter allows us to derive a close form for the di�erent integrals required

in the approximation process and thus enables to avoid the numerical inte-

grations which are very time consuming and make the approach developed by

Rohr [30] not practical. The important problem of the initialization phase in

the minimization process is also considered in this paper and an original and

e�cient solution is proposed and analyzed also in detail. Finally, an extensive

experimental work on noisy synthetic data and real images has been carried out

to evaluate the robustness and the accuracy of the di�erent methods. Some

experiments are also presented to demonstrate the advantages of the model

based methods in a real application: the 3D-reconstruction from two images.

INRIA



Characterizing Image Features 7

2 Features Models Using a 2D Gaussian Blur-

ring Filter

2.1 Notations and de�nitions

First, some functions that will be largely used in the rest of the paper, are

introduced here. Let g(x) denote the zero mean Gaussian �lter:

g(x) =
1p
2�

e�
x2

2 (1)

The two-dimensional Gaussian �lter G can then be expressed as:

G(x; y) = g(x)g(y) (2)

Following Berzins [4], the unit length of the considered coordinate system

is equal to the scale factor � of the �lter. In order to convert the results into a

more general coordinate system (X;Y ), the following transformation is used:

8><
>:

x = X
�

y = Y
�

(3)

Let � denote the error function given by:

�(x) =

Z x

t=�1
g(t)dt (4)

Let U de�ne the unit step function:

U(x) =

(
1 if x > 0

0 otherwise
(5)

The response of the 2D �lter F for a 2D input function I can be computed by

evaluating the following convolution integral:

S(x; y) =

Z +1

�=�1

Z +1

�=�1
F (�; �)I(x � �; y � �)d�d� (6)

RR n�2422



8 T. Blaszka & R. Deriche

2.2 Edge Model

A convenient representation for a straight line is as follows:

� x sin(�) + y cos(�) � � = 0 (7)

where [� sin(�); cos(�)]T de�nes the unit vector perpendicular to the straight

line and � is the distance of the origin to the closest point on the line. One may

note that 8(x0; y0) the sign of this equation determines to which half plane,

belongs the point (x0; y0).

An ideal edge supported by such line is then modeled as follows:

Iedge(x; y) = U(�x sin(�) + y cos(�)� �) (8)

However, such an ideal model does not correspond generally to edges that

are present in images. It is well known that any image acquisition system

introduces a blur e�ect. Taking into account this problem, and considering

that the Gaussian function as one of the most advocated model to represent

the point spread function caused by defocus [28], leads to a more reasonable

model for real edges in images. This model is obtained by convolving the ideal

edge model, given by (8) with the 2D Gaussian �lter given by (2). Developing

and simplifying the convolution operation given by (6) with the 2D Gaussian

�lter, yields the following result:

E1(x; y) = �(�x sin(�) + y cos(�)� �) (9)

where �(:) is the error function given by (4).

This expression depends on two parameters � and �. Taking into account

the grey level intensities leads to add two other parameters A and B corre-

sponding to each half plane de�ned by the line supporting the edge. Finally,

adding the blur e�ect described by the parameter � leads to a total of 5 pa-

rameters to express completely an edge model:

Eg(x; y; �; �; �; A;B) = (A�B)�

�
�x
�
sin(�) +

y

�
cos(�)� �

�

�
+B (10)

INRIA
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Figure 1: A Corner Model

2.3 Corner Model

An ideal corner with one edge along the �-axis and an aperture angle �
2
(see

�gure 1) can be modeled by the following 2D step function:

Icorner(�; �) = U(�)U(m� � �) (11)

where m = tan(�
2
), and � 2]0; �[.

Convolving this 2D step function with the 2D Gaussian �lter given by (2),

yields the following �ltered image Ig(�; �; �):

Ig(�; �; �) = �(�)�(�) �
Z �

�=�1
g(�)�(� +m(� � �))d� (12)

This equation describes a Gaussian �ltered corner localized in the origin point

O0 with an aperture angle �
2
and with one side on the �-axis.

A more general model for an ideal corner may be derived �rst by adding

to the model Ig(�; �; �), its re
ection with the �-axis Ig(�;��; �):

C1(�; �; �) = Ig(�; �; �) + Ig(�;��; �) (13)

RR n�2422



10 T. Blaszka & R. Deriche

Second, the local coordinate system into which this model is de�ned is
so that its origin is O0 = (x0; y0) in the global coordinate system (O; x; y),
and its �-axis form an angle � with the global x-axis (see �gure 1). Let (x; y)
denote the global coordinates of a point and (�; �) its local coordinates. The
transformation of global coordinates onto local ones is given by:�

x

y

�
TO0O
�!

�
x
0

y
0

�
=

�
x� x0

y � y0

�
RO0 ;��

�!

�
�

�

�
=

�
x
0 cos(�) + y

0 sin(�)
�x

0 sin(�) + y
0 cos(�)

�
(14)

Taking into account the change of the coordinate system, the grey level inten-

sities A and B within each region de�ned by the corner, and adding the blur

e�ect described by the parameter � leads to a total of 7 parameters to express

completely a corner model:

Cg(x; y; ~pc) = (A�B)C1

 
�(x; y; x0; y0; �)

�
;
�(x; y; x0; y0; �)

�
; �

!
+B (15)

where ~pc = (x0; y0; �; �; �; A;B) is the parameter vector characterizing a corner

as illustrated in �gure 1. The di�erent parameters are:

� x0; y0: The position of the corner.

� �: The orientation of the corner symmetrical axis.

� �: The aperture angle.

� �: The parameter that characterizes the amount of blur.

� A and B: The grey level intensities inside and outside the corner.

One can note that this model is de�ned for � 2]0; �[, but for a corner

of aperture greater than �, it is clear that it will be represented with the

parameters �0 = � + �, � 0 = 2� � �, A0 = B and B0 = A.

2.4 Vertex Model

Vertices are de�ned as a superposition of corner models (see �gure 2). For ex-

ample, triple junctions de�ned by 3 adjacent regions (T,Y or ARROW-corners)

can easily be described using a superposition of two corner models. However,

some constraints have to be taken into account: the corner positions (x0; y0)

INRIA
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Figure 2: A Vertex Model

and the blur parameter are the same, and both corners must be adjacents.

This leads to the following relation between � and �0:

�0 = � � � + � 0

2
(16)

Consequently, a triple junction, as illustrated in �gure 2, will be de�ned by

the the following vector of 9 parameters:

� x0; y0: The position of the triple junction.

� �: The symmetrical axis orientation of the �rst corner.

� �: The aperture angle of the �rst corner.

� � 0: The aperture angle of the second corner.

� �: The parameter that characterizes the amount of blur.

� A and C: The grey level intensities inside the two corners.

� B: The grey level intensity outside the two corners.

RR n�2422



12 T. Blaszka & R. Deriche

Using the previous corner models, it is very easy to derive the following

expression for a triple junction model:

Jg(x; y;~a) = Cg(x; y; ~cf ) +Cg(x; y; ~cs) +B (17)

where ~a = (x0; y0; �; �; �
0; �; A;B;C) denotes the parameter vector character-

izing the triple junction, ~cf = (x0; y0; �; �; �; A�B; 0) the parameter vector of

the �rst corner included in the junction and ~cs = (x0; y0; �
0; � 0; �; C �B; 0) the

parameter vector of the second corner of the junction.

3 On Approximating Models to Image Data

Having the models that describe the features of interest, namely edges, corners

and triple junctions, the interesting thing is now to apply these models to real

data. Given a window centered in an initial estimate of the localization of a

feature and given the type of feature lying in this area, an iterative method can

be used to characterize this feature by approximating the set of data within this

area using this model. But, this approach requires a �rst vector of parameters

to initiate the process.

Even if the method has been proven to be robust to the case where the

initialization is far from the solution (see the experimental part), starting with

a parameter vector far from the solution leads to a convergence time that may

be too long and then ine�cient in term of CPU time. To tackle this problem,

a fast method has been developed to start from initial conditions that may be

far and to produce closer initial conditions by providing a rough solution to the

minimization problem. This method is denoted the variance descent approach.

The next subsection describes the iterative algorithm used to �t the model

to the real data and the second subsection presents the variance descent ap-

proach used to supply the initial set of parameters to the iterative algorithm.

3.1 The approximation procedure

The problem is thus to try to �nd the best parameters that characterize the

model and make it to �t as well as possible the real data within the working

INRIA
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area. The adequation of the �tting of the selected feature to the data is de�ned

by the energy term:

F (X) =
mX
i=1

(fi(X))2 (18)

where X = (X1; X2; : : : ; Xn)
T is the parameter vector of the feature and its n

components to be estimated correspond to the 5, 7 or 9 unknown parameters

that characterize the edge, corner or vertex models respectively. The number

m denotes the number of points in the working area. The functions fi(X) are

often referred to as residuals and are de�ned by:

fi(X) = I(xi; yi)�M(xi; yi; X) (19)

where, I(xi; yi) denotes the grey-level intensity of the pixel (xi; yi) in the image

and M is the selected feature model. The goal of the �tting is to minimize the

energy term F (X) de�ned in 18 and because of its formulation, a nonlinear

least-square minimization algorithm is required.

3.1.1 Nonlinear least-square minimization

The energy term (18) can be approximated up to second order, near its mini-

mum, by:

F (X) � 
 +rF (X):X +
1

2
XT
H X (20)

where H denotes the Hessian matrix. From the current set of parameters

X, a �rst approach to minimize the energy consists in de�ning a new set of

parameters Xnext by:

Xnext = X +H�1: [�rF (X)] (21)

which is denoted as the Inverse Hessian method. But if the approximation

given by (20) is poor, a best estimate of the next parameters is given by:

Xnext = X � constant�rF (X) (22)

which is the classic steepest gradient descent.

RR n�2422



14 T. Blaszka & R. Deriche

3.1.2 Evaluation of Gradient and Hessian

The gradient of the energy (18) is de�ned by:

@F

@Xk

= �2
mX
i=1

fi(X):
@fi(X)

@Xk

k = 1 : : : n (23)

and the corresponding Hessian matrix is de�ned by:

@2F

@Xk@Xl

= 2
mX
i=1

"
@fi(X)

@Xk

@fi(X)

@Xl

� fi(X):
@2fi(X)

@Xk@Xl

#
k = 1 : : : n; l = 1 : : : n

(24)

To simplify, it's conventional to de�ne:

�k � �
1

2

@F

@Xk

�kl �
1

2

@2F

@Xk@Xl

(25)

With these notations, and as [�] = 1

2
H , the expression of the Inverse Hessian

method given in (21) becomes:

nX
l=1

�kl�Xl = �k (26)

where �X = Xnext � X. Following the same scheme the steepest gradient

descent becomes:

�Xl = constant� �l (27)

One can note that the components of the Hessian matrix depends on the �rst

partial derivatives and on the second partial derivatives; the usual methods

ignore the second derivatives and de�ne:

�kl =
mX
i=1

@fi(X)

@Xk

@fi(X)

@Xl

(28)

In the following, any reference to �kl, will correspond to this last de�nition

(for more details see [29]).

INRIA
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3.1.3 The Levenberg-Marquardt algorithm

As the condition at the F minimum (�k = 0 for all k), is independent of how

[�] is de�ned; the main idea of this algorithm is to varying smoothly between

the extremes of the Inverse Hessian method and the steepest gradient descent

by modifying the de�nition of [�]. For a speci�c choice of the 'constant' in the

steepest gradient descent, the equation (22) becomes:

�Xl =
1

��ll

�l (29)

The Levenberg-Marquardt insight is that equations (29) and (26) can be com-

bined if a new matrix �0 is de�ned as:

�0jj � �jj(1 + �)

�0jk � �jk (j 6= k)
(30)

Then the two methods given by equations (29) and (26) are mixed by the use

of the formulation:
nX
i=1

�0kl�Xl = �k (31)

When � is very large, the matrix �0 is forced to be diagonally dominant, so

equation (31) goes over to be identical to (29). On the other hand, as � ap-

proaches zero, equation goes over to (26). Given an initial estimate of the pa-

rameter vector X and a precision (tol) required on the energy, the Levenberg-

Marquardt algorithm is de�ned by:

1. Pick a modest value for �, say � = 0:001.

2. Solve the linear equations (31) for �X

3. if jF (X) � F (X + �X)j < tol then end

4. if F (X + �X) � F (X), increase � by a factor of 10 (or any other sub-

stantial factor) and go to step 2.

5. if F (X + �X) < F (X), decrease � by a factor of 10 (or any other sub-

stantial factor), update the solution X  X + �X and go to step 2.

This Levenberg-Marquardt method works very well in practice and has become

the standard of nonlinear least-squares routines (for more details see [29]).

RR n�2422



16 T. Blaszka & R. Deriche

3.2 A variance descent approach to initialize the ap-

proximation

Figure 3: Convergence of the variance descent approach for an angle (left) and

for a triple junction (right).

To detect and characterize image features such as edges, corners or vertices,

the solution proposed in the previous subsection was to approximate the image

data using the analytical models. Because of the non-linearity of the criterion to

be minimized, an iterative solution has to be adopted which requires an initial

estimate of the di�erent parameters to be re�ne. This subsection proposes a

method to get such initial conditions while reducing the number of search

iterations. Using the measure proposed by Beaudet, i.e the determinant of the

Hessian matrix [2], (or any corner measure) yields an initial estimation of the

corner position. To re�ne this corner position and get an estimate for the other

parameters that will be used by the approximation procedure, the following

approach is used:

A roughly estimated position of a corner is given interactively by the user or

by Beaudet's measure. A window of size (2�L+1)�(2�M+1) pixels is centered

on this corner position. First, the 4�(M+L) pixels located in the frontier of this

window area are considered as a 1D signal and edge points are extracted on this
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Characterizing Image Features 17

signal using the 1D detector proposed in [10]. Next, two points are selected in

the case of an edge or a corner and three in the case of a vertex. Let's consider

the corner case to describe this approach. The two regions corresponding to

the inside and outside of the corner are considered. These regions are formed

by the two lines joining the center of the window to the two detected edge

points in the frontier of the window. Then, for each region an energy term

assuming planar intensity regions is calculated. This energy term is related to

the variance in grey level intensities within the considered areas:

�2 =
X

(i;j)2Region

(I(i; j) � �I)2 (32)

where �I denotes the average of the intensity level within the considered region.

Moreover, one can note that �2 is equal to zero for planar intensity region. The

energy term corresponding to a given point is then de�ned as the sum of the

variances in both regions it de�nes. In order to re�ne the corner position, the

following approach de�ned as the variance descent approach is used.

First, the energy term corresponding to the current position of the point

and the energy terms corresponding to its 8 neighbors are calculated. The

re�nement of the current corner position is done by selecting the one with

the minimum energy term as the next position of the corner. The re�nement

is repeated until the energy term stops to decrease. Moreover, in the next

iterations, the energy term is evaluated just for those points where it has

not been already calculated in the previous iteration i.e. just for 3 points if the

displacement direction is horizontal or vertical and 5 points if the displacement

direction is diagonal. When this algorithm has converged, the energy term

would have reached the global minima, because the initial corner position was

assumed to be not so far from the solution. This position, the orientation of the

lines joining this point to the edges detected in the frontiers and the average

intensity on each region, constitute the initial conditions of the model based

approach. An histogram of the grey level intensities within the window is also

calculated. This information, combined with the number of edges extracted

along the frontiers, are used to better discriminate between the corner and

vertex cases.

This approach has been widely tested for di�erent models and size windows

and an interactive version has been developed with the possibility for the user
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18 T. Blaszka & R. Deriche

to choose the window and its size interactively. The center point of the window

is then considered as the �rst point to analyze and the process iterates. This

approach, which works also for vertices, has been proven to be be very fast

and enables to get e�ciently close initial conditions so that the model based

approach will not fail in local minima. The two examples shown in �gure 3

illustrate the di�erent iterations for the corner and vertex models. In each

�gure, the trajectory with the arrows describes the convergence path from the

center of the window to the �nal solution. Then, this �nal solution could be

re�ned to a sub-pixel accuracy using the model based approach as described

in this paper.

4 Features Models Using a 2D Exponential

Blurring Filter

Assuming the blur of the imaging acquisition system to be describable by

a 2D Gaussian �lter, as it has been done in the previous section, leads to

a large amount of CPU time that renders the approach ine�cient. This is

mainly due to the large number of numerical integrations performed during

the minimization process. Therefore, the process has been found ine�cient

(see the experimental part and in particular the parameter related to the CPU

time) and a strong need to make it more e�cient in term of CPU time, clearly

appeared. Two solutions have been considered, analyzed and implemented to

tackle e�ciently this problem: The �rst solution described within this section

proposes to replace the Gaussian �lter by an exponential �lter that allows us

to deal with a close form solution in the expression of the di�erent models. The

second solution described in the next section proposes more simpli�ed models.

These ideas have been proven to make the approximation process very fast

and rendered this model based approach much more attractive.
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4.1 Notations and de�nitions

Let h(x) denotes the smoothing operator derived using some optimality con-

siderations on edge detection [10]:

h(x) =
1

4
(jxj + 1) e�jxj (33)

Like in the Gaussian case, its 2D separable version is de�ned as:

H(x; y) = h(x)h(y) (34)

In this case, the unit length of the coordinate system is equal to the inverse

of the scale factor � of the �lter. In order to convert the results into a more

general coordinate system (X;Y ), the following transformation is used:

(
x = �X

y = �Y
(35)

It is worthwhile to note that a simple way to make this operator close to the

Gaussian is to select the parameters � and � in such a way that both smoothing

�lters have the same total energy. This yields the following relation between �

and � [10]:

�� =
5

2
p
�

(36)

Let sign(x) be the function de�ned as follows:

sign(x) =

(
+1 if x � 0

�1 if x < 0
(37)

Let �e(x) be the error function associated to the exponential �lter, and de�ned

as follows:

�e(x) =

Z x

t=�1

1

4
(jtj + 1)e�jtj dt

=
1

2
+ sign(x)

�
1

2
� 1

4
ejxj(2 + jxj)

�
(38)
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4.2 Features Models

Replacing the Gaussian �lter in (9) by the exponential �lter given in (33) leads

to the following close form solution for the edge model:

E2(x; y) = �e(�x sin(�) + y cos(�) � �) (39)

This expression depends on two parameters � and �. Taking into account

the blur e�ect, introduced by the parameter �, and also the grey level intensi-

ties A and B, corresponding to each half plane de�ned by the line supporting

the edge, leads to the following �ve parameters edge model:

Ee(x; y; �; �; �;A;B) = (A�B)�e(��x sin(�) + �y cos(�)� ��) + B (40)

This expression is much more easier and less time consuming to evaluate

than the previous one derived using the Gaussian �lter and given by (10). No

numerical integration is required and this renders this approach much more

computationally attractive.

This idea of replacing the Gaussian �lter by the exponential �lter can

also be applied to the corner and triple junction models. So, using the 2D

exponential �lter given in (34) and the expression of the ideal corner given by

(11) in the convolution operation given by (6) yields to a close form solution,

derived usingMaple. Then the expression of the complete corner of an aperture

� 6= �
2
is:

C2(x; y; �) =
1

2
+
�
m2 � 1

��3
Z1+ sign(xm� jyj)

�
1

2
+
�
m2 � 1

��3
Z2

�
(41)

where:

Z1 =
1

4
U(x)

�
2� 6m2 + (1�m2)(xm+ jyj)

�
e�(xm+jyj) �

m

8
Z3 e

�(jxj+jyj)

Z2 =
1

4
U(x)

�
2� 6m2 + (1�m2)jjyj � xmj

�
e�jxm�jyjj

+
m3

4

�
2m (3�m2) + (1�m2)jjyj � xmj

�
e�

jxm�jyjj

m

Z3 = jxyj(m2 � 1)2 + 3 + 3m4 � 14m2 + (m2 � 1)(jxj (3m2 � 1) + jyj (m2 � 3))

m = tan

�
�

2

�
with � 2]0;

�

2
[[]

�

2
; �[
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And for a right corner (i.e. � = �
2
), the expression becomes:

C2(x; y) = U(x� jyj)

+
1

96

�
(jyj � x)3 � sign(x� jyj)(9(x � jyj)2 + 48) + 33(jyj � x)

�
e�jjyj�xj

� 1

96

�
3x2jyj + jxj3 + 9(x2 + jxyj) + 24jxj+ 9jyj+ 24

�
e�(jxj+jyj) (42)

The use of the transformation given by (14), yields a more general model

described in a global coordinate system; and taking into account the blur e�ect

described by the parameter � (using the transformation given by (35)), and the

grey level intensities A and B within each region de�ned by the corner leads

to a total of 7 parameters, like in the Gaussian case, to express completely the

corner model:

Ch(x; y; x0; y0; �; �; �;A;B) = (A�B)C2(x
0; y0; �) + B (43)

with:
x0 = �(x � x0) cos(�) + �(y � y0) sin(�)

y0 = ��(x� x0) sin(�) + �(y � y0) cos(�)
(44)

The vertex model, like in the Gaussian case, is de�ned as the superposition

of two corner models. However, some constraints have to be taken into account:

the corner positions (x0; y0) and the blur parameter � are the same, and both

corners must be adjacents (constraint given by equation 16). Then it is very

easy to derive the following close form expression for the triple junction model:

Jh(x; y;~a) = Ch(x; y; ~cf ) + Ch(x; y; ~cs) + B (45)

with:
~a = (x0; y0; �; �; �

0; �; A;B;C)

~cf = (x0; y0; �; �; �;A� B; 0)

~cs = (x0; y0; �
0; � 0; �; C �B; 0)

where ~a denotes the vector parameter characterizing the triple junction, and ~cf
and ~cs denote the parameter vector of the �rst and second corner, respectively,

included in the junction.

These expressions look complicated but they are much more easier and

faster to evaluate than the expressions involving the 2D Gaussian. The main

reason is that no numerical integration is required.
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Figure 4: Simpli�ed models

5 Simpli�ed Models

In this section, another simpli�cation is considered in order to make the ap-

proximation process much more computationally e�cient. A simpli�ed version

for corner and triple junction models is designed by assuming that these prim-

itives are just formed by the intersections of a given number of straight lines.

5.1 Separable Models

The ideal half-corner expressed in equation (11) is just the product of two

term involving the U function. The �rst term corresponds to the application

of the U function to the equation of the �-axis, and the second one is the

application of the U function to the equation of the line with an orientation

of �
2
with respect to the �-axis. If the two lines of a corner are considered in

a global coordinate system (O; x; y) and not in the local one (O0; �; �) as in

equation (11), the expression of an ideal corner model becomes:

I(x; y) = U(�fd1(x; y; x0; y0; �1)) U(fd2(x; y; x0; y0; �2)) (46)
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where fd1 and fd2 denote the two following straight lines intersecting in (x0; y0)

(see �gure 4):

fdi(x; y; x0; y0; �i) = �(x� x0) sin(�i) + (y� y0) cos(�i) = 0 i = 1; 2 (47)

Considering the bluring e�ect as normal to each lines yields:

~Cs(x; y; x0; y0; �1; �2; �) = �s(�
1

�
fd1(x; y; x0; y0; �1))�s(

1

�
fd2(x; y; x0; y0; �2)) (48)

where the subscript s refers to the Gaussian or Exponential smoothing opera-

tor and the blurring e�ect � corresponds to the parameter � or 1

�
, depending on

the smoothing operator used. The complete expression that takes into account

the grey level intensities and the amount of blur � is then given by:

C 0
s(x; y; x0; y0; �1; �2; A;B; �) = (A� B) ~Cs(x; y; x0; y0; �1; �2; �) +B (49)

One can note that the parameters are a little di�erent than in the section

(2.3), but they could be easily related to by:

�1 = � + �

2

�2 = � � �
2

(50)

Having developed the corner model, it is very easy to deduce the vertex

model using the same approach as described in the previous section. This yields

the following expression:

J 0s(x; y;~a) = C 0
s(x; y; ~cf ) +C 0

s(x; y; ~cs) + B (51)

with
~a = (x0; y0; �1; �2; �3; �; A;B;C)

~cf = (x0; y0; �1; �2; A� B; 0; �)

~cs = (x0; y0; �2; �3; C �B; 0; �)

where ~a denotes the vector parameter characterizing the triple junction and

~cf and ~cs denote the parameter vectors of the �rst and second corner of the

junction (see �gure 4). The relations between the parameters of the section

(2.4) and the previous ones are the same as those of equation (50) for �1 and

�2, and the relation for �3 is given by:

�3 = �2 � � 0 (52)
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Figure 5: Curve representing the error function given by (56) for the Gaussian

�lter.

5.2 Accuracy of the approximation

An interesting question related to the approximation process proposed in

the previous subsection is to ask about the errors introduced using such simpli-

�cation. Using a 2D smoothing Gaussian �lter leads to the following expression

for the exact 2D model:

Cg(x; y; x0; y0; �; �; A;B; �) =R1

=�1

R1
�=�1U(�fd1(x; y) + 
 0) U(fd2(x; y)� � 0) g(
) g(�)d� d


(53)

where: (

 0 = �
 sin(�1) + � cos(�1)

� 0 = �
 sin(�2) + � cos(�2)
(54)

fdi(x; y) = fdi(x; y; x0; y0; �i)

Noting that,

U(x) = 1� U(�x)
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Figure 6: Curve representing the error function given by (56) for the exponen-

tial �lter.

Operating some change of variables, developing, and simplifying yields the

following result:

Cg(x; y; x0; y0; �; �; A;B; �) = I1 � I2 (55)

where:

I1 =
1

2� sin(�2 � �1)

Z 1


0=�1

Z fd2 (x;y)

�0=�1
e
�

02+�02�2
0�0 cos(�2��1)

2 sin2(�2��1) d� 0 d
 0

I2 =
1

2� sin(�2 � �1)

Z fd1 (x;y)


0=�1

Z fd2(x;y)

�0=�1
e
�

02+�02�2
0�0 cos(�2��1)

2 sin2(�2��1) d� 0 d
 0

One may note that for �2 � �1 =
�
2
, we have:

I1 = �g(fd2(x; y))

I2 = �g(fd1(x; y))�g(fd2(x; y))
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which implies that:

Cg(x; y; x0; y0; �; �; A;B; �) = �g(fd2(x; y)) ��g(fd1(x; y))�g(fd2(x; y))

= �g(�fd1(x; y))�g(fd2(x; y))

This shows that for the case of a right angle, the general expression reduces

to the simpli�cation proposed in the previous subsection, which presents the

interest to be much more easier and faster to evaluate. In order to numerically

analyze the behavior of the errors between the expression (55) and the proposed

simpli�cation, we consider angles presenting an horizontal symmetry axis (i.e.

� = 0). The summit is located at the origin (i.e. x0 = 0; y0 = 0), the parameter

� is set to unity and the parameters A and B are set to 1 and 0 respectively.

Let:

�1 = ��2 =
�

2

and the following error criterion:

�2 =

IX
i=0

JX
j=0

(Cg(xi; yj; x0; y0; �; �;A;B; �)� Cs(xi; yj; x0; y0; �1; �2; A;B; �))
2 (56)

where:

I = N(M2 �M1); J = N(N2 �N1); xi =M1 +
i

N
; yi = N1 +

j

N
(57)

The curve illustrating the amount of the error function of the angle in the

case of Gaussian smoothing is shown in �gure 5.

Considering the exponential �lter (with the parameter � = 1:5) and work-

ing in an analogous way, leads to exactly the same conclusions. For a right

angle, the 2D case reduces to the simpli�ed proposition and the errors intro-

duced by the 1D simpli�cation increase if the angle of aperture for the corner

moves away from the right corner. The curve illustrating the amount of the

error function of the angle in the case of exponential smoothing is shown in

�gure 6. This result will be con�rmed in the experimental part where two

di�erent corners will be considered.
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Figure 7: Convergence on edges (synthetic images). Left: without noise; Right:

the same edge but with a Gaussian white noise with standard deviation � = 5

added.

Figure 8: Convergence on edges (real images). For the left image see table 2

and for the right image see table 3.

6 Experimental results

6.1 Models Comparison

For the purposes of experimentation, di�erent types of features were consid-

ered. Noisy synthetic images of grey-value edges, corners and triple junctions

have been created, a large number of real images were selected and an exten-
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Figure 9: Convergence on corners (synthetic images). Left: a synthetic corner

without noise. Right: The same corner with a Gaussian white noise of standard

deviation � = 5 added.

sive experimental work has been carried out in order to test the robustness,

the accuracy and evaluate the CPU computational time of the di�erents ap-

proaches presented here. In this section, just a summary of these experiments

is given, and only the most important results are presented. The results on

noisy synthetic images are presented into the �gures 7, 9, and 11 where the

initialization (in black) was given manually far from the solution (in white) to

test the robustness on the convergence step. The characterized features appear

very close to the reality even in the noisy images.

In the case of real images, the results are presented into two di�erent forms:

a set of images of edges, corners, and triple junctions with lines superimposed

and a set of tables where all the parameters of the di�erent models are grouped

to see the accuracy of the di�erent models. In these table are used some nota-

tions presented into table 1 and in addition �2 represents the error value per

pixel evaluated from the equation (18) as:

�2 =
1

M
F (~x) (58)

where M is the number of considered pixels and ~x the vector of the result

parameters.

As expected, the computational time has been found closely related to the

window size and it is almost directly proportional to the number of points

INRIA



Characterizing Image Features 29

Figure 10: Convergence on corners (real images). For the left corner see table

4 and table 5 for the right corner.

within the window. This can be observed in tables 2 and 3 where di�erent

window sizes have been used for the case of an edge model. The ratio of the

number of points between the two windows is 2.73 (55�46
33�28

) and it is close to the

ratio in CPU time 2.98 (18:9
6:33

). One immediately can see the bene�t of using

the exponential and simpli�ed models by looking at the CPU time required by

each method in tables 2, 3, 4 and 5. In particular in tables 4 and 5, one can

see that using a 2D Gaussian model is really very time consuming and there

is a considerable time saving and many orders of magnitude improvements

(between 50 and 60) in e�ciency for the exponential and simpli�ed models

while the �t is very accurate for all the methods.

The di�erent methods have been found to converge well even if the initial-

ization is rather far for the solution. This is well illustrated in �gures 8, 10, and

12 left, where the initial positions have been given by the user interactively

far away from the solution. The initial solutions are superimposed in each im-

age in black together with the �nal solution which is plotted in white (In all

these �gures, the solutions correspond to the application of the 2D exponential

�lter).

The parameters that correspond to the initial and �nal positions of the

models are given in tables 2 and 3 for the edges shown in the �gure 8 and in

table 4 for the left corner of �gure 10. In these tables, we give also the pa-

rameters found using the di�erent methods and the associated CPU time and
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Figure 11: Convergence on vertices (synthetic images). Left: A synthetic triple

junction. Right: The same junction with a Gaussian white noise of standard

deviation � = 5 added.

errors values. In the table 5 is grouped the result parameters obtained after

the convergence of all the di�erent models initialized by the variance descent

approach; the considered corner is illustrated in right of �gure 10 where the

convergence of the exponential model manually initialized is shown. As it can

be seen, the �t is found usually slightly better when using the exponential

�lter rather than the Gaussian �lter. However, the di�erence in the amount of

error using these two �lters, cannot be considered as signi�cant. This leads to

say that there seems to be, at least, no practical justi�cations for the use of

2D Gaussian �lter to modelize the blurring e�ect. On real images, the approx-

imation errors corresponding to the di�erent methods are very close to each

other. One can see also that the reliability of the results given by the variance

descent approach which works at a pixel precision but gives rather good re-

sults. Starting from the position given by the variance descent approach makes

the model based approach to converge much faster and renders possible to

start automatically the process. The right image of the �gure 12 illustrates the

di�erence between the results obtained using the variance descent approach

(black lines) and the results obtained using the 2D exponential model (white

lines) with initial conditions corresponding to the results given by the variance

descent approach.
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Figure 12: Convergence on triple junctions (real images).

As analyzed in the previous section, table 4 which refer to the corner in

�gure 10 clearly show that the �t using a 2D �lter or the simpli�ed models

lead both to almost the same amount in the approximation error when dealing

with a corner having an angle close to �
2
. While table 5 shows that using a 2D

�lter leads to better results than using the simpli�ed models for corners with

small angle of aperture. Another interesting point to note in tables 4 and 5

is the di�erence in the recorded CPU time while the size windows is almost

the same in both cases. This is mainly due to the initialization phase. In table

5, the approximation process started from the values given by the variance

descent approach and which are very close to the solution, while in table 4, the

initialization was given interactively and far from the solution by the user, in

order to test the convergence of the approach. This illustrate the importance of

the variance descent approach which initialize the process close to the solution,

and reduces the CPU time by a ratio of roughly 2.
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I Interactive Initialization

V Variance Descent Approach

G Gaussian model of a step edge

E Exponential model of a step edge

G2D 2D Gaussian model of a corner or a vertex

G1D Simpli�ed Gaussian model of a corner or a vertex

E2D 2D exponential model of a corner or a vertex

E1D Simpli�ed exponential model of a corner or a vertex

Table 1: Notations used in the other tables.

� � � A B time �2

I -0.85024 31.13472 1.00000 150.00000 50.00000 : : : : : :

V -2.38755 2.73576 1.00000 147.75457 121.23070 .010 : : :

G -2.38817 2.87059 3.30150 149.49144 119.23376 18.92 10.0075

E -2.38829 2.82573 0.53104 149.70041 119.06906 18.31 9.47668

Table 2: Numerical results of the left step edge of �gure 8 (window size: 55�46
pixels)
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� � � A B time �2

I -2.61073 -5.984411 1.0000 150.0 50.0 : : : : : :

V -1.20599 15.941729 1.00000 166.91797 124.90028 .007 : : :

G -1.255961 15.763497 0.87939 167.96623 123.70519 6.33 5.0145

E -1.25599 15.766064 2.10067 167.99633 123.66725 5.35 5.1785

Table 3: Numerical results of the right step edge of �gure 8 (window size:

33�28)

I V G2D E2D G1D E1D

x0 6.71875 18.00000 18.059011 18.183433 18.107212 18.09888

y0 37.62500 23.00000 22.767333 22.70569 22.733340 22.72887

�; �1 -0.98667 0.758378 -0.250640 -0.249962 0.748979 0.748377

�; �2 1.97335 -1.23605 1.997360 2.007286 -1.250315 -1.249627

�; � 1.0000 : : : 1.75608 1.391807 1.311966 1.295308

A 150.0000 117.80747 116.33554 116.20605 116.29908 116.14578

B 50.00000 146.66081 147.18489 147.26239 147.21306 147.28608

t(sec) : : : 1.77 2639.94 55.31 43.61 33.92

�2 : : : : : : 15.2214 15.0845 15.2238 15.0328

Table 4: Numerical results on the real corner in the left of �gure 10. (window

size: 43�42 pixels)

V G2D E2D G1D E1D

x0 21.0 19.60480 19.594038 19.77442 19.786284

y0 16.0 20.259840 20.279905 19.985608 19.966574

�; �1 -0.755104 -1.114310 -1.113836 -0.824302 -0.824421

�; �2 -1.385448 0.57275 0.570550 -1.409809 -1.409163

�; � 1.000000 1.049259 1.71040 1.007956 1.741566

A 52.386792 49.000757 48.326767 49.298809 48.554290

B 118.954064 120.692366 120.748031 120.693216 120.766856

t(sec) 1.68 1336.39 25.36 21.08 15.64

�2 : : : 13.980211 13.764550 14.392698 14.3925925

Table 5: Numerical results on the real corner in the right of �gure 10. The

window size is 45�42 pixels.
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6.2 Localization Accuracy of the Exponential models

In the previous section, the exponential model of features appeared as the

most useful model based approach. Then, it will be used in this section for

the purposes of a comparative study between the model based approach and

the \classic" methods used in computer vision. These tests are done on a SUN

SS10 workstation while those of the previous section were done on a SUN SS2

workstation.

6.2.1 Edge

The principle of the tests is as follows: from a set of edge parameters a series

of edge images is derived, using formula (40), by moving the edge along its

normal (i.e. modifying its distance to the origin: parameter �), or by changing

its orientation (parameter �) or by changing both parameters. The moving

steps are from 0 to .99 pixel (16 values are used) for the translation and from

0 to .2 radian for the rotation (8 values are used). To these images a Gaussian

white noise is added with 6 di�erents values of standard deviation � from

� = 0 (no noise) to � = 5. This yields a set of approximatively 200 test images

similar to those of �gure 7.

The test results are presented in the �gure 13 where the mean error cor-

responds to the mean distance, given in pixels, of edge points from the real

position. The �rst �ve curves correspond to the application of the model based

approach where the window size vary from 8�8 to 64�64 pixels. The last two

curves correspond, respectively, to the application of the nms classical ap-

proach usually used to extract edges (denoted as Nms in the �gure)(see [9]),

and the re�nement of this method proposed by Devernay in [14].

The curves of the model based approach error are similar whatever the size

of the window: The error is under �ve hundredths of a pixel. The nms approach

is the worst presented in this test with an error of more than 3 tenths of a pixel,

but it is very stable. The re�nement of the nms proposed by Devernay allows

to reduce the previous error to approximately one tenth of a pixel.

The bottom curves of the image 13 represent the CPU time needed by the

di�erent methods. This graphic shows that the model based approach applied

with large window sizes (64�64, 32�32) needs a lot of CPU time, when for
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Figure 13: Edge detectors. Top: mean error in pixels; Bottom: mean time in

seconds.

smaller window as for the two nms approaches the CPU time needed is under

one half second.

These results show that the re�nements up to sub-pixel accuracy improve

the precision by a non-negligible factor for a small extra amount of CPU time.
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Another conclusion after these tests is that, in most application, it is su�cient

to use a window size around 16�16 pixels for the model based approach; In

this case the mean error is under three hundredths of a pixel and the CPU

time is just around a quarter of second.

6.2.2 Corner

In the corner case, the comparison tests are done on three sets of images.

Each set corresponds to one �xed corner aperture, the di�erent used apertures

are �
4
, �
2
and 3�

4
. Each set contains approximatively 300 synthetic noisy images

of one corner: from a parameter set of a corner, a set of images is derived,

using equation 43, by moving this corner by a variable step in the x direction,

y direction and in the direction of the vector ~n = (1; 1)T ; 16 steps have been

used from 0 pixel to 1 pixel. The added noise is a Gaussian white noise of

variable standard deviation �; 6 values of noise have been used from � = 0 (no

noise) to � = 5. Two test images are presented in the �gure 9.

The �rst goal of these experiences is to test the importance of the window

size. This is done by running the approach on all the images with di�erent

window sizes (square windows with side of 64, 32, 16, 10 or 8 pixels). The

mean distance of the obtained corners from the real position in function of the

noise standard deviation is presented in the top part of �gures 14, 15 and 16.

As expected, if the noise level increases, the error increases signi�cantly, but

even for small windows the error does not exceed three tenths of a pixel. For

window sizes of 32�32 pixels or 64�64 pixels the approach is very robust to

the noise, as the error is under one tenth of a pixel. For smaller windows the

results are less accurate, but for a noise level close to the amount of noise in

real images the precision is roughly one tenth of a pixel.

In a previous section, the selection of the exponential model was done with

respect to the precision criterion and also to improve the CPU time needed

by the approach using the Gaussian model. The CPU time was an important

parameter and it is interesting to test in which cases does it grows. The bottom

part of �gures 14, 15 and 16 shows a set of curves representing the mean time

of the model based approach in function of the noise standard deviation for all

the window sizes used previously. As expected the CPU time increases with

the window size, but the noise level does not interact with the CPU time which
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Figure 14: Corner characterization using the model based approach on corners

of �
4
aperture. Top: average error in pixels; Bottom: mean CPU time in seconds.

is approximatively constant for a given window size. This leads to choose the

best compromise between the time and the accuracy required. These remarks

about the accuracy and the CPU time are independents of the corner aperture

RR n�2422



38 T. Blaszka & R. Deriche

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5

Mean distance - model based approach

8x8
10x10
16x16
32x32
64x64

0

5

10

15

20

25

0 1 2 3 4 5

Mean time - model based approach

8x8
10x10
16x16
32x32
64x64

Figure 15: Corner characterization using the model based approach on right

angles. Top: average error in pixels; Bottom: mean CPU time in seconds.

(see �gures 14, 15 and 16), even if in the case of a right angle the accuracy is

a bit better, there is no signi�cant di�erence. Therefore, a window size around

16�16 pixels appears to be the best window size to have a good compromise
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Figure 16: Corner characterization using the model based approach on cor-

ners of 3�
4
aperture. Top: average error in pixels; Bottom: mean CPU time in

seconds.

between a good accuracy and a fast CPU time, with respect to the considered

noise levels.
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Figure 17: Average localization error in pixels of the classic operators. Top: �
4

corner. Bottom: �
2
corner.

The model based approach for the corner localization could be initialized

manually or by using any classical corner operator. The used operators are

those of Plessey, Harris, Kitchen, and of the Hessian determinant. Another
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Figure 18: Average localization error in pixels of the classic operators for a 3�
4

corner.

corner operator has been added to this comparison study, this is the F�orstner

operator (described in [16]); It works on a window centered on an estimate po-

sition of a corner and re�nes it, up to sub-pixel accuracy. The �gures 17 and 18

show the curves of the mean distance, in pixels, of the obtained points from the

real position for each detector; the di�erent curves correspond to the di�erent

corner apertures considered in this test. These operators are very fast (CPU

time<0.1 sec.) on these small images (64�64) and very stable with respect to

the noise. In this case, the mean error depends on the corner aperture: for a

small aperture the corner position is translated of two or three pixels away

from the real position, when for a large aperture the error reduces to roughly

one pixel. The more sensitive operator is the Hessian one and the best one is

the F�orstner one with only seven tenths of a pixel of error whatever the corner

aperture and the considered noise levels.

Even if the accuracy of these operators seems quite good it is not su�cient

for a lot of applications. Moreover an important information is given by these

curves: the window size to use in the model based approach after these detec-
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tors. The maximum mean error of these operators is approximatively 2.5 pixels

then in the worst case the real corner is in a circle of a radius of 2.5 pixels,

and in the best case the radius of this circle is 1 pixel. As the working window

must include the corner and its neighborhood to insure the convergence of the

model based approach, the radius of the circles must be enlarged of 2 or 3

pixels. So, the window size must be at least 7�7 pixels in the best case and

11�11 in the worst case.

After these tests, the best window size with respect to the accuracy, the

CPU time and the corner detector uncertainty appears to be at least 11�11
pixels and better choice for the robustness needed in some applications (see

section 6.3) is a window size of 16�16 pixels.

6.2.3 Triple Junctions

In this case, the comparison tests have been done on a series of approxima-

tively 300 noisy synthetic images generated, using the formula 45, as for one

set of images in the corner case. The �gure 11 shows two test images. Here, the

comparison is done between the model based approach and the F�orstner's one.

The other detectors used for corner localization have not been used, because

on triple junction images, they could have multiple responses and the problem

should be the selection of only one.

The �gure 19 presents the mean distance, in pixels, of the extracted junc-

tion from the real position. The left curves of this �gure show the mean errors

of the model based approach in function of window size and of the noise stan-

dard deviation added to the image. Even if the error increases with the noise

level, the worst error is less than one tenth of a pixel for a noise standard

deviation of � = 5. For real images, where the noise level is expected to be

lower, the expected accuracy of the model based approach will be less than

�ve hundredths of a pixel.

The bottom curve of the �gure 19 presents the mean error of the F�orstner

approach applied on the same images. In this case (approximatively 1.2 pixels

of error), this method is worse than in the corner case (near 0.7 pixel of error).

but this is due to the inadequation of the method to non-symmetric features

(see [16]). In fact the weights used in this method, for �nding the closest point

from the lines of the image, correspond to the gradient norm and one line of
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Figure 19: Mean error in pixels in the triple junction case. Top: Model-based

approach. Bottom: F�orstner method.

the triple junction has a gradient norm greater than the two others, then the

�rst line \attracts" the junction position.

The �gure 20 presents the CPU time needed by the model based approach.

The Bottom curve shows the time needed by a window size equal to 64�64
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Figure 20: Mean CPU time needed by the vertex model based approach. Top:

window sizes less than 64�64 pixels. Bottom: window size of 64�64 pixels.

pixels which is ine�cient in practice. The curve, corresponding to a window

size of 32�32 pixels, denote also a slow speed of convergence. The CPU time
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Method Nb Pts �d in mm �d
Harris 16 3.688760 2.406324

32 4.990577 10.653361

64 4.436885 8.325071

96 4.555742 7.690778

128 4.452017 7.120481

Model 16 0.819462 0.106355

Based 32 0.744987 0.090319

Approach 64 0.841448 0.243161

96 0.821165 0.236551

128 0.893669 0.252267

Table 6: Mean distances between the reconstructed 3D-points and the real

points and the associated standard deviation, in the case of the calibration

grid reconstruction.

needed by the F�orstner method is approximatively constant and less than one

tenth of a second, as in the corner case.

After observing these �gures, the choice of window size for the model based

approach is limited to windows smaller than 16�16 pixels because of the CPU
time needed in the other cases. The error curves for windows smaller than

16�16 pixels show that the accuracy is less than one tenth of a pixel, so the

precision required by the application will select the best size. And, as in the

corner case, the choice of the window size depends also on the uncertainty on

the �rst position estimation of the junction, because if the window is too small

and badly placed around the junction, the method could fail, when for a larger

window it would converge. In the following applications, a window size around

16�16 pixels appeared to be a good compromise between accuracy, CPU time

and robustness with respect to the noise level present in the considered real

images.

6.3 One Application: 3D-Reconstruction

This part presents some results about the use of the corner detectors. The

goal of this experiment is to reconstruct projectively a 3D-objet from two im-
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ages. First, two sets of matching points are extracted from the two images, one

set in each image. These points are su�cient to determine the Fundamental

matrix (see [22], [13]), if their number is greater than eight. From the Funda-

mental matrix and the choice of a plane in the projective space, the projective

projection matrix are de�ned (see [33],[31]). And �nally, from these projection

matrix the extracted points can be reconstruct in the projective space. In or-

der to evaluate the accuracy of this reconstruction, the experiments presented

here are done on known objects. The reconstructed points are part of these

three dimensional objects and the positions of some of these points are known

in a Euclidean frame. Then, the transformation matrix between the Euclidean

frame and the projective one into which the points have been reconstructed

is computed, and the frame change is done. The error of the reconstruction

is evaluated as the mean distance between the reconstructed points in the

Euclidean frame and their theoritical positions and the associated standard

deviation.

In the �rst example the object is a calibration grid (see �gure 21). The

extracted points correspond to the 128 corners of the 32 squares of the grid.

In the Harris case, after extracting the corners with a low threshold, only the

interesting points have been manually selected. For the model based approach,

these points have been re�ned with the exponential corner model. This exper-

iment is done for di�erent numbers of points selected within the 128 points

extracted by the Harris �lter or those re�ned by the model based approach.

The �gure 22 shows the reconstructed grids corresponding to the model

based extracted points (left) and to the Harris points (right). In this case the

128 points were used but clearly, the right grid is not satisfactory because some

squares became quadrilaterals, while the left one is very close to the expected

result. The table 6 show the numerical results obtained for the various number

of considered points. In the case of the Harris points, the error is roughly 5

mm and the associated standard deviation around 7. This experiment shows

that the use of a lot of points does not reduce the error which is not very

satisfactory. In the case of the model based points, the error is always under

the millimeter, even in the case where only 16 points have been used. This

information implies that for an application which require accuracy the use

of 128 Harris points is worse than the use of only 16 points re�ned by the

model based approach. Moreover, in some scenes the extraction of 128 pairs
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Figure 21: The images used for the reconstruction.

Figure 22: The reconstructed calibration grids. From the same point of view:

left the result of the reconstruction with the model based approach and right

the reconstruction using the Harris points.
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Method Nb Pts �d in cm �d
Plessey 18 1.577284 0.748000

Model 18 0.554668 0.119528

Table 7: Mean distances between the reconstructed 3D-points and the real

points and the associated standard deviation, in the case of the table recon-

struction.

of points with a good accuracy is impossible, as in the next example, so the

use of the model based approach is a good way to solve this problem. Another

important point is to notice that the error is approximatively constant in these

experiments for a given type of points; for example, the error is roughly 0.8

mm in the case of the model based points. This implies that in the succession

of steps in this experiment, one step should not be as accurate as the others

and then even with perfect points the reconstruction will not be perfect.

The second reconstructed object is a table with a box on its top (see �g-

ure 23). Only 18 points have been used, they have been extracted by the

Plessey method and re�ned by the exponential corner model. The reconstruc-

tion scheme is the same as for the calibration grid, but here the objects have

been measured manually. The results are presented in the �gure 24, where

the left picture shows the results of the reconstruction using the model based

points, when the right one shows the reconstruction using the Plessey points.

In the Plessey reconstruction, the box and the top of the table are deformed,

when on the left the reconstruction seems perfect. Moreover, one can note the

di�erent appearance of the two reconstructed tables seen from the same view-

point. The table 7 presents the mean distance of the reconstructed points from

the real ones in cm. The errors are greater than in the previous reconstruction,

but the calibration grid was closer to the camera than the table was. This

explains the di�erent accuracy between the grid reconstruction and the table

one; but the use of the model based approach improves the results roughly of

a factor 3 (1:57
0:55

) with respect to the use of the Plessey detector.

The last example on 3D-reconstruction is about a desk reconstruction. The

two used images are presented in the �gure 25. In this experiment, the com-

parison is done between a reconstruction using 2-D points extracted by the
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Figure 23: Images used for the reconstruction of a table

Figure 24: The reconstructed table. Left: with the model based approach;

Right: with the Plessey points.
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Figure 25: Another example of 3D-reconstruction: a room scene.

Hessian operator, the Plessey operator and 2-D points re�ned by the model

based approach. The error values given in the table 8 show the improvement

due to the use of the model based approach. In these images the objects are

further away from the cameras than the table or the calibration grid were in

the previous scenes; this explains that the error is greater than in the previous

tests because the same uncertainty on the 2-D points implies a greater uncer-

tainty on further away points. The �gure 26 shows three di�erent views of the

reconstructed scene obtained from the points re�ned by the model based ap-

proach. Finally, the graphical and numerical results show that the re�nement

Method Nb Pts �d in cm �d
Plessey 47 19.516485 365.948111

Hessian 56 18.210554 291.383838

Model 70 2.756333 5.213007

Table 8: Mean distance between the reconstructed 3D-points and their real

positions and the associated standard deviation, in the case of the desk recon-

struction.
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Figure 26: Three di�erent views of the reconstructed room scene
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Figure 27: Extension to curve features.

of the corner positions by the model based approach improves greatly the �nal

result.

7 Conclusion

An e�cient model based approach has been developed in order to locate and

characterize precisely important features such as edges, corners and vertices.

Di�erent models have been developed to describe e�ciently these features and

a minimization process has been proposed to �nd the parameters that best

approximate locally the observed grey level image intensities.

Finally and as expected, an important point that can make the technique

diverge, has been found to be the ful�llment within the working area of the

underlying assumptions related to the di�erent models. Di�erent models than

those considered within the working window leads to unsatisfactory results.

Moreover, if another feature intersect the working window, the process could

diverge because of the variance descent approach initialization. But, if the

model based re�nement could be initiated manually, it would converge. How-

ever, the use of the histogram information and in particular the number of
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detected peaks in the histogram combined with the number of signi�cant edge

points detected along the frontier of the window, has proven to be a powerful

idea to initialize correctly the model and also to give more information for the

automatic choose of an appropriate window size. The value of the error in the

approximation process has also been found to be a good indicator for the ful-

�llment of the underlying assumptions on the models. As seen in the previous

sections, the window size did not appeared as an important parameter for an

accurate detection of the parameters. Obviously, increasing the window size

will reduce the noise e�ect, but generally size of order 15 � 15, as seen in the

section about reconstruction, appeared to be su�cient to tackle e�ciently the

amount of noise present in real images. In fact the good window size depends

on the considered application and the type of images involved.

There are three mains directions in which the approach presented in this

paper can be extended: The �rst direction is to generalize the models in order

to take into account non planar intensity regions. The second direction is to

deal with general curves rather than edges or polyhedral objects frontiers. The

third direction is related to the application of the estimation of the blurring

parameter to the problem of recovering depth from focus.

The �gure 27 illustrates the extension of this approach to curve features:

Left, an ellipse is obtained from a synthetic image created by bluring a syn-

thetic ellipse with a 2D Gaussian �lter; Right, a B-Spline closed curve is ex-

tracted from a real image of a stone. The ideas presented in this paper rep-

resent an important step in the application of a powerful formulation of the

low level vision problems. While, a �rst step in this formulation has shown

that some computational time requirements may decrease the interest of such

model based approach, the simpli�cations and their application presented in

this paper have shown that this formulation can be explored in depth. Al-

though much work remains to be done for non-planar regions and curves, the

results obtained in the application of this work to 3D-reconstruction indicate

that this approach to locate and characterize image features accurately is a

great improvement of the existing algorithms.
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