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Abstract: Visual correspondence problem (matching), is an major issue in vision. Matching
can be divided in feature-based and area-based matching. In area-basedmatching, correlation is a
common tool for the visual correspondence problem. But most classical correlation methods fail
near the disparity discontinuity, which occurs at the boundaries of objects. In this report, we
propose a partial correlation technique for solving this problem. We use a robust statisticstool to
�nd the good part to be considered for applying correlation, We have compared our method with
the standard and non standard techniques. Experimental results validate the approach.
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Appariement robust par corr�elation partielle

R�esum�e : L'appariement entre deux images est une cl�e de nombreux probl�emes de perception,
en particulier celui de la perception st�er�eoscopique. Ce probl�eme est essentiellement abord�e par
deux types d'approches, celle bas�e sur l'utilisation des caract�eristiques comme les contours, et celle
bas�e sur la mise en correspondance d'une partie du signal. La corr�elation est l'outil le plus commun
pour la second cat�egorie. Mais les approches classiques de la corr�elation ont des di�cult�ees pr�es des
discontinuit�es qui se pr�esentent �a la limite des objets occultants. Dans ce rapport, nous proposons
une technique baptis�ee corr�elation partielle pour r�esoudre ce probl�eme. Nous utilisons un outil de
la statistique robuste pour trouver la |bonne partie des fenêtres �a corr�eler. Nous avons compar�e
notre m�ethode avec les m�ethodes standards et les m�ethodes plus robustes. Des exp�erimentations
valident la m�ethode.

Mots-cl�e : vision, appariement, corr�elation, robustesse, occultation.
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1 Introduction

The visual correspondence problem, i.e. matching between two images is an major task in vision
[14], [3], [10], as it underlies the computation of motion (motion matching) and the computation of
stereo depth (stereo matching). Given two images of a same scene, a pixel in one image corresponds
to a pixel in the other one if they are projections along lines of sight of the same physical scene
element. If they are temporally consecutive, then the computation of correspondence determines
motion. If they are spatially separated but simultaneous, then the computation of correspondence
determines stereo disparity.

Matching can be divided in area based matching and feature based matching (see for instance
[8] and [2] in the case of stereo-vision). Three types of methods have been used for area based
matching:

� optical 
ow [9]

� Fourier transformation [22]

� correlation [1]

In this report, we investigate only the third method. People interested in the two previous ones
might have a look in the referenced papers. The use of correlation as a similarity measure between
two signals is a well known technique. It is commonly used in stereo vision for the visual corres-
pondence problem [5] and extensive comparison have been made for the evaluation of di�erent
correlation criteria [1].

As indicated in [16], [6] and [12], occlusion plays an important role in stereo matching. In [12]
Intille uses Ground Control Points (GCP) to construct the best disparity path; this method gets
its best results if GCP are e�ectively very close to each occluding boundary as this is the region
in which all methods fail.

We came to the conclusion that only the use of a robust methods can overcome the matching
problems every method encounters at this occluding contours. This report is devoted to describe
a method which provides good matches in these areas, providing therefore a tool for �nding good
GCP points where they are really needed. For this purpose, a new correlation algorithm is developed
which works even when the occlusion arises. The key idea is to use a robust estimator to �nd the
good part on which the correlation should be performed, and then to carry out the partial correlation
on this part.

Robust estimator were already used for solving matching problems. For example, in the paper
of Odobez and Bouthemy [18], a robust optical-
ow method basing on M-estimators is used to
establish the motion correspondence. Zabih [23] uses a non parametric method to compute the
visual correspondence for stereo-vision. We shall come back to the Zabih's correlation methods and
show some comparison between his methods, ours and more standard methods.

RR n�RR-2643
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The paper is organized as following. Firstly we introduce some related work, then we explain our
model for the partial correlation and introduce the robust estimators developed in robust statistics

[11] [7], especially the LMedS-estimator, which is used in our algorithm to �nd the good part of
the correlation on which the partial correlation should be done. At the end we show experimental
results and propose some future work.

2 Related work

2.1 Correlation and image transforms

Visual correspondance of two vectors is usually de�ned by correlation. There are many di�erent
de�nitions for this purpose (see the Table 1 in [1] for instance). Experimental comparison were
perforemed and are reported in [1] and in [5]. Among them, we have chosen the zero mean sum of
squared di�erences because of its relative simple form and its good experimental performance to
varying lighting conditions:

ZSSD(X;X + dX) =

sP
�2W ((I1(X +�)� �I1(X))� (I2(X +�+ dX)� �I2(X + dX)))2

(2N + 1)(2M + 1)

where X = (x; y), � = (u; v), W is the window de�ned by f(u; v)j �N � u � N and �M �
v � Mg, dX = (dx; dy) is the disparity and �Ii(X) is the mean gray level value of image i in the
window (i = 1; 2).

Alternative approaches have been proposed which suggest to use a transformed version of the
original signal. A standard transform is to use the Laplacian of the image. In some way this is
equivalent to normalizing the image as it is done by the zssd method.

However these methods are strongly corrupted by local strong noise or by the presence of local
perturbation of the original signal when occlusion arises. In order to reduce such a factionalism

authors limited the in
uence of the numerical values by taking into account only the sign of the
Laplacian [24] [17], or the orientation of the gradient [21]. In such a case, the change introduced in
the correlation answer by local perturbations will be in direct ratio with the size of the perturbed
area. A similar idea is exploited in the rank and census transform presented in the next section.

2.2 Rank and census transform [23]

Zabih has developed an approach which relies on local transforms based on non-parametric mea-
sures. They are designed to tolerate factionalism. Non parametric statistics [13] is distinguished by
the use of ordering information among data, rather than the data values themselves.

RR n�RR-2643
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Two local non-parametric local transforms were introduced. The �rst one, called rank transform,
is a non-parametric measure of local intensity. And the second one, called census transform, is a
non-parametric summary of local spatial structure.

Let P be a pixel, I(P ) its intensity, and N(P ) the set of pixels in its neighbour. All non
parametric transforms depend upon the comparison of I(P ) and the intensity of the pixels in
N(P ). De�ne �(P; P 0) to be 1 if I(P 0) < I(P ) and 0 otherwise. The non-parametric local transforms
depend solely on the set of pixel comparisons, which is the set of ordered pairs :

� =
[

P 0
2N(P )

(P 0; �(P; P 0))

The rank transform is de�ned as the number of pixels in the local region whose intensity is less
than the intensity of the center pixel. Formally, the rank transform R(P ) is

R(P ) = jjfP 0 2 N(P )jI(P 0) < I(P )gjj

For the rank transform, the L1 correlation (minimization of the sum of absolute value of dif-
ferences) on the transformed image is used on order to preserve a response that diverges linearly
with the number of outliers.

The census transform R� (P ) is a mapping from the local neighbour surrounding a pixel P to
a bit string representing the set of neighboring pixels whose intensity is less than that of P . Let
N(P ) = P�D where � is the Minkowski sum and D is a set of displacements, and let 
 denote
concatenation. The census transform can then be speci�ed,

R� (P ) =
O

[i;j]2D

�(P; P + [i; j])

Two pixels of census transformed image are computed for similarity using the Hamming dis-
tance, i.e. the number of bits that di�er in two bit strings. The algorithm computes the correspon-
dence by minimizing the Hamming distance after applying the census transform.

2.3 A modi�cation of Zabih's approach

And based on his idea, we have developed a local transform which captures more information and
therefore becomes more complex. Instead of classifying (I(P ) < I(P 0)) by 0 or 1, we replace the
binary value by a probability of (I(P ) < I(P 0)), more precisely:

given a pixel P and a neighboring pixel P � [i; j], the greater the I(P )� I(P � [i; j]), the more
con�dence we have that I(P� [i; j])< I(P ). Of course, the con�dence depends also on the standard
deviation of I(P )� I(P � [i; j]).

RR n�RR-2643
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Let the probability of the I(P � [i; j]) < I(P ) to be G(s=�) where s is the observed value of
I(P ) � I(P � [i; j]), � is the estimated standard deviation of I(P ) � I(P � [i; j]), and G is the
Gaussian distribution function . So the local transform depends also upon the estimation of the
standard deviation of I(P )� I(P � [i; j]). It was estimated in the following way:

� estimate �1 = the standard deviation of I(P )

� estimate �2 = the standard deviation of I(P � [i; j])

� estimate r = their correlation coe�cient

� the standard deviation of I(P )� I(P � [i; j]) can now be computed as
p
�2
1 + �2

2 � 2r�1�2

From our observation, we have put the �1 and �2 to be constant 5, r to be �i
h
� �j

v
, where we

put �h = �v = 0:9.

Of course this method is more 
exible than the Zabih's one, but it cannot be encoded as
e�ciently as it was done for the computation of the Hamming distance. From our experiments,
we estimated that the computation time for this method is about 100 times larger than the �nely
tuned method developed by Zabih.

3 Partial correlation

Let's select in the �rst image a template of �xed size. Suppose that there are several candidates
of the same size. Certainly, we can use the epipolar constraint and other constraint to reduce the
amount of the candidates. What we used after are the region of interest constraint and the epipolar
constraint. These two constraints are displayed in the Figure 1: the window candidate has to be
centered on the corresponding epipolar line and stay within the region of interest.

3.1 Our partial correlation model

Most correlation techniques have di�culty near disparity discontinuities, or in places where high-
lights occur, as the window under consideration is locally partially but hardly corrupted in small
area. Therefore in such a case the pixels in a local region represent scene elements from two dis-
tinct intensity populations. Some of the pixels correspond to the template under consideration and
some from another parts of the scene. As we already mentioned, this leads to a problem for many
correlation techniques, since the standard correlation techniques are usually based on standard
statistics methods, which are best suited to a single population. We shall call this phenomenon
partial occlusion even it might have other physical sources as highlights, and we propose the partial
correlation idea to overcome it.

Consider the two windows of the Figure 2, they match except for the right-up part in the image
I1 and I2. We have to recover this corrupted part. We assume that locally the signal obeys an a�ne

RR n�RR-2643
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x

y

ROI, S(x,y)

template

epipolar line

I (x,y)

the second image

I (x’, y’)
2 1

2ulen+1

2vlen+1

Figure 1: Epipolar constraint and region of interest constraint

Figure 2: Occlusion.Left: I1, right: I2
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relation from on image to the other (see Figure 3):

I2(s; t) = kI1(s+ dx; t+ dy) + l+ �

where (dx; dy) is the disparity of the point (x; y), s = x+u; t = y+v and s 2 fx�N : : :x+Ng t 2

fy �M : : :y + Mg, 2N + 1 and 2M + 1 are the width and the height of the template window
respectively and � is a Gaussian image noise.

Such an a�ne relation is true in the window except for the parts occluded (as the right-up part
indicated in the Figure).

A simpler model would allow just a shift in intensity, i.e. the scale factor k is set to 1 :

I2(s; t) = I1(s+ dx; t+ dy) + l + �

I2

I1

50

100

150

200

250

50 100 150 200 250

Figure 3: A�ne relation between I1 and I2, the small circles are outliers

If the center of the window with coordinates (x; y) is not occluded, an additional constraint can
be stated; it will be called the(center point constraint) here after. It just states that the center of
the window has to satisfy the previous a�ne or translational constraint:

I2(x; y) = kI1(x+ dx; y + dy) + l (a�ne case)

I2(x; y) = I1(x+ dx; y + dy) + l (translation case)

The occluded part is found using the robust statistics where are detailed here after the section
3.2. Application of this technique shall be illustrated in section 4

Having found the occluded parts, the correlation is restricted on the remaining parts of the two
windows. We call this technique partial correlation. In fact partial correlation is a special case of
weighted correlation, as we leave !(u; v) = 1 (inlier) or !(u; v) = 0 (outliers).

For example, the weighted ZSSD can be expressed as follows :

RR n�RR-2643
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ZSSDw(X; dX) =

sP
�2W (((I1(X +�)� �I1(X))� (I2(X +�)� �I2(X)))2weight(�))P

�2W weight(�)
(1)

3.2 Robust estimator for linear regression

The intensity of a window corresponding to a template is de�ned by one or two parameters depen-
ding if we consider the a�ne or translational transformation of light intensity. Estimating these
parameters in presence of outliers and at the same time founding the outliers is described here
under the general framework of robust estimation.

3.2.1 The challenge of outliers

As in many reel world situation, outliers corrupt the data and therefore the method of least mean
squares fail. This is why we should formulate the algorithms using methods coming from robust

statistics [20].

We suppose that vision is a processes to �t some visual models to some unreliable data. Here
unreliableness means the appearance of some outliers. Regression analysis (�tting a model to noisy
data) is an important statistics tool in vision. The usually used regression method, called the least
mean squares regression is optimum when the noise is Gaussian. However this method is not robust
to outliers. See Figure 4 for an example [19]. In this �gure, an outlier corrupt totally the result.

y-axis

x-axis

y-axis

x-axis

Figure 4: (left) Original data with �ve points and their line by the least mean squares regression
(right) Same data but with an outlier in the direction x

More mathematically, a linear regression model of order n is represented by the equation :

ŷi = �̂1xi1 + �̂2xi2 + : : :+ �̂nxin

RR n�RR-2643
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for the ith point of the data.

�̂i is the estimation of the parameters �i of the model. The residual for each point of the data
is ri = yi � ŷi.

In the least mean squares regression, the parameters' estimation of the model is obtained by
the minimization of the sum of the squared residuals :

min
nX
i=1

ri
2

The breakdown point of a regression method, noted �n
�, is the smallest amount of outlier conta-

mination that may force the value of the estimate outside an arbitrary range. See [19] for its more
mathematical discussions.

For the least mean squares method, we have �n� =
1

n
and in the limits �1� = 0. That is to say

it is not robust at all.

3.2.2 Robust regression

Fortunately, some robust regression methods were developed in robust statistic. Among which,
the basic robust estimators are classi�ed as M-estimators, R-estimators and L-estimators [11] [15].
Several robust estimators having the breakdown point close to 0:5 were developed [19]. In this
paper, we will use the least median of squares (LMedS) regression to �nd the outlier part of the
correlation.

In this method, we minimize the median of the squares of the residual :

min
�̂

med
i

ri
2

Seeing that the LMedS estimator is highly un-analytical, we use the Monte Carlo technique to
implement it. See the Table 1 for the algorithm.

This method has the breakdown point 50%. See Fig 5. In this �gure, the result is not corrupted
by the outlier.

To �nd the outliers, we use the �̂ obtained by the LMedS estimator and compute every residual
ri. As is described in [15], we can estimate the standard deviation of noise as

�i = 1:4826(1+
5

n� p
)
r

med
i

ri2

RR n�RR-2643
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Assume that there are n data points and p parameters in the linear model.

1. Choose p points at random from the set of n data points

2. Computer the �t of the model to the p points

3. Computer the median of the square of the residuals

The �tting is repeated until a �t is found with su�ciently small median of squared residuals or
until some predetermined number of re-sampling steps.

Table 1: The least median squares regression algorithm

y-axis

x-axis

y-axis

x-axis

Figure 5: (left) Original data with �ve points and their line by regression of the least median squares
(right) Same data but with an outlier in the direction x
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Here n is the data number and p is the parameter number. The factor 1:4826 is for consistent
estimation in the presence of Gaussian noise, and the term 5

n�p
is recommended by Rousseeuw

and Leroy [19] as a �nite sample correction. Based on the robust LMedS model and the standard
deviation estimate binary weights can be allocated to the data points[15]:

!i =

(
1 jrij

�̂
� 2:5

0 jrij

�̂
> 2:5

4 Experimental results and discussion

In this section, �rst some isolated examples are shown in 4.1 and then statistic comparisons are
made with standard and non standard methods in 4.2

4.1 Examples

To prove our approach, we've tested it on some points taken from [16] where the classical method
fails. In Figure 6, two examples are displayed. The two rectangles in the right image are the region
of interest chosen. Standard correlation techniques failed to �nd the correct corresponding point;
in one case a huge occlusion occurs and in the second case the surface is almost tangent to the
viewing direction and the windows dont �t correctly.

Epipolar lines are displayed as are displayed the wrong matches found by the standard zssd
method. Partial correlation succeed in each of these cases. For instance, on the Paolo's �nger, the
partial correlation method �nds the correct match on the right, where zssd �nds the false match
on the left.

In the Figure 7, the outlier points are displayed for each template, when the correct match is
found.

From these two examples, we see that our method might work where the classical one fails. We
are going to quantify this by collecting statistics on large experiments.

4.2 Statistics results

In order to collect the exact result of matching, experiments were conducted on planar patches. In
such a case the exact matches can be computed by estimating precisely the homography mapping
on patch on the other. We have only tested the method using the translation relation and the center
point constraint. We call it rzssdc here, which stands for robust centered zssd. rzssdc is compared
with the standard zssd, the rank method and our modi�ed implementation of the census transform.

RR n�RR-2643
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Figure 6: Paolo. Two match tests: one on the �nger and the other on the ear. The small squares in
the left image are the templates.

Figure 7: Outlier parts (white) found for the two examples. In the left image is displayed the outlier
part for the �nger and in the right one is displayed the outlier part for the ear.

RR n�RR-2643
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Two pairs of images are used for this test. They are displayed in Figure 8 and Figure 9.

Figure 8: Stereo pair 1: benetton

Figure 9: Stereo pair 2: world

RR n�RR-2643



Robust matching by partial correlation 16

Both of them have a planar background but these backgrounds are set with di�erent kinds of
texture. Four tests were designed. Figure 10 displays two sets of points for the benetton background
for which the corresponding points were sought. Figure 11 displays the test 3 and 4 which were
performed with the world planar background; for the test 3 the template points are scattered along
the occluding contour: a di�cult test case.

Figure 10: Background benetton. Points selected (in black) for test 1 and 2. Left: example1 corres-
ponding to Table 2; Right: example 2 corresponding to Table 3

The di�erent methods were run on these four tests. The candidates were constrained to stay on
the epipolar line and to have the disparity less than 200. For each method, we compare the results
found with the exact value provided by the homography.

The results are reported in the Table 2, 3, 4 and 5. For each method (i.e. : rank, census, rzssdc
and zssd) are indicated:
- the number of accurate matches: up to one pixel error (good match),
- the number of matches in a distance between one and two pixels error (near miss),
- the number of matches at a distance of two to three pixels (bad matches),
- the matches which lie more than three pixels away from their exact position (false matches).

4.3 Discussions

From the previous tables, we see that the rzssdc method provides the best results, with less than
5% wrong matches. Census method gets the second best results but and reaches between 5 and
33% wrong matches; as already mentioned by Zabih, the rank method is even less good. The zssd

RR n�RR-2643
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Figure 11: Background world. Points selected (in black) for test 3 and 4. Left : example 3 corres-
ponding to Table 4; Right : example 4 corresponding to Table 5

rank

0{1 1{2 2{3 3{infty

246 96 0 57

census

0{1 1{2 2{3 3{infty

305 63 0 31

rzssdc

0{1 1{2 2{3 3{infty

316 63 0 20

zssd

0{1 1{2 2{3 3{infty

188 37 0 174

Table 2: the �rst example on the image benetton

rank

0{1 1{2 2{3 3{infty

713 98 0 89

census

0{1 1{2 2{3 3{infty

773 83 0 44

rzssdc

0{1 1{2 2{3 3{infty

796 74 0 30

zssd

0{1 1{2 2{3 3{infty

658 38 3 201

Table 3: the second example on the image benetton

RR n�RR-2643
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rank

0{1 1{2 2{3 3{infty

77 14 0 49

census

0{1 1{2 2{3 3{infty

89 12 0 39

rzssdc

0{1 1{2 2{3 3{infty

118 10 0 12

zssd

0{1 1{2 2{3 3{infty

56 0 0 84

Table 4: the �rst example on the image world

rank

0{1 1{2 2{3 3{infty

129 15 0 122

census

0{1 1{2 2{3 3{infty

185 6 0 75

rzssdc

0{1 1{2 2{3 3{infty

234 29 2 1

zssd

0{1 1{2 2{3 3{infty

71 1 0 194

Table 5: the second example on the image world

rank

0{1 1{2 2{3 3{infty

11946 2512 299 968

census

0{1 1{2 2{3 3{infty

12960 2237 105 423

rzssdc

0{1 1{2 2{3 3{infty

11845 1985 193 1702

zssd

0{1 1{2 2{3 3{infty

13140 1941 116 528

Table 6: An example for the general case on the image world

is the worse in such di�cult conditions and its scores between 22 and 72% of wrong matches. This
experience validates the factionalism of the census method, and proves that with an additional
computational e�ort this can improved with the partial correlation method.

However, if we choose points in non occluded regions, we get the best result using the

census or the classical method. Table 6 provides the results for the four previous method tested
on a 125� 125 area. Notice that all other methods do not behave too badly too. More than 80%
matches are within 2 pixels for each method.

There are several explanations for explaining these last results. Firstly as census and zssd
consider the whole window, the support for their answer is larger and more robust to noise. Partial
correlation might select a wrong window with perfect partial matches instead of considering the
signal globally when it should be done. This is illustrated in Figure 12 on a 1 dimensional signal.
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Therefore we think that the partial correlation is good to be used only if occlusion is suspec-
ted. The fundamental di�culty for this technique is the con
ict between the similarity and the
completeness of the correlation :

Given a template, and a several candidates, which one is the most similar to the template ?

Two subparts of windows might match perfectly (similarity); the whole windows might match
also (completeness) but no more perfectly. As these two criterion compete, a syntheses has to be
made; this is not quite easy as completeness is not important at occlusion edges, but important in
other areas.

model

correct match

inlier part 

wrong partial match

for wrong
match

Figure 12: The signal shift, the left part is found to be outlier and rejected, and the right part
match very well. If there is no shift, we'll �nd no outlier part and the whole parts match less well
then the shifted one.

5 Conclusion and future work

In this report, we've discussed the matching problem in presence of occlusion or highlights, we've
proposed the partial correlation method to overcome the di�culty that encounters other methods.
We've compared our method with the standard method and non standard method.

Why our technique is interest and important ? There are many good modeling techniques
for discontinuities applied to the segmentation problem ([4]) but there are poor in modeling the
discontinuities for multiple views. Our technique is a new attempt to solve this point. Intille [12]
demonstrated the use of GCP (Ground control points) for building the disparity path along an
epipolar line. For this purpose it is requiered that these points are as close as possible to the
occlusion boundaries. For this reason, it's important to have a robust technique to match the
points at the boundaries of objects, where partial occlusion occurs.

Experiments show that our method works better than other standard and non standard cor-
relation methods when occlusion arises. However even if satisfactory results are obtained in non
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occluded areas, this method is outperformed by more standard correlations which run faster. Notice
that for such detection partial correlation already provides some limits about occlusion position :
the points which border the outliers region might be good candidates. Investigation on this approach
is presently under work.
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