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ABSTRACT

Scenes that contain every-day man-made objects often possess sets of parallel lines and orthogonal planes, the
projective features of which possess enough structural information to constrain possible scene element geometries
as well as a camera's intrinsic and extrinsic parameters.

In particular, in a scene with three mutually orthogonal sets of parallel lines, detection of the corresponding
three vanishing points of the imaged lines allows us to determine the camera's image-relative principal point
and e�ective focal length. In this paper we introduce a new technique to solve for radial and decentering lens
distortion directly from the results of vanishing point estimation, thus precluding the need for special calibration
templates. This is accomplished by using an iterative method to solve for the parameters that minimize vanishing
point dispersion. Dispersion here is measured as covariance of vanishing point estimation error projected on the
Gaussian sphere whose origin is the estimated center of projection.

Having found a complete model for each camera's intrinsic parameters, corresponding points are used in
the relative orientation technique to determine the camera's extrinsic parameters as well as point-wise structure.
Surfaces inherit planar geometry and extent from manually identi�ed coplanar lines and points. View independent
textures are created for each surface by �nding the 2-D homographic texture transformation which corrects for
planar perspective foreshortening. We utilize the local Jacobian of this transformation in two important ways: to
prevent aliasing in the plane's texture space and to merge correctly texture data arising from varying sampling
resolutions in multiple views.

1 Introduction

As real-time scene-rendering capabilities become more a�ordable and widespread, it becomes reasonable to
consider the use of three-dimensional models of real scenes in lieu of two-dimensional signal-based image repre-

1as seen in Proceedings SPIE Visual Data Exploration and Analysis II, Vol. 2410, pp. 447-461, San Jose, California,
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sentations. Handling digital video in such a fashion can provide both compression advantages and the ability to
support interactive or personalized display of visual information.1 The eventual goal of the research described in
this paper is to develop a coding method for digital video based on the extraction of 3-D models where appropriate
and possible.

As a special case, we consider extracting a textured polygon model of an enclosed space given a small number
of partially overlapping snapshots from one or more ordinary handheld cameras.

The fact that we would like to be able to handle snapshots from random locations rather than a continuous
video stream rules out direct spatiotemporal7 and optical ow8 approaches which assume in�nitesimally small
changes in the camera's extrinsic parameters (i.e. the six terms describing the camera's scene-relative rotation and
translation). For the same reasons, recursive computational frameworks which use extended or iterated extended
Kalman �lters (EKF or IEKF)10,11 cannot be used. Also, the fact that we are working with indoor scenes rules
out factorization9 methods specialized for the orthographic case.

Because we want to use ordinary handheld cameras, it would be bene�cial to use a framework that either
avoids the necessity of knowing the camera's intrinsic parameters or (even more desirable) allows us to estimate
these parameters directly. In this paper we introduce a new approach that solves all of the camera's intrinsic
parameters including lens distortion without requiring any special calibration patterns, just a scene with three-
point perspective. This is done using a variation of the analytical plumb-line method introduced by Brown,15

where instead of straightening points in a curve, the algorithm strives to make image lines of a set of parallel
scene edges intersect at a single point.

Camera and point feature positions are determined using Horn's relative orientation method4 given point
correspondences in overlapping images. Coplanar lines and points are then manually identi�ed and used to �t
planar geometry and polygonal extent for planar scene surfaces. View independent textures are created for each
surface by �nding the 2-D texture transformation which corrects for planar perspective foreshortening. We utilize
the local Jacobian of this transformation in two important ways: to prevent aliasing in the plane's texture space
and to merge correctly texture data arising from varying sampling resolutions in multiple views.

The rest of the paper is as follows. Section 2 introduces our new camera calibration method and reviews how
these calibration results can be used to unwarp geometrically distorted images. Section 3 describes minimum
squared error estimation of scene-relative camera pose and point-wise position given point correspondences.
Section 4 discusses texture recti�cation using an 8-parameter homographic transform. Here we also show how
the Jacobian of this transform is used to avoid aliasing and to correctly merge texture samples from multiple
perspectives and resolutions. Various results using real images are then shown in section 5.

2 Camera calibration

In this section we �rst review the projection equation which transforms world points into image pixels. Issues
of line representation are then discussed, followed by the introduction of a new method of lens distortion correction
that aims to minimize vanishing point dispersion. To complete intrinsic camera calibration, we then discuss how
the vanishing points of three mutually orthogonal sets of lines are used to estimate center of projection.

2.1 Camera model

The transformation from world coordinates [Xw; Yw; Zw]
T to measured image coordinates [xm; ym]

T can be
treated more simply as a composition of several transformations. The rigid body transformation brings world



coordinates into camera-relative coordinates [Xc; Yc; Zc]
T
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where B is a 4� 4 matrix made up of the orthonormal 3� 3 rotation matrix R and the 3� 1 translation vector t.

The perspective transformation is the non-linear mapping, P , which uses the camera-relative center of projec-
tion, [CxCyCz] with positive Cz toward the viewer, to project camera-relative scene position into homogeneous
camera-relative image coordinates [xp; yp; wp]

T . It uses the 4� 4 matrix,2
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where inverse focal length is � = �1=Cz, followed by normalization by the homogeneous term.

The view transformation uses the 3�3 matrixV which maps projected camera-relative coordinates [xp; yp; 1]
T

into ideal undistorted pixel coordinates [xu; yu; 1]
T

The lens distortion equation describes the non-linear relationship between ideal undistorted pixel coordinates
[xu; yu]

T and actually measured pixel coordinates [xm; ym]
T
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and where K1, K2 and K3 are radial distortion coe�cients, P1, P2 and P3 are the decentering distortion coef-
�cients and [Qx; Qy]

T are the pixel coordinates of the camera's principal point. Since the equations (3) output
an undistorted point for a measured point already subjected to lens distortion, we might describe this as an
undistortion mapping which is functionally of the form

pu = U(pm) (5)

where pu = [xu; yu]
T and pm = [xm; ym]

T . The inverse mapping which would be used to synthesize point-wise
lens distortion is functionally of the form

pm = U�1(pu) = D(pu) (6)

where the distorted coordinate pm for a particular undistorted coordinate pu is given. The entire projection

equation can now be described as
pm = DVPBpw (7)
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Figure 1: Inverse relationship between segment length and angle variance: (a) results of segment detection, (b)
a set of true lines, any one of which could have given rise the segment observed under noisy conditions, (c)
con�dence intervals of a probablistic representation that decouples uncertainty in center and angle.

2.2 Probabilistic representations for uncertain geometry

2.2.1 Image line representation

An image is produced by applying the projection equation (7) to a scene containing three-dimensional edges
to get an image of line segments. We represent line segments in the three-parameter form

y = (x� ex) tan(e�) + ey (8)

where e�, ex and ey describe the segment's direction angle and center point. Since line detection is noisy, it is
appropriate to model the parameters of the line segment probabilistically as the random vector e = [e�; ex; ey]

T

which has a normal distribution whose mean value is obtained from the observed line segment and whose diagonal
covariance is �e = diag(�2� ; �

2

x; �
2

y). As illustrated in Figure 1 angle variance, �2� is inversely proportional to
segment length. Center point variances �2x and �2y are set inversely proportional to the center point's distance
from an approximated principal point, since pixels at the principal point project a larger solid angle than those
at the periphery.

2.2.2 Sphere point representation

To do this we must �nd a representation for line segments and line intersections which is insensitive to the
camera-relative orientation of scene edges. Referring to Figure 2, let Ei;j denote the j-th edge belonging to the

i'th set of parallel scene edges whose scene relative direction is d̂i. Also let ei;j be its observed image segment
with mean parameters [e�i;j ; exi;j ; eyi;j ]. If Q = [Qx; Qy; Qz]

T is an arbitrary image-relative center of projection,
then under conditions of noiseless line detection and zero lens distortion, Ei;j will lie in the plane created by ei;j
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Figure 2: Using the sphere-point to represent a probabilistic image segment

and C. This plane contains C and has unit normal

n̂i;j =
ni;j

kni;jk
(9)

where

ni;j =

2
4 exi;j �Qx

eyi;j �Qy

�Qz

3
5�

2
4 cos e�i;j

sin e�i;j
0

3
5 (10)

If we consider a unit Gaussian sphere whose origin is the arbitrary center of projection, the segment ei;j can be
represented as a sphere point whose mean coordinates are de�ned by n̂i;j .

To �nd the covariance of the 3�1 random vector n̂i;j we use equations (9) and (10) to describe the function g
where n = g (e). We now use the fact13 that for any su�ciently smooth function g where n = g (e), the covariance
�n of random vector n at E[n] = E[g(e)] = g(E[e]) can be approximated as �n = J�eJ

T where J is the 3� 3
Jacobian matrix of the form jm;n = @nm=@en evaluated at n.

2.2.3 Intersecting a pair of lines

This probabilistic representation for image segments is particularly useful for describing intersections between
a pair of lines. Suppose we have two scene edges Ei;1 and Ei;2 with the same unit scene direction d̂i and
corresponding image segments ei;1 and ei;2 and subsequent sphere points n̂i;1 and n̂i;2 (see Figure 3). We see

here that the plane which contains both n̂i;1 and n̂i;2 has the normal vector whose direction is d̂i, the image-
relative direction of both scene lines. Also note that the vector between point Vi, the vanishing point for the i-th
set of parallel lines and Q, the center of projection, has the edge direction d̂i.

The important strength of the sphere point representation is that line intersections have no preferred (or
unpreferred) direction. In particular, if a pair of image segments are parallel but not collinear, no image point
exists that describes the intersection. In the Gaussian sphere domain, however, this poses no special problem,
and thus is well suited for vanishing point estimation under perspective as well as orthographic projection where
parallel lines always project to parallel lines.
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Figure 3: Using sphere-points to represent the intersection between a pair of lines

2.2.4 Estimating vanishing point direction from many lines

Now suppose there are a total of Ni line segments belonging to the i-th direction. If no ei;j are collinear as Ni

increases, the subsequent set of positive and negative pairs of sphere points �ni;j will create a symmetric great
circle on the Gaussian sphere. The plane that minimizes the square error �t to the set of sphere points will have
normal vector d̂i and will contain the center of projection C.

Thus the vanishing point direction d̂i can be estimated from the aggregate distribution of probabilistic sphere
points with 3-D means n̂i;j and covariances �ni;j . Since the mean of this set is known to be the center of projection
the covariance of the aggregate distribution can be approximated as the weighted average13 of n̂i;j n̂

T
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The desired vanishing point direction, d̂i, is estimated as

d̂i = �i;3 (12)

where �i;3 is the eigenvector associated with the minimum eigenvalue, �i;3, of �di . Proof: if all sphere points n̂i;j
for j = [1; Ni] lie exactly in some plane (i.e. no line detection noise and no lens distortion) and are not colinear
then the rank of the sample covariance matrix �di will be 2 and the smallest eigenvalue will be zero. The positive
and negative senses of the associated eigenvector is the plane normal since the �rst two eigenvectors (associated
with the non-zero eigenvalues) lie in the plane and because of the condition of orthogonality of the eigenvectors.

2.3 Vanishing points and lens distortion

As explained by Brown,15 in the absence of distortion, the central projection of a straight line is itself a
straight line. Most approaches to lens distortion attempt to do so by minimizing curvature along curves or among
points which should be straight. We instead make the observation that as shown in Figure 4(a) in the absence
of distortion, the central projection of a set of straight parallel lines is itself a set of straight lines that intersect
at a distinct vanishing point. A set of N non-overlapping segments results in K = CN

2
possible intersection

points. Without distortion, all K candidate vanishing points will be identical. Under lens distortion, however,
the projection of this set of lines yields a set of curved lines that if broken into piecewise linear segments (as
done by some line detection techniques), the extension of these segments will not result in a common intersection
point. Instead, the set of K candidate vanishing points will be dispersed as shown in Figure 4(b).
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Figure 4: Vanishing point of a set of parallel scene lines (a) without lens distortion is compact and distinct (b)
with lens distortion is dispersed and \confused".

Resuming the Section 2.2.4 discussion of estimating the vanishing direction of the i-th set of lines, as line
detection noise and lens distortion are introduced, the set of sphere points become less constrained to a plane and
the minimum eigenvalue, �i;3, becomes non-zero. Each non-overlapping pair of segments contributes a candidate
vanishing point. Similarly as shown in Figure 3 each pair of sphere points contributes a candidate vanishing
point direction. Just as noise and distortion confuses or disperses the image vanishing point, it also disperses the
candidate vanishing point directions and consequently widens the minimum thickness of the aggregate distribution.
Thus �i;3 can be interpreted as a measure of vanishing point dispersion.

This suggests that �i;3 can be used as a measure of the amount of distortion introduced by the projection
equation (7). To correct for lens distortion, our goal then, is to �nd the distortion parameters that minimize �i;3.
Using equations (5), (9) and (12) we de�ne the observation function

f(êi;j ; d̂i;K1;K2;K3; P1; P2; P3) = 0 (13)

If M denotes the total number of parallel sets of lines and Ni denotes the number of lines detected in the i-th set,
the total number of equations of the form (13) will amount to N =

PM
i=1

Ni. Letting x = [K1;K2;K3; P1; P2; P3]
our task is to simultaneously solve N non-linear systems of 6 variables. That is to �nd the x for which

fn(x) = 0 (14)

is true for all n = [1; N ]. This is typically done with a series of linear regression equations using a least squares
method to re�ne some initial estimate. The Taylor series expansion of equation (14) is

fn(x +�x) = fn(x) +
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By ignoring 2nd and higher order terms and asserting that the solution exists at x+�x we have

fn(x+�x) = 0 (16)

then (15) becomes

�fn(x) =

6X
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e = A�x (18)



In order to solve for�x we use singular value decomposition (SVD) to do linear least squares �tting of parametric
data.12 The solution is then substituted into (16) to adjust the parameter vector x

xnew = xold +�x (19)

The new parameter vector x is then used to update all d̂n for n = [1; N ] and the N � 1 dispersion vector whose
elements are �n;3. This process is then iterated until the dispersion vector reaches convergence.

2.3.1 Applying distortion estimation results to an image

Once the distortion parameters have been estimated, equation (5) can be used to correct point-wise distortions
for all image segments. However, correcting the entire distorted image given �xed distortion parameters requires
inverting this equation to �nd distorted image coordinates for a desired pixel in the undistorted output image.

Here we again use the iterative root solving method of simultaneous non-linear equations. To get the initial
estimate for the distortion coordinates pm given an undistorted point pu we rewrite equation (5) as a displacement
function

pu = pm + (U(pm)� pm)

= pm + u(pm) (20)

if we assume that the displacement function u is locally smooth then we can say that

u(pu) � u(pm) (21)

therefore we can make the approximation
pm � pu � u(pu) (22)

Now to invert (5) for a particular undistorted point pu we de�ne the error function

f(pm) = U(pm)� pu = 0 (23)

initialize p̂m to (22) and use linear regression to iteratively converge on a solution.

2.3.2 Stochastic image unwarping

Let Ru denote the square image region covered by one pixel in the undistorted image with center pu. Using
the iterative approach shown in section 2.3.1, the corresponding center coordinate pm of the region Rm in the
distorted image that maps onto theRu region in the undistorted image. Letting �u and �m denote the covariances
of these two regions and linearizing the mapping at the �nal estimate of we �nd that �m = J�1�uJ

�T where J
is the 2� 2 Jacobian matrix computed at each iteration in the linear regression used to solve (23) and is of the
form ja;b = @pu;a=@pm;b evaluated at pu.

The pixel area of the two regions can be approximated as Au = det(�u)
1=2 and Am = det(�m)

1=2. When
Am > Au, the undistorted pixel maps from a distorted region of relatively greater coverage. Thus, to avoid
aliasing we average a set of dAm=Aue bilinearly interpolated normally distributed intensity samples in Rm.
When Am < Au a single bilinearly interpolated intensity at position p̂m is su�cient.

2.4 Estimating center of projection

The center of projection is completely described by the principal point, the point in the image plane nearest
to the center of projection, and the principal distance (or e�ective focal length) which is that minimum distance.
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Figure 5: Estimating principal point and principal distance from three vanishing points of mutually orthogonal
parallel lines

Letting A, B and C denote the image-relative coordinates of three vanishing points formed by three mutually
orthogonal sets of parallel lines, the principal point P is the orthocenter of the triangle ABC (see Figure 5).
The principal distance (or e�ective focal length) f is the distance from the principal point, P, to the center of
projection, Q that makes the 4 points ABCQ into a right tetrahedron, where the lines AQ, BQ and CQ are
mutually orthogonal and where PQ is orthogonal to the image plane containing A,B,C and P.

3 Structure and Motion

We now discuss estimation of scene structure and camera motion given the calibration information already
obtained in section 2. For the more general problem of solving structure and motion given only point corre-
spondences with unknown rotation refer to Horn's method of relative orientation.4 To relate camera-relative to
scene-relative structure and motion refer to closed form solutions of absolute orientation.5,6

3.1 Absolute rotation

Suppose we have already estimated three image-relative vanishing point unit directions d̂A, d̂B , d̂C , lens
distortion and the center of projection Q as outlined in section 2. We now de�ne the matrix LC to be the camera-
relative coordinate frame of lines whose columns are the three vanishing point unit directions. Similarly, we use
the known world-relative unit line directions to de�ne the world-relative coordinate frame LW . The world-relative
camera rotation matrix CW that brings LC and LW into correspondence is

CW = LWL�1

C = R�1 (24)

As shown, CW is also the inverse of that camera's rigid-body rotation matrix R from Equation 1.



3.2 Absolute translation and structure

Given known world-relative camera rotation of each view we now solve world-relative positions of each camera
and of any corresponding point features visible in more than 1 frame. This is done using the known rotation case
of Horn's relative orientation approach4 to �nd the best-�t unit baseline vector between multiple cameras given
L � 2 corresponding image points and known rotation. Once the baselines are found, the known world-relative
positions of K � 2 points where K � L are used to �nd the best-�t baseline magnitude for each camera. This
is then used to bring all point and camera positions into world-relative scale thus solving for absolute camera
motion and feature structure.

Here, we briey discuss the two view case where L � 2 correlated features in the left and right cameras
are respectively represented as the camera-relative unit vectors rr and rl. Let r0l be the right camera-relative
direction of the left ray. This can be found since world-relative rotations for the left and right cameras (denoted
by CW;l and CW;r) already known.

r0l = C�1

W;rCW;lrl (25)

Let unit vector b denote the right camera-relative direction of the di�erence between the left and right cameras'
centers of projection. The best �t for the baseline is the eigenvector associated with the minimum eigenvector of
the 3� 3 matrix C where

C =

LX
i=1

wicic
T
i (26)

where wi is a scalar con�dence measure for each point initially set to unity and ci = r0l;i � rr;i. The baseline
vector b may be iteratively re�ned by using the previous estimation to adjust the con�dence measure for each
sample using the equation

wi =
1

kcik2(
2

i �
2

l;i + �2i �
2

r;i)
(27)

where �2l;i and �2r;i are known positional uncertainties of the i-th feature in the left and right views. The values
i and �i represent unscaled camera-relative distances to the scene features from the left and right cameras
respectively and are de�ned as

i = (b� rr;i) � ci=kcik
2 �i = (b� r0l;i) � ci=kcik

2 (28)

Note that the calculations for i and �i require division by kcik
2. If this value is zero, then the two cameras

may share the same position and the relative translation vector will be zero. This problem can be averted by
checking the eigenvalues from the initial unit weighted calculation of C. Zero magnitude translation between
cameras can be identi�ed by C having only rank 2 (that is having only 2 eigenvalues which are non-zero within
machine precision).

Values i and �i, describe unscaled camera-relative distances for all L features visible in both images. These
distance are unscaled in the sense that their values are based on b being a unit baseline vector. To bring the
baseline and camera distances into correct world-relative scale, we �nd the best �t scale factor S that brings all
features within proper distance of each other.

S =

KX
i=2

kpi � pi�1k

k�irr;i � �rr;ik
(29)

where pi are known world-relative positions of the i-th feature out of K � 2 points that also belong to the set
of L point correspondences. The right camera-relative position of the left camera is now Sb. Similarly, right
camera-relative point positions are now de�ned as non-unit vectors S�irr;i.

The least squares estimate of the right camera's world-relative position, ow is

ow =mw �CW;rmr (30)



where CW;r is the world-relative coordinate frame of the right camera found from equation (24) and

mw = 1

K

PK
i=1

pi mr =
1

K

PK
i=1

Srr;i (31)

where mw and mr are the world- and right camera-relative means of the K �xed features. Known world-relative
position and rotation of the right camera can now be used to �x positions for the left camera and all the remaining
L features.

This process is successively repeated for all CN
2

pairs of frames, where camera and feature positions are
probablistically re�ned by updating covariance measures of uncertainty at each step. The �nal result provides
the best �t solutions for the rigid-body transformation for each camera as well as world-relative positions of all
features.

4 Textured planar surfaces

The scene model is a collection of textured planar surfaces each de�ned as a membership list of coplanar point
and segment elements. Each surface thus inherits structure from member elements manually or automatically
assigned to it. Geometric structure is found by using world-relative positions and directions of member points
and segments to make a best �t plane. Texture structure is found by �rst \shrink wrapping" a closed polygon
around all elements belonging to a particular surface which are visible in any view. These image regions are then
sampled and merged into a coherent view independent surface texture representation. The following sections
describe the sampling and merging of new texture data from multiple views with their di�ering resolutions due
to distance and foreshortening and di�ering extents due to occlusions and framing.

4.1 View independent texture sampling

To preserve the highest resolution of textural information available in all views we rectify planar texture, thus
e�ectively undoing perspective, while retaining a measure of con�dence for each sample so that textures from
multiple perspectives can be merged by weighted averaging. As described by Mann and Becker2 the non-linear
2-D from-warping that embodies the 8 pure parameters of a planar patch under perspective projection21 is of the
form

f =
At+ b

cT t+ 1
(32)

where f and t are 2-D pixel coordinates in the perspective warped �lm image and perspective corrected texture
image. The 8 pure parameters are described in the 2� 2 matrix A, and the 2� 1 vectors b and c. This mapping
can be used to warp any planar surface under one perspective view into any other perspective view. This solution
comes from solving 4 pairs of linear equations of the form

fx =
�
tx ty 0 0 1 0 �txfx �tyfx

�
�P (33)

f
y

=
�
0 0 tx ty 0 1 �txfy �tyfy

�
�P (34)

where the 8 pure parameters are contained in P = [Axx;Axy;Ayx;Ayy; bx; by; cx; cy]
T
.

To rectify the texture which contributes to a given surface from a particular camera, we �rst �nd a set of
four parametric texture coordinates t = [u; v] which bound the texture space of the surface with corresponding
world-relative coordinates w. These coordinates are then projected into image coordinates f using Equation 7.
These 4 pairs of coordinates are then used in equations (33) and (34) to solve for the 8 warping parameters.
Positions of all texture coordinates may now be found e�ciently by separately doing linear interpolation of the 2
numerator terms and single denominator terms of (32) and then dividing.



One advantage of this approach is that the warping function allows us to directly calculate the Jacobian
matrix J = @f=@t which is used to de�ne the covariance of the region for stochastic sampling where, assuming
unit �t, �f = JJT . As shown above for lens distortion correction in section 2.3.2 this lets us avoid aliasing in
the undistorted texture image.

The above approach is also an important aid in merging data from multiple sources. Consider the portion
of a surface whose textures in the image appear shrunken due to perspective distortion. When using stochastic
sampling, intensities in the corresponding portion of the texture image are obtained by interpolation. In this case,
interpolation can be modeled as zero padded up sampling followed by convolution with a Gaussian �lter whose
covariance is ��1

f in the texture image domain (recall that the Fourier transform of a 2-D Gaussian is itself a 2-D

Gaussian with inverse covariance22). Thus ��1

f can be thought of as the error covariance �a of a measurement of
intensity a. Large �a indicates lower frequencies in texture space and thus has higher uncertainty in the intensity
measurement.

Now suppose we have N di�erent views of the same surface and we use the above approach to unwarp
portions of the N images into N texture images. Further suppose, that at each position in a texture image we
store intensity a as well as the 3 unique terms of �a (the 2 � 2 covariance matrix is symmetric). If we have N
di�erent measurements of the same phenomenon (i.e. intensity, a), where each measurement ai; i = [1; N ] has
been subject to additive zero mean Gaussian white noise with covariance �ai the maximum likelihood estimate
of the phenomenon is a Gaussian distribution with error covariance

�a =

"
NX
i=1

�ai
�1

#
�1

(35)

and mean

â = �a

NX
i=1

ai�
�1

a (36)

Since both (35) and (36) use ��1

a it makes sense instead to save the three unique terms of �f . To handle
untextured regions caused by viewport framing and occlusions, the intensity measurement a actually is a 4 � 1
vector describing color and alpha.

5 Results

To detect image line segments we use the RobotVis image processing software developed by INRIA19 which
uses the Canny edge detection algorithm.18 This software takes a user de�ned gradient magnitude threshold and
�ts line segments subject to a breaking angle and minimum edge length.

In each image line segments are �rst manually grouped into sets of parallel and sets of coplanar segments.
Corresponding line directions and planes among views are speci�ed. Three mutually orthogonal line directions
are then selected and the distance between at least one pair of lines is provided.

The algorithm as described in sections 2, 3 and 4 are then used to solve internal camera parameters, camera
motion, scene structure, and surface textures.

Figures 6 and 7 show the results from a single view from an uncalibrated camera with severe lens distortion,
while Figure 8 shows the actual model extracted.



(a) (b)

Figure 6: Camera calibration: (a) original view with lens distortion (b) corrected result

6 Conclusion

Our approach is to exploit the proven e�ectiveness of vision techniques where possible and human guidance
where necessary to create detailed scene descriptions from random sets of uncalibrated views. Special care has
been taken to rely upon only a modicum of user assistance in the form of grouping relevant features.

The further development of this work looks toward eventual complete automation of the model-creation
process, application of other methods for analyzing non-planar objects after extracting the calibration information
by the method here described, and the use of the resulting description to produce a compact model for real, moving
scenes.
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