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Abstract
A new algorithm to recover depth from a sequence of two or more stereoscopic images

is presented. The algorithm, which uses a dynamic programming approach, builds a dense

depth map and allows the camera displacement between each image to be any

combination of rotation and translation. Since no «smoothing constraint» on depth is used,

occlusions and depth discontinuities along the border of objects are preserved and easy to

identify. For a given cost function, the algorithm finds the optimal correspondence along

epipolar lines. In our case, this function is the difference of intensities between

corresponding points, adjusted with a factor accounting for occlusions. Tested on non-

trivial synthetic image sequences with true depth map available, we obtain a mean

disparity error of less than one pixel.
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1  Introduction

Depth estimation of objects in a scene is very useful in many applications of image

processing. Stereoscopic fusion, a very important depth estimation mechanism of the

human visual system, provides a passive way of extracting depth. By using at least two

different views of a scene, the relative displacement (disparity) of each object in a scene

provides a simple measure of how deep an object is. Assuming the position of the camera

is known for each view, disparity can be obtained for a point in an image by finding the

corresponding point in another image. Solving this «correspondence problem» for each

point of an image gives a disparity map that can easily be converted into a depth map

(Brown 1988, Horn 1986, Jähne 1991, Shirai 1987, Weng 1992b).

In order to be as useful as possible, the depth map must be dense and accurately reflect

the depth discontinuities on the borders of objects. Moreover, an occlusion map should

also be obtained to provide accurate detection of the parts of an image hidden in other

images. This map provides a way to discard occluded regions from the depth map since

depth cannot be recovered from those regions.

Although many algorithms can create high quality dense depth map (Fleck 1991, Roy

1992), their usefulness has been somewhat limited by the added work needed to calculate

depth for all points of an image. The dynamic programming approach has proven to be a

good tool to greatly improve the efficiency while providing accurate depth maps (Cox

1992). Usually, stereoscopic analysis is performed with two images. However, more

images can be used to provide a better depth estimation. In particular, trinocular

algorithms use three images to obtain more accurate depth map (Ayache 1989, Lee 1990).

The stereoscopic algorithm presented in this paper can efficiently provide a depth map

and an occlusion map constructed from the analysis of multiple images obtained with

arbitrary camera displacements. The depth map is dense and is not blurred across depth

discontinuities. It features an original presentation of general epipolar geometry, and

presents an image rectification process that does not depend on absolute camera positions

and does not distort disparity measurements.

Unlike many stereoscopic algorithms (Shirai 1987, Ayache 1989, Weng 1992a), the

matching process is based on image intensity levels and does not involve any a priori

image segmentation or token extraction.

To simplify the stereoscopic analysis, a few important hypotheses have been made.

Objects in the scene are assumed opaque and dull, but can overlap and be partially hidden

from view. Lighting is assumed constant in position and intensity. The intensity variations



3

induced by lighting on objects when the camera moves are not taken into account and are

considered minimal. The camera displacement is an affine transformation, composed of

arbitrary rotations and translations and is assumed known before the stereoscopic analysis.

After a preliminary description of the stereoscopic model and the equations needed for

stereoscopic analysis, the algorithm is described in details. It is then applied to synthetic

image sequences. Performance and accuracy are estimated by comparing the computed

depth map with the true depth map.

2  Stereoscopic model

The cameras can be placed anywhere around the scene. Since depth can only be

measured in the field of view common to all the images, the camera positions and

orientations should maximize the size of this field.

As shown in figure 1, a point  on an object is projected on the projection planes of

cameras  and . The relative distance between the projected points  and  is related

to the depth of .

FIGURE 1. Simple stereoscopic model. An object point  has

coordinates  and  relative to camera  and  respectively. They are

projected to  and  for each camera.

For a given camera coordinate system, the projection plane is positioned at , the

focal distance. Homogenous coordinates are used to represent three-dimensional points.
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The perspective projection  of a point  is achieved by the equation

where  is a homogenization function

and  is the projection matrix for focal distance .

It follows that a point  (i.e.  relative to camera ) and its perspective projection

 have the form

 and  where  and .

The displacement between cameras  and  is an affine transformation described by a

homogenous matrix of the form  where  is a rotation matrix

and  is a translation matrix. To simplify notation,  is used freely to represent an

element of the matrix .
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Projecting those points to the other camera’s projection planes gives a set of collinear

points  that will form theepipolar line (figure 2). We have

where

,

and . (1)

To simplify notation, when ,  and  are used without arguments,  is implied.

FIGURE 2. Epipolar line. All point  that

projects on  also projects on the epipolar line as

. All epipolar lines of points from image

intersect at the Focus Of Expansion  and vice versa (see section

2.2).
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Assuming that the depth  of any point  is limited to a known interval, we can

reduce the epipolar line to anepipolar segment, even if the interval is very large (i.e. from

 to ). The epipolar segment represents all possible matching points in image  of a

point  in image . Let  and  represent the bounds of the depth interval

allowed for camera . Let’s also assume that they are selected so that any point in this

interval projects into the visible parts of the all the other camera’s projection planes.

Since the projection of a three-dimensional line is also a line on the projection plane,

the epipolar segment can be defined by projecting the endpoints  and

. Usually we have  and  but often the camera geometry

or the experimental conditions reduce this interval. Figure 3 shows the relation between

the depth interval and the epipolar segment.

FIGURE 3. Epipolar segment. When  varies in the interval

, the projection of point  for camera  varies

between  et .

For a given point , the depth interval  gives a corresponding

interval  in the coordinate system of camera . It is defined as
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 and

where  is defined as in equation 1.

The endpoints of the depth interval are

 and .

After projection to camera , we obtain the endpoints of the epipolar segment

 and

expanding to

and

where  and  are defined by equation 1.
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and

 .

For brevity, the parameter  is implied when  and  are used without arguments.

FIGURE 4. Initial displacement vector and epipolar vector. For a given

point  of image , the matching point  must lie on the line segment

 related to the two vectors  and .
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relative displacement between cameras is needed to calculate this point. Algebraically, the

FOE in image  for cameras  and  is

where

and

 .

2.3  Depth calculation from disparity

We can express the disparity between a point  and its corresponding point  with

a single parameter  that represents the displacement (or disparity) along the epipolar

vector. This parameter is defined by the relation (figure 4)

, (2)
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 . (4)

3  The algorithm

An algorithm that performs stereoscopic analysis of two images taken from arbitrary

positioned cameras is first presented.

A rectification process selects appropriate pairs of epipolar lines in two images. Each

pair of lines creates a «solution space» that is used by an efficient dynamic programming

algorithm to find an optimal matching for those lines (figure 5).

FIGURE 5. Matching process using dynamic programming. A pair of

epipolar lines from rectified images  and  creates a solution space where

a dynamic programming method finds an optimal path yielding depth for

image .

This two-image algorithm is then expanded to use more images simultaneously. To

achieve this goal, the basic two-image algorithm is successively used over selected pairs

of images. The cost function used for matching is also changed to take advantage of the

added information provided by the extra images.

3.1  Image rectification

Since the camera movement can be any affine transformation, a rectification process

must be applied to each image in order to adapt the matching process to each particular

epipolar geometry. Some solutions for image rectification were proposed (Ayache 1989).
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Our solution uses only the relative transformation between cameras without requiring any

absolute positions.

A number of lines going through the FOE in image  are selected and extracted from

the image. Those lines are epipolar lines since they all go through the FOE.

• If  is in the visible part of the projection plane (i.e. inside of image ), the

selected lines have angles in the interval [ ) (figure 6a).

• If  is not in the visible part of the projection plane (i.e. outside the image ) but

not at infinity, the selected lines have angles in the interval  where  and

are the angles of the lines joining two of the image’s corners and . The two cor-

ners are selected to provide the widest angle interval (i.e.  is maximal) to

allow the lines to sweep the whole image (figure 6b).

• If  is at infinity, all selected epipolar lines are parallel and oriented toward the

FOE (figure 6c). Obviously, each line must intersect the image.

FIGURE 6. Image Rectification. Numbered lines are the selected

epipolar lines. a) the FOE is inside the image, b) the FOE is outside the

image but not at infinity, c) the FOE is at infinity.
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Let’s assume that a selected epipolar line in image  is defined by a starting point

and an ending point . The corresponding epipolar line  in image  is defined as

the space including all possible matching points of points in line  in image

(figure 7). From equation 2, we have

 or ,

 or

The choice of either definition of  and  is made so as to get the longest line

segment, i.e.  is maximum. This ensures that the line will contain all the points

that can be matched to points in .

FIGURE 7. Corresponding epipolar lines. For an epipolar line

in image , the corresponding epipolar line is  in image . All

epipolar lines intersect in their respective .

The number of epipolar lines selected is controlled by a parameter  and the density

of points along each line is controlled by a parameter . Those parameters correspond to a

scaling factor of the images. Rectified pixel values along the lines are calculated with

bilinear interpolation. By increasing the pixel density  along epipolar lines, we achieve

sub-pixel accuracy for disparity measurements. For example, a density of  allows a
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disparity precision of around half a pixel. Due to the limitations of the interpolation

technique used, the density cannot be increased above a certain limit.

3.2  Matching along epipolar lines

For two selected epipolar lines  and , we can define a cartesian space

with those lines as coordinate axes. As shown in figure 8, each point in this space is a

possible match between two points. For each point with integer coordinates  in this

cartesian space, the corresponding points on the epipolar lines are obtained by equations

, , (5)

, , (6)

where  and  , (7)

 and  .

One can show that  equals  where  is on the epipolar line .

FIGURE 8. Solution space. A match between points  and  is

represented in the solution space as a single point .

From the definition of disparity given by equation 2, and using equations 5 and 6, we can

deduce the relation between a point  in the matching space and the disparity
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 . (8)

One can show that the disparities are not distorted by the rectification process into the

solution space since  is linearly related to  for a given  in equation 8.

As an example, in the simple case of a left to right (horizontal) camera displacements

with a depth interval reaching infinity, we have

 ,  ,

,

which gives a relation

 .

For a given point  on line , we can find the interval restricting the matching

points  along the line . From equation 8, with  taking its limit values  and

, we obtain

 and

where  is a function of  (equation 5). For the point , the search for the matching point

 takes place between  and .

Finding a match for all points along epipolar lines  and  is

equivalent to finding a path going through the solution space joining points  and

 as defined in equation 7. This path is illustrated by figure 9.

eab Nab Sa( )⋅ SpaceToDisparityab i j,( ) Nab Sa( )⋅=

Sb Sa–
j
β
--- Lb⋅ i

β
--- La⋅– Mab Sa

i
β
--- La⋅+ 

 –+=

eab j i

La Lb 1 0,( )= = Nab Sa i La⋅+ 
  1– 0,( )=

Sa Sb= Mab Sa i La⋅+ 
  0 0,( )=

eab
i j–

β
---------=

i Sa Ta,[ ]

j Sb Tb,[ ] eab 0

Eab P'a( )

j1 i( ) Lb⋅ P'a Mab P'a( ) Sb–+ 
  β⋅= j2 i( ) Lb⋅ j1 i( ) Lb⋅ Eab P'a( ) β⋅+=

P'a i i

j j 1 i( ) j2 i( )

Sa Ta,[ ] Sb Tb,[ ]

0 0,( )

imax jmax,( )



15

FIGURE 9. Path in the solution space. Finding a match for all possible

points between a pair of epipolar lines gives a path in the solution space.

For a given point , the search interval is bounded by  and . Images

intensities are pictured along the axis.

Notice that the matching processes performed on different pairs of epipolar lines are

independent from one another. This allows a very straightforward parallel

implementation.

3.3  Optimal path finding

An efficient dynamic programming approach is used to extract an optimal path from

all possible paths in the solution space. The accuracy of this path will largely depend on

the cost function used to evaluate each possible path.

In order to be able to use dynamic programming, some assumptions about the scene

must be made in order to restrain the choices of path that can be found.

• Real objects: The scene is composed of objects that can exist in the physical

world. Because of that, we can assume that the solution path is a single connected path

where depth discontinuities are represented by horizontal and vertical path segments

(figure 10a).
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• Opaque objects: A point considered visible can only match one point. When it

matches more than one point, it is considered occluded. The problem of transparency

detection is thus avoided.

It directly follows that the solution path can not reverse direction. For a path reaching

the solution point , the next point can only be ,  or

(figure 10b).

FIGURE 10. Characteristics of a path in solution space. a) Occluded

regions are detected by vertical or horizontal path segments. b) A point on

the path can have only one of three successor points.

By adding a «cost function» giving the pertinence of each matching pair of points, the

correspondence problem is transformed into a minimum cost path finding problem. The

path characteristics are such that dynamic programming can be used.

3.4  Cost function for two images

The cost function is based on the assumption that corresponding points should have

similar image intensity levels. This forces objects in the scene to be dull so the

displacement of the camera will not create specular reflections inducing intensity

variations not directly related to stereoscopy.

The basic cost  for a matching point  is the difference of intensity

between the corresponding points. We have
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where  and  are defined from  by equations 5 and 6, and  is the

intensity of image  at point .

Following (Hillier 1986) and (Jain 1989), we define  as being the position  of a

point on the path after  stages. We also define  as the total cost of a path

 at stage . This total cost is defined as

where .

The occlusion penalty  is an extra cost added only when the

preceding match along the path creates an occlusion (i.e. horizontal or vertical path

segment). This factor is usually very low and can be increased when the images are

expected to be highly corrupted by noise.

The optimal path  is defined as

 .

Since we have the recursive relationship for stage

 ,

and in our case , ,  , we can

see that the optimal path is obtained after  stages of one-variable searches.
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the occlusion map for image  would be obtained from the horizontal path segments

(figure 10a).

4  Multiple image correspondence

The algorithm already presented uses two images to evaluates the depth of one of

them, called thereference image. The extended stereoscopic algorithm takes twobasic

images while all the other images in the sequence are used asextra images (figure 11). All

pairs of basic images contain the reference image and are processed by stereoscopic

analysis while all the other images serve as extra images. The final depth map is obtained

from averaging all depth maps. The final occlusion map is obtained from the union

(logical or) of all occlusion maps.

FIGURE 11. Extended algorithm for  images. After  stereoscopic

analyses, the final depth and occlusion maps for the reference image 0 are

obtained from the  depth and occlusion maps.

The dynamic programming correspondence process can only be applied to two images

at a time. Extra images can add accuracy to the matching by providing additional

information to the cost function.
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As shown in figure 12, a match between points  and  of the two basic images

and  provides a disparity  that is converted to a depth measurement  with (equation

4)

 .

For each extra image , this depth can be converted into a disparity  between image

 and  with (equation 3)

 .

The corresponding point  in image  for this depth can be used in the new cost

function and is obtained with

,  .

FIGURE 12. Extra image point selection. For a pair of matching points

 and , we can compute one corresponding point in each extra image

.

4.1  Cost function for multiple images

The two-image cost function already defined in section 3.4 can be easily modified to

take into account all extra images. For a given pair of matching points  and , all

corresponding points  should have the same intensity level.

For the  stereoscopic analysis, the basic cost function  is changed for
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 .

If a point  lies outside the visible part of the projection plane of camera , it obviously

cannot contribute to the summation term.

5  Results and discussion

The stereoscopic algorithm has been applied to sequences of 2 and more images. Two

examples of those analyses are presented here with an evaluation of the quality and

accuracy of the computed depth maps.

In these examples, the images are  pixels in size. The rectification

parameters  and  are set to  and . Those settings allow sub-pixel accuracy

of about  pixel for disparity measurements.

The first example is obtained with a camera displacement in depth along the  axis

(figure 13) generating two views of the scene.

FIGURE 13. Camera setup with displacement in depth. In this two-

camera example, the camera  is moved along the  axis from the

reference camera .

The scene is composed of a a cube whose edges are cylinders in front of a textured

background (at infinity). This synthetic image is not trivial to analyze since we did not add

texture to the cube, and we also selected a shape that creates occlusions.

In this example, the FOE is located in the center of the images, as in figure 6a. The

rectification process applied to image  is shown in figure 14.
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FIGURE 14. Image rectification. A number of epipolar lines intersecting

in the FOE (at the center of image ) are selected and piled up vertically to

form the rectified version of image .

The rectified images  and  are then matched with the dynamic programming

method. A sample cost function is shown in figure 15 with the optimal path found.
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FIGURE 15. Solution space and optimal path. The search region is a

strip crossing the solution space, with the characteristic bottleneck at the

FOE. The horizontal bands show regions along  where occlusions are

detected. Within the search region, darker shades of gray indicate higher

costs. The optimal path is shown as a black line.

The optimal path gives the disparity and occlusion maps of image  as shown in figure

16. Note that disparities are shown as gray levels corresponding to displacement in pixels

along the epipolar lines. They are easily converted into depth values using equation 4.

Observe that the disparity changes toward zero for points near the FOE (at the center of

the image). The mean error in the disparity map is  pixel and is mostly caused by the

lack of texture on the cube and the particular positioning of the cameras.
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FIGURE 16. Disparity maps. The disparity map is given in pixels

( , ). The true disparity map is given as a reference.

For the second example, three cameras are set up as in figure 17. Taking camera  as

the reference of this trinocular system, the camera  is moved horizontally while the

camera  is moved vertically. Since those movements are perpendicular, the lack of

texture doesn’t have as big an impact as in the binocular case. In this example, the

rectification process is trivial since the FOEs are both at infinity (figure 6c) and aligned

with the image axis.
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FIGURE 17. Trinocular camera setup. Taking camera  as the reference,

camera  has been moved horizontally (along the  axis) while camera

has been move vertically (along the  axis).

The three images are shown in figure 18 and feature several occlusions as well as a

lack of texture that complicates the task of the stereoscopic algorithm.
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FIGURE 18. Three synthetic images. a) Reference image. b) horizontal

displacement. c) vertical displacement. The background has been placed at

infinity.
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The cost function for a pair of epipolar lines is shown in figure 19 to illustrate the path

finding process.

FIGURE 19. Solution space and optimal path. The search region is a

narrow strip crossing the solution space. The horizontal bands show

regions along  where occlusion are detected. Minimum cost is shown in

white while maximum cost is shown in black. The optimal path is shown as

a black line.

Two applications of the stereo algorithm are needed to get intermediate disparity maps

for images  and , and then image  and . Those maps are shown in figure 20 while the

corresponding occlusion maps are shown in figure 21.
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FIGURE 20. Disparity maps. These disparity maps result from the

stereoscopic analysis of successive pairs of basic images  and .

They are used to build the final depth map.

FIGURE 21. Occlusion maps. These occlusion maps result from the

stereoscopic analysis of successive pairs of basic images  and .

They are used to build the final occlusion map. Black points are considered

occluded.
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As expected, we notice that occlusions dependent largely on the camera displacement.

Since the final occlusion map (figure 22) is the union of the intermediate occlusion maps,

a point is considered occluded as soon as it is occluded in any one of those maps.

FIGURE 22. True and final occlusion maps. The final occlusion map for

image  is obtained by the union (logical or) of the intermediate occlusion

maps of figure 21. The true occlusion map is shown for comparison

purposes. Black points are considered occluded.

The final disparity map is shown in figure 23 along with a computed reference map

that gives the true disparity values. The disparity map obtained from a simple binocular

stereoscopic analysis is also given to show the improvement brought by the trinocular

example. In all those disparity maps, the occluded points have no depth information

assigned to them. Depth values are only assigned to points visible in all images ( ,  and

).
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FIGURE 23. True and final disparity maps. The reference disparity

map, containing true disparity values, is shown with the final disparity map

obtained for image , with occlusions shown in black. The disparity map
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of a simple binocular analysis is also shown for comparison.

The mean difference between the final disparity map and the reference depth map of

figure 23 is  pixel, when occluded pixels are not taken into account. The same

measure taken in the binocular case yields an error of  pixel, also when occluded

pixels are not taken into account.

Those results can be considered encouraging since the disparity accuracy was set to

 pixel (i.e. ). However, it must be noted that the textured background helps to

lower somewhat the error measurements.

6  Conclusion

A new algorithm for analysis of multiple stereoscopic images was presented.

Stereoscopic matching is done on two ‘basic’ images with a dynamic programming

method. During the matching process, the new cost function to be minimized takes into

account the other images. Supporting general camera displacements, the algorithm does

not require any preprocessing of the images. The depth map and occlusion map are dense,

and parallel computation is easy to achieve. Due to the absence of any «depth smoothing

constraints», discontinuities along the contour of objects are well preserved in the depth

map. In the future, allowing transparent objects and taking into account specular

reflections of light will certainly prove to be challenging.
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