
Stereo Matching with Non-Linear Di�usion

Daniel Scharstein� Richard Szeliski

Department of Computer Science Vision Technology Group

5151 Upson Hall Microsoft Corporation

Cornell University One Microsoft Way

Ithaca, NY 14853-7501 Redmond, WA 98052-6399

schar@cs.cornell.edu szeliski@microsoft.com

Abstract

One of the central problems in stereo matching (and other image registration tasks)

is the selection of optimal window sizes for comparing image regions. This paper ad-

dresses this problem with some novel algorithms based on iteratively di�using support

at di�erent disparity hypotheses, and locally controlling the amount of di�usion based

on the current quality of the disparity estimate. It also develops a novel Bayesian

estimation technique which signi�cantly outperforms techniques based on area-based

matching (SSD) and regular di�usion. We provide experimental results on both syn-

thetic and real stereo image pairs.
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1 Introduction

Stereo correspondence is the problem of �nding matching points in two or more images of
the same scene, usually assuming known camera geometries. Two image points p and p0

match if they result from the projection of the same point P in the scene, a property that is
often approximated by a similarity constraint requiring, for example, p and p0 to have similar
intensity or color. The desired output of a stereo correspondence algorithm is a disparity

map, specifying the relative displacement of matching points between images.
The stereo correspondence problem is inherently underconstrained and further compli-

cated by the fact that the images typically contain noise. Traditional approaches thus either
try to only recover a subset of matches, or make additional assumptions. Feature-based ap-
proaches, belonging to the former category, only match points with a certain amount of local
information (such as intensity edges), with the disadvantage of yielding only sparse disparity
maps. In this paper we will focus on area-based approaches, which yield a dense disparity
map by matching small image patches as a whole, relying on the assumption that nearby
points usually have similar displacements.

A typical area-based stereo matching algorithm proceeds the following way: For each
location in one image, �nd the displacement that aligns this location with the best matching
location in the other image. The quality of a match is measured by comparing windows
centered at the two locations, for example, using the sum of squared intensity di�erences
(SSD).

A more general way of characterizing area-based algorithms is the following:

1. For each disparity under consideration, compute a per-pixel matching cost (e.g., squared
intensity di�erence)

2. Aggregate support spatially (e.g. by summing over a window, or by di�usion)

3. Across all disparities, �nd the best match based on the aggregated support

4. Compute a sub-pixel disparity estimate (optional)

A central problem is to �nd the optimal size of the support region [Okutomi and Kanade,
1992; Kanade and Okutomi, 1994]. If the region is too small, a wrong match might be found
due to ambiguities and noise. If the region is too big, it can no longer be matched as a
whole due to foreshortening and occlusion, with the result of lost detail and blurring (or
dislocating) object boundaries in the resulting disparity map.

In this paper, we �rst review the relevant literature and the basic idea of aggregating
support (Sections 2 and 3). We then present some new algorithms that determine the best
support region by iteratively di�using support in a non-linear fashion (Section 4). We also
develop a Bayesian model using explicit disparity distributions, and a novel iterative support
aggregation algorithm based on this model (Section 5). We present comparative results for
our algorithms in Section 6, and close with a discussion of future work.
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2 Previous work

In our discussion of related work we will focus on the di�erent processing stages of the
area-based algorithm outlined above. A general review of the stereo vision literature is
beyond the scope of this paper. For surveys of the �eld see [Barnard and Fischler, 1982;
Dhond and Aggarwal, 1989].

2.1 Matching cost

At the base of any matching algorithm is a matching cost that measures the (dis-)similarity
of two locations. Matching costs can be de�ned locally (at pixel level), or over a certain
area of support. Examples for local costs are absolute intensity di�erences [Kanade, 1994],
squared intensity di�erences [Matthies et al., 1989], binary pixel matches [Marr and Poggio,
1976], edges [Baker, 1980], �ltered images [Marr and Poggio, 1979; Jenkin et al., 1991;
Jones and Malik, 1992], and measures based on gradient direction [Seitz, 1989] or gradient
vectors [Scharstein, 1994]. Matching costs that are de�ned over a certain area of support
include correlation [Ryan et al., 1980] and non-parametric measures [Zabih and Wood�ll,
1994]. These can be viewed as a combination of the matching cost and aggregation stages.

2.2 Evidence aggregation

Aggregating support is necessary for stable matching. A support region can either be two-
dimensional at a �xed disparity (favoring fronto-parallel surfaces), or three-dimensional in
x-y-d space (supporting slanted surfaces). Two-dimensional evidence aggregation has been
done using square windows (traditional), Gaussian convolution [Scharstein, 1994], multiple
windows anchored at di�erent points [Intille and Bobick, 1994], and windows with adap-
tive sizes [Arnold, 1983; Okutomi and Kanade, 1992; Kanade and Okutomi, 1994]. Three-
dimensional support functions that have been proposed include limited disparity di�erence
[Grimson, 1985], limited disparity gradient [Pollard et al., 1985], and Prazdny's coherence
principle [Prazdny, 1985], which can be implemented using two di�usion processes [Szeliski
and Hinton, 1985].

As mentioned above, some techniques, such as correlation and rank statistics which are
de�ned over a �xed support region, can combine the cost and aggregation steps into one.
Measures that can be accumulated in a separate step have the following advantages:

� e�ciency: the measure can be aggregated with a single convolution (or box-�lter)
operation [Kanade, 1994],

� parallelizability: the aggregation step can be implemented by local iterative di�usion,
making the algorithm suited for highly parallel architectures [Szeliski and Hinton,
1985],
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� adaptability: the measure can be aggregated over locally di�erent support regions using
either adjustable size windows [Kanade and Okutomi, 1994] or a non-uniform di�usion
process (this paper).

2.3 Disparity selection

The easiest way of choosing the best disparity is to select at each pixel the minimum
aggregated cost across all disparities under consideration (\winner-take-all"). A problem
with this is that uniqueness of matches is only enforced for one image (the reference im-

age), while points in the other image might get matched to multiple points. Coopera-
tive algorithms employing symmetric uniqueness constraints are one attempt to solve this
problem [Marr and Poggio, 1976]. Using dynamic programming techniques [Arnold, 1983;
Ohta and Kanade, 1985; Cox, 1994; Intille and Bobick, 1994] is another way of selecting
unique and consistent disparities. However, these techniques require the strict enforcement
of ordering constraints [Yuille and Poggio, 1984].

2.4 Sub-pixel disparity computation

Sub-pixel disparity estimates can be computed by �tting a curve to the matching costs at
the discrete disparity levels [Lucas and Kanade, 1981; Tian and Huhns, 1986; Matthies et al.,
1989; Kanade and Okutomi, 1994]. This provides an easy way to increase the resolution of
a stereo algorithm with little additional computation. However, to work well, the intensities
being matched must vary smoothly.

2.5 Other techniques

Other stereo techniques include hybrid and iterative techniques, such as stochastic search
[Szeliski and Hinton, 1985; Marroquin et al., 1987; Barnard, 1989] and joint matching and
surface reconstruction [Ho� and Ahuja, 1989; Olsen, 1990]. Hierarchical (coarse-to-�ne)
matching is another important technique which allows for a larger range of disparities to be
matched without excessive search [Quam, 1984; Witkin et al., 1987].

More than two images are used in multiframe stereo to increase stability of the algorithm
[Bolles et al., 1987; Matthies et al., 1989; Kang et al., 1995]. A special case that easily �ts
in our framework is multiple baseline stereo, where all images have identical epipolar lines
[Okutomi and Kanade, 1993]. In this case, the similarity measures between the reference
image and all other images can be combined by summation into a single measure before the
aggregation step.

Finally, occlusion is an important issue. Many approaches ignore the e�ects of occlusion;
others try to minimize them by using a cyclopean disparity representation [Barnard, 1989],
or try to recover occluded regions after the matching by cross-checking. Several authors have
developed methods for dealing with occlusion explicitly, using Bayesian models and dynamic
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programming [Belhumeur and Mumford, 1992; Cox, 1994; Geiger et al., 1992; Intille and
Bobick, 1994].

2.6 Focus of this paper

From the discussion above, it appears that most area-based stereo correspondence algorithms
are composed of four tasks: computing a local matching cost; aggregating support spatially;
�nding the best disparity; and computing a sub-pixel disparity estimate. This framework
allows us to compare di�erent approaches that have been taken for each task in isolation,
without being distracted by how the other tasks are being solved.

In this paper, we focus mainly on the second task: Aggregating support. We discuss
various kinds of local di�usion, including a membrane model and a full distribution model,
and contrast it to existing approaches, such as SSD and adaptive windows.

The other three task, although important, are not the central issue of this work. Unless
noted otherwise, we use squared intensity di�erences as a matching cost, and, after the
aggregation step, simply select the best disparity locally at each pixel. In the cases where
we compute sub-pixel disparity estimates, we �t a parabola to the three cost values centered
around the best disparity. It is important to keep in mind that the algorithms presented in
this paper are independent of these choices and apply also to more sophisticated matching
costs and disparity selection strategies.

3 Aggregating support and the SSD algorithm

In this section, we introduce the concept of disparity space, review the sum-of-squared-
di�erences (SSD) algorithm, and discuss the need for spatially-adaptive support regions.

3.1 Disparity space

Support for a match is de�ned over a three-dimensional disparity space E(x; y; d). Formally,
we de�ne the initial (not yet aggregated) disparity space E0 as

E0(x; y; d) = �(IL(x+ d; y)� IR(x; y)); (1)

where IL, IR, are the intensity functions of the left and right image respectively, and �

measures the similarity between the two intensities, e.g., �(l�r) = (l�r)2 . This formulation
uses IR as the reference image. After aggregating support into a �nal space E(x; y; d), we
can compute a disparity function

d(x; y) = arg min
d2D

E(x; y; d) (2)

that represents the matches as o�sets to the points in the right image. In practice, we will
compute a discrete disparity �eld

di;j = d(xi; yj): (3)
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Figure 1: Slices through (skewed) disparity space E and symmetric disparity space Ê for a
�xed y. The lines of sight are shown as dashed lines for a given point in disparity space.
The vertical dashed line corresponds to the right line of sight in both representations.

E is a skewed version of the symmetric disparity space Ê [Marr and Poggio, 1976],

Ê(xR; xL; y) = �(IR(xR; y)� IL(xL; y));

which re
ects that the matching problem is not biased towards either eye. In a symmetric
setting, however, it is more di�cult to enforce uniqueness for each pixel and to de�ne the
�nal disparity map (see Section 7 for a discussion). Figure 1 illustrates the shape of a slices
through E and Ê for a given y and a limited disparity range D = [dmin; dmax].

3.2 SSD

The standard sum-of-squared-di�erences algorithm (SSD) uses square windows to aggregate
the evidence at each disparity. As mentioned before, choosing the right window size involves
a trade-o� between a noisy disparity map and blurring of depth boundaries. We will illus-
trate this using two synthetic image pairs. Both pairs have the same disparity pattern (see
Figure 2): a central square 
oating in front of a background with constant disparity. Fig-
ure 2 (c) includes the occlusion information: the area displayed in white cannot be matched
due to occlusion, and thus algorithms will assign arbitrary disparities in this region.

Figure 3 shows the two synthetic image pairs based on this disparity pattern. The �rst
pair, ramp, is similar to the image pair in Fig. 5 in [Kanade and Okutomi, 1994] and is based
on a linear intensity ramp in the direction of the baseline. Gaussian noise has been added
to each image independently. The second image pair, rds, is based on a binary random dot
pattern using two gray levels with equal probability. No noise has been added to this image
pair.

The two image pairs are quite di�erent. The ramp pair has no local texture variation
and constant gradients everywhere, except for the boundaries of the central square. The two
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(c)(b)(a)

Figure 2: The disparity pattern for the ramp and rds pairs: (a) isometric plot; (b) gray-level
encoding; (c) gray-level encoding with occlusion information.

L R L R

Figure 3: Synthetic stereo pairs ramp (left) and rds (right).

images can only be matched by comparing absolute intensities, and any algorithm based on
band-pass �ltered intensities or gradients will fail (as will the human visual system). The
rds pair, on the other hand, has strong local texture variation, but is highly ambiguous since
pixels not in correspondence still have a 50% chance of matching.

Figure 4 shows the performance of the simple SSD algorithm on these two image pairs
using two di�erent window sizes, w = 3 and w = 7. As can be seen, the bigger window size
yields a disparity map with less noise, but results in an overall blurring of the features (the
\bumpiness" in the recovered disparities is due to sub-pixel disparity estimation). The e�ect
on the two image pairs is quite di�erent: in the ramp pair, the disparities are smoothed
across the boundaries, while in the rds pair only the outlines of the square are blurred, i.e.,
the corners are rounded, while the two disparity levels of foreground and background are
clearly recovered.

The latter e�ect, smoothing of object boundaries, is more common in real images pairs
than the smoothing of disparities. The smoothing of disparities we observed in the ramp

pair is a direct result of the ramp intensity pattern and the small local variations in intensity.
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Figure 4: Performance of the SSD algorithm using square windows with sizes w = 3 and
w = 7 on the ramp and rds image pairs.
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d = db

d = df
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Figure 5: Support for the two disparities df and db of foreground and background for two
points a and b close to the boundary of the central square.

3.3 The need for adaptive support regions

Let us brie
y discuss the reasons for boundary blurring by considering the support for two
points a and b inside the central square, but close to its boundary (see Figure 5). Both
points receive partial support for the two disparities df and db of foreground and background
respectively, and little support for other disparities. Point a, lying next to one of the sides of
the square, receives slightly more support from the inside of the square, and is thus correctly
found to be at disparity df . Point b, lying in the corner, however, receives more support
for db, since almost 3=4 of its support region cover the background, and thus is erroneously
found to be at disparity db. The overall e�ect is that corners get rounded since points close to
corners are \co-opted" into the wrong disparity. Straight object boundaries are not a�ected.
Note also that no smoothing of the disparity values takes place.

Since the blurring of outlines is caused by support regions that span object boundaries, a
possible solution to the problem is to use non-uniform and adaptive support regions. Kanade
and Okutomi [Kanade and Okutomi, 1994] have proposed adaptive windows, square windows
that extend by di�erent amounts in each of four directions. The optimal window size is found
by a greedy algorithm (gradient descent) based on an estimate of disparity uncertainty in
the current window. In this paper we propose a di�erent approach: aggregating support
with a non-uniform di�usion process.

4 Aggregating support by di�usion

Instead of using a �xed window, support can also be aggregated with a weighted support
function such as a Gaussian. A convolution with a Gaussian can be implemented using local
iterative di�usion [Szeliski and Hinton, 1985] de�ned by the equation

@E

@t
= r2E: (4)
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In a discrete system, this yields the update rule

E(i; j; d) (1� 4�)E(i; j; d) + �
X

(k;l)2N4

E(i+ k; j + l; d); (5)

where N4 = f(�1; 0); (1; 0); (0;�1); (0; 1)g is the local neighborhood containing the four
direct neighbors, and � controls the speed of the di�usion. A value of � < 0:25 is needed to
ensure convergence; we use � = 0:15 for the experiments reported in this paper.

Aggregation using a �nite number of simple di�usion steps yields results that are fairly
similar to using square windows. Advantages include the rotational symmetry of the support
kernel and the fact that points further away have gradually less in
uence. The problem of
co-opting corners still exists, however.

4.1 Membrane model

A problem with simple di�usion is that the size of the support region increases with the
number of iterations. In other words, while the di�usion would eventually converge to a
uniform support covering the whole image, we are interested in an intermediate time step in
which the di�usion has only progressed to a certain amount. We can change this behavior
by adding a term to the di�usion equation that measures the amount each current value
has diverged from its original value, yielding the membrane equation [Terzopoulos, 1986;
Szeliski and Hinton, 1985].

@E

@t
= r2E + �(E0 � E): (6)

In the discrete implementation we use

E(i; j; d) [1� �(� + 4)]E(i; j; d) + �

2
4�E0(i; j; d) +

X
(k;l)2N4

E(i+ k; j + l; d)

3
5 : (7)

Unless noted otherwise, we use the parameters � = 0:15 and � = 0:5 in the experimental
results shown in this paper. The �-term ensures that the di�usion converges to a stable
solution not too far from the original values. A closed-from solution for the support function
can easily be derived using Fourier analysis (Appendix A).

Figure 6 shows the results of applying our di�usion process to the rds image pair. The
amount of support at each discrete disparity level is shown before di�usion (E0), after one
iteration, and after 10 iterations. Light regions correspond to little support, dark regions
indicate strong support. Figure 7 shows the results for accumulating support using the
membrane model for the ramp and rds pairs. The number of di�usion iterations is n = 10
(the results are almost identical at n = 5).

Using the membrane model alleviates the contour blurring problem to some extent, since
the �-term \ties" the center of each support region to its original value. For very noisy
images, however, � needs to be chosen quite small to enable enough smoothing for stable
matching, making the process more similar to regular di�usion.
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E; n = 10

E; n = 1

E0

Figure 6: Sections through the disparity space of the rds image pair during di�usion using
the membrane model. The initial disparity space E0 is displayed at the top. The di�used
disparity space E is shown after one iteration (middle) and after 10 iterations (bottom).
Light regions correspond to little support, dark regions indicate strong support.

ramp

rds

Figure 7: Performance of the membrane model on the ramp and rds image pairs (gray level
images and isometric plots).
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4.2 Di�usion with local stopping criteria

A di�erent strategy for preventing both corner co-opting and di�usion to uniformity is to
locally stop the di�usion process depending on the distribution of values in each disparity col-
umn. To do this, we associate a measure of certainty C(i; j) with each location. Intuitively,
this measure should re
ect how \clear" a minimum there is among the values E(i; j; d) for
all d. Given such a measure C, we can aggregate support using non-uniform di�usion:

For each (i; j), compute certainties C and C 0 before and after a single iteration
of di�usion. If C > C 0, do not di�use, i.e., restore the old values E(i; j; d) for all
d.

The idea is that di�usion takes place only at locations of ambiguous matches. Also, certain-
ties never decrease, thus guarantying convergence.

We have experimented with several di�erent certainty measures. In this paper we will
discuss two measures, the winner margin, and the entropy. The winner margin Cm is the
normalized di�erence between the minimum and the second minimum in a disparity column:

Cm(i; j) =
Emin2 � EminP

d E(i; j; d)
; with Emin = min

d
E(i; j; d); Emin2 = min

d;E(i;j;d)6=Emin

E(i; j; d): (8)

The second measure Ce is the negative entropy of the probability distribution in the disparity
column. We convert to probabilities by taking the inverse exponent and normalizing:

Ce(i; j) = �
X
d

p(d) log p(d); with p(d) =
e�E(i;j;d)P
d0 e�E(i;j;d

0)
: (9)

We will develop the idea of converting to probabilities further in the next section.
Figure 8 shows disparity maps for the ramp pair computed with four kinds of di�usion

and increasing iterations. The �rst row shows regular di�usion, the second and third row
show di�usion with local stopping based on Cm and Ce. The fourth row shows di�usion
using the membrane model for comparison. It is clearly visible that regular di�usion keeps
blurring the features as the number of iteration increases, while the other three di�usion
processes converge quickly to a stable solution. Which of the three performs best is hard to
tell by looking at the disparity maps. In Section 6 we analyze their respective performance
based on errors in the computed disparities.

5 A Bayesian model of stereo matching

In this section, we develop a Bayesian model for stereo matching that includes both a mea-
surement model corresponding to the matching criterion and a prior Markov Random Field
model corresponding to the aggregation function. Our model uses robust (non-Gaussian)
statistics to handle gross errors and discontinuities in the surface. We also develop a novel
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Figure 8: Disparities of the ramp image pair based on di�usion with local stopping compared
to regular di�usion and the membrane model.

approximation algorithm that results in a non-linear di�usion process, and show how this
produces better results than standard di�usion.

As before, stereo reconstruction is speci�ed as the estimation of a discrete disparity �eld
di;j = d(xi; yj) given two (or more) input images IL(x; y) and IR(x; y). Using a Bayesian
framework, we �rst specify a model of image formation, and then derive estimation algo-
rithms from this model.

5.1 The prior model

The Bayesian model of stereo image formation consists of two parts. The �rst part, a prior

model for the disparity surface, uses a traditional Markov Random Field (MRF) to encode
preferences for smooth surfaces [Geman and Geman, 1984]. This model is speci�ed as a
Gibbs distribution pP , the exponential of a potential function EP :

pP (d) =
1

ZP

exp (�EP (d)) ; (10)

where d is the vector of all disparities di;j and ZP is a normalizing factor. The potential
function itself is the sum of clique potentials

EP (d) =
X
c2C

Ec(d)
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Figure 9: Shape of the robust penalty function �P for � = 0:01 and � = 1

which only involve neighboring sites in the �eld. In this paper, we study only �rst order
�elds, where

EP (d) =
X
i;j

�P (di+1;j � di;j) + �P (di;j+1 � di;j) (11)

(see [Terzopoulos, 1986; Szeliski, 1989] for generalizations to higher order �elds).
When �(x) is a quadratic, �(x) = x2, the �eld is a Gauss-MRF, and corresponds in a

probabilistic sense to a �rst order regularized (membrane) surface model [Terzopoulos, 1986;
Szeliski, 1989]. When �(x) is a unit impulse, �(x) = 1� �(x), it corresponds to a MRF that
favors fronto-parallel surfaces [Geman and Geman, 1984; Marroquin et al., 1987]. In between
these two extremes are functions derived from robust statistics [Huber, 1981], which behave
much like surface models with discontinuities [Blake and Zisserman, 1987; Geiger and Girosi,
1991; Black and Rangarajan, 1994]. A wide variety of robust penalty functions are possible
[Huber, 1981; Black and Rangarajan, 1994]. In this paper, we use a contaminated Gaussian
model,

�P (x) = � log
�
(1� �P ) exp(�x

2=2�2P ) + �P
�
: (12)

Figure 9 shows the shape of this function for � = 0:01 and � = 1.

5.2 The measurement model

The second part of our Bayesian model is the data or measurement model which accounts
for di�erences in intensities between left and right images. This model assumes independent,
identically distributed measurement errors,

pM (IL; IRjd) =
Y
i;j

pM (IL(xi + di;j; yj)� IR(xi; yj)): (13)

As mentioned before, traditional stereo matching methods use either a squared intensity error
metric (Gaussian noise), �M (x) = log pM (x) = x2, or an exact binary matching criterion (e.g.,

14



for random-dot stereograms or binary features such as edges or the sign of the Laplacian),
�M (x) = 1� �(x). In this paper, we again use a contaminated Gaussian model,

�M (x) = � log
�
(1� �M) exp(�x

2=2�2M ) + �M
�
; (14)

to model both Gaussian noise and possible outliers due to occlusions or non-modeled pho-
tometric e�ects such as specularities.

The posterior distribution, p(djIL; IR) can be derived from the prior and measurement
models using Bayes' rule,

p(djIL; IR) / pP (d)pM (IL; IRjd): (15)

As is often the case, it is more convenient to study the negative log probability distribution

E(d) = � log p(djIL; IR) (16)

=
X
i;j

�P (di+1;j � di;j) + �P (di;j+1 � di;j) +
X
i;j

�M (IL(xi + di;j ; yj)� IR(xi; yj)):

While p(djIL; IR) speci�es a complete distribution, usually only a single optimal estimate
of d(x; y) is desired (but see [Szeliski, 1989] why modeling of uncertainties may be useful).
The most commonly studied estimate is the peak of the distribution, orMaximum A Posteri-

ori (MAP) estimate, which is equivalent to minimizing the energy given in (16). Alternative
estimates include quantities such as the mean of the distribution [Marroquin et al., 1987].

A variety of techniques have been developed for minimizing (16). Two of the most
popular are the Gibbs Sampler [Geman and Geman, 1984; Marroquin et al., 1987] and mean
�eld theory [Geiger and Girosi, 1991]. The Gibbs Sampler randomly chooses values for
each di;j site according to the local distribution determined by the current guesses for a
site's neighbors [Geman and Geman, 1984; Szeliski and Hinton, 1985; Barnard, 1989]. This
process will in theory converge to a statistically optimal sample, given enough time. Mean
�eld theory updates an estimate of the mean value of di;j at each site using a deterministic
update rule derived from the original probability distribution [Geman and Geman, 1984]. It
is not guaranteed to �nd an optimal estimate, but in practice it often �nds a good solution,
similar to one available through continuation methods [Blake and Zisserman, 1987].

5.3 Explicit local distribution model

The Gibbs Sampler and its variants can produce good solutions, but at the cost of long
computation times. Mean �eld techniques, on the other hand, are not very good at modeling
ambiguous estimates, such as multiple potential matches at each pixel. Instead of using either
of these two traditional approaches, we will develop a novel estimation algorithm based on
modeling the probability distribution of di;j at each site. To do this, we associate a scalar
value between 0 and 1 with each possible discrete value of d at each pixel (i; j), and require
that X

d

p(i; j; d) = 1: (17)
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Our representation is therefore the same as that used by di�usion-based algorithms, i.e., we
explicitly model all possible disparities at each pixel, rather than modeling a single estimated
disparity as in traditional Gibbs Sampler or mean-�eld approaches [Barnard, 1989].

To initialize our algorithm, we calculate the probability distribution for each pixel (i; j)
based on the intensity errors between matching pixels, i.e.,

p0(i; j; d) / exp (�E0(i; j; d)) ; (18)

where
E0(i; j; d) = �M(IL(xi + d; yj)� IR(xi; yj)) (19)

is the matching cost of pixel (i; j) at disparity d.
To derive the update formula, we start with a basic observation about Markov Random

Fields: if the joint probability distribution of all interacting neighbors is known, the local
probability distribution of a site is completely determined. To compute this distribution, we
take the part of the potential energy (16) which involves (i; j), i.e.,

~E(di;jjfdi+k;j+lg) = E0(i; j; d) +
X

(k;l)2N4

�P (di+k;j+l � di;j); (20)

and turn this into a probability distribution

~p(di;j jfdi+k;j+lg) = p0(i; j; d)
Y

(k;l)2N4

exp (��P (di+k;j+l � di;j)) : (21)

We then integrate out all of the neighboring disparities according to their joint probability
distribution

p(di;j) /
X

fdi+k;j+lg

~p(di;jjfdi+k;j+lg)p(fdi+k;j+lg): (22)

In practice, however, it is impossible to estimate the full joint probability distribution
of the neighbors, without resorting to a statistical technique such as the Gibbs Sampler.1

Instead, we assume (sub-optimally) that the neighboring disparity columns have independent
distributions

p(fdi+k;j+lg) =
Y

(k;l)2N4

p(di+k;j+l) (23)

where the p(di+k;j+l) are the current probability density estimates for each neighboring site
(i+ k; j + l).

The complete update formula is therefore

p(di;j) / p0(i; j; d)
Y

(k;l)2N4

2
64 X
d0

i+k;j+l

exp
�
��P (d

0
i+k;j+l � di;j)

�
p(d0i+k;j+l)

3
75 (24)

1This is not true, however, of 1-D processes such as Markov Random Walks.
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or

E(i; j; d) E0(i; j; d) +
X

(k;l)2N4

log

"
�
X
d0

exp (��P (d
0 � d)� E(i+ k; j + l; d0))

#
(25)

For notational and computational convenience, we will introduce a few more additional
quantities. The smoothed probability distribution

pS(i; j; d) =
X
d0

e��P (d
0�d)p(i; j; d0) =

X
d0

wP (d
0 � d)p(i; j; d0) (26)

is simply the current probability distribution p(i; j; d) after it has been convolved vertically

(in disparity) with the smoothing kernel wP (d) / e��P (d), with
P

d wP (d) = 1. It has a
corresponding smoothed energy

ES(i; j; d) = � log pS(i; j; d): (27)

Finally, the update rule can be written as a pair of equations

E(i; j; d)  E0(i; j; d) +
X

(k;l)2N4

ES(i+ k; j + l; d); (28)

p(i; j; d)  
e�E(i;j;d)P
d0 e�E(i;j;d

0)
: (29)

In practice, since the values of E(i; j; d) are being updated simultaneously at all pixels
and disparity, we use a modi�ed version of (28),

E(i; j; d) E0(i; j; d) + �

2
4ES(i; j; d) +

X
(k;l)2N4

ES(i+ k; j + l; d)

3
5 ; (30)

i.e., we weight the neighboring values somewhat less (we use � = 0:5) and include the current
estimated energy in the update rule.

If we interpret the above equations as a four-step algorithm for iteratively computing the
best stereo matches, we see that they are a special instance of a non-linear di�usion process.
The smoothing step in (26{27) blurs the current disparity probabilities vertically along a
column, thereby enabling di�erent nearby disparities to support each other (depending on
the size of �P ). It also adds a small amount to each probability (�P ), which in e�ect limits the
largest possible value that ES can take and thus limits the e�ect of disparity discontinuities.

The update step (30) is identical to a regular di�usion step with �-terms (membrane
model). However, the probability re-normalization step ensures that the energies represent
meaningful log probabilities (in practice, it forces the smallest E to be slightly above 0).
The robust form of the E0 function also ensures that bad matches have only limited e�ects,
thus allowing for occlusions or other non-modeled errors to occur.

For the above algorithm to work well, the various parameters f�P ; �P ; �M ; �Mg must be
set to appropriate values. �M and �M are based on the expected noise in the image sensor,
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ramp

rds

Figure 10: Performance of the probabilistic model on the ramp and rds image pairs (gray
level images and isometric plots).

i.e., �M should be proportional to the regular image noise, while �M should be the probability
of gross errors or occlusions (say 1{10%). The choice of �P depends on the class of disparity
surfaces which may be expected, i.e., a small �P favors fronto-parallel surfaces. For the
experiments presented in this paper, we set �P = 0:1 and �P = 0:01.

Figure 10 shows the results of our probabilistic aggregation technique applied to the
ramp and rds images. We use a di�erent �M for the two image pairs: �M = 2 for ramp;
�M = 20 for rds, to compensate for the di�erent signal strengths of the two pairs. The
other parameters are the same for both image pairs: �M = 0:1; �P = 0:1; �P = 0:01. The
number of di�usion iterations is n = 10.

6 Experimental results

In this section we numerically evaluate the performance of the di�erent algorithms on syn-
thetic images. We also show results for real image data.

For our experiments we use �ve synthetic image pairs, based on combining three di�erent
intensity patterns ramp, rds, and real , and two di�erent disparity patterns, square and bars.
We have already introduced the square disparity pattern (Figure 2), and the combinations
ramp/square and rds/square (Figure 3).
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(c)(b)(a)

Figure 11: The bars disparity pattern, containing an ordering constraint violation: (a)
isometric plot; (b) gray-level encoding; (c) gray-level encoding with occlusion information.

L R RL RL

real / square rds / bars real / bars

Figure 12: The three additional synthetic image pairs.

The new disparity pattern bars consists of two rectangular regions with two di�erent
disparities (see Figure 11). The narrow region in the bottom half of the image is displaced
by more than twice its width, thus violating the commonly assumed monotonicity (ordering)
constraint. Together with the big disparity range, this provides an extra challenge to stereo
algorithms, but re
ects common situations in real images. The new intensity pattern, real ,
is part of a real image depicting ground covered with grass.

Figure 12 shows the three new image pairs synthesized using the texture/disparity com-
binations real/square, rds/bars, and real/bars. We do not use the combination ramp/bars
since the narrow region cannot be matched unambiguously, resulting in meaningless disparity
error statistics.

We compared the following algorithms: SSD, di�usion using the membrane model, dif-
fusion with local stopping, and di�usion using the probabilistic model. For each algorithm,
we varied the parameters: window size (SSD), �; � (membrane), certainty measure (local
stopping), �M ; �P ; �M ; �P ; � (probabilistic), and the number of iterations (all di�usion algo-
rithms). For each parameter setting, we ran the algorithm on a test set of 40 images (the 5
image pairs with 8 di�erent levels of additive Gaussian noise: � = 0; 0:25; 0:5; 1; 2; 4; 8; 16).
We tried more than 70 di�erent parameter settings, resulting in about 3000 experiments. In
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each experiment, we compared the computed disparities with the true disparities (ignoring
the occluded regions), and collected three di�erent error statistics: mean absolute disparity
error, root-mean-square (RMS) disparity error, and the \percentage of bad points", i.e., the
percentage of points whose absolute disparity error is greater than 1/2.

Remember that our goal in devising the di�erent algorithms was to recover the occlusion
boundaries correctly. The percentage of bad points gives a good indication whether the
boundaries are recovered correctly, since this is where the errors are big. For similar reasons,
we prefer the RMS error over the mean absolute error since it penalizes outliers more.

First we analyzed the error statistics for each method separately to gain understanding of
the e�ect of the di�erent parameters. Then we chose the best parameters for each method,
and compared the di�erent methods with each other. Since space is limited, we only present
in detail the results of the second, comparative stage, after brie
y discussing the general
trends we noticed.

SSD, which we include for comparison, has only one parameter: the size of the support
region. The same holds for simple di�usion, where the size of the support region is controlled
by the number of iterations. Not surprisingly, the optimal size of the support region depends
on the noise level. In general, higher noise levels (or, more precisely, lower signal-to-noise
rations) require bigger window sizes. The best window size can also depend on the image.

The membrane model behaves similarly to regular di�usion with a �xed number of iter-
ations. For small noise levels, a value of � between 1/3 and 1 usually yields smaller errors
than regular di�usion, but not always. Also, as mentioned before, for high noise levels, �
needs to be chosen quite small to enable enough smoothing for stable matching.

In analyzing regular di�usion with local stopping criteria, we found that the certainty
measure is critical. In our experiments, the winner margin Cm almost always outperformed
the measure based on entropy Ce. A problem with our de�nition of local stopping is that an
initial wrong but \certain" match can survive. There is clearly a potential for both better
certainty measures and di�erent stopping criteria.

The probabilistic model, which performed by far the best, also has the most parameters.
We found, however, that many parameters have only small e�ects and can be set to default
values, including �M = 0:1; �P = 0:01, and � = 0:5. As expected, a small �P worked best for
our test images composed from fronto-parallel surfaces. For real images, we found that �P
needs to be chosen slightly higher. The most important parameter is �M , which should re
ect
the strength of the image signal. We used three di�erent values for the three di�erent textures
of our test images. Finally, the number of iterations is less critical, since the method seems
to converge relatively fast to a stable solution. Higher numbers of iterations are necessary
for images containing regions of uniform intensity, such as the real images discussed below.

For direct comparison of the methods, we plot the disparity error versus the noise level
on all �ve image pairs: Figure 13 shows the RMS errors, and Figure 14 shows the percentage
of bad points. We compare SSD with a window size of 5, the membrane model with � =
0:5, di�usion with local stopping based on winner margin Cm, and the probabilistic model
with �P = 0:01; �P = 0:1; �M = 0:1, and �M = 2; 8; 20, for ramp, real , and rds textures
respectively. The number of iterations is 10 for all methods.
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Figure 13: Comparative performance of four stereo algorithms on �ve test image pairs. The
plots show the RMS error of the computed disparities versus the standard deviation of image
noise. The error at occluded points is not included.
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Figure 14: Comparative performance of four stereo algorithms on �ve test image pairs. The
plots show the percentage of points whose absolute disparity error is greater than 1=2, versus
the standard deviation of image noise. Occluded points are not considered.
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Figure 15: Tree and town image sets.

Figure 16: Disparities for tree and town images computed by the probabilistic algorithm.

The probabilistic model clearly beats the three other methods. For small noise levels,
the occlusion boundaries are recovered almost perfectly (the percentage of bad points is 0%
in three of �ve images). Note that the algorithm recovers the \correct" disparity pattern,
even though the notion of true disparities is not well de�ned for ambiguous images such as
random dot stereograms.

We also tested our algorithms on real images. We include results of the probabilistic
method on images from the SRI's tree sequence and CMU's town sequence (see Figure 15).
We used multiple baseline stereo based on �ve images to initialize the disparity space with
the sum of four (appropriately scaled) similaritymeasures [Okutomi and Kanade, 1993]. Fig-
ure 16 shows the disparity maps computed by the probabilistic algorithm after 50 iterations,
using the following parameters: �P = 0:4; �P = 0:01; �M = 5; �M = 0:1. Note that we use a
bigger �P than before to account for slanted surfaces.
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7 Discussion

As we have shown, linear and non-linear di�usion algorithms are an attractive alternative to
the adaptive windows introduced by Kanade and Okutomi [Kanade and Okutomi, 1994]. In
its simplest form, the membrane algorithm simply requires the iterative summation of neigh-
boring matching costs, with an additional term thrown in to prevent the support region from
growing inde�nitely. The increased weighting of the central pixel relative to the periphery
is su�cient to counteract many of the artifacts introduced by the squared summing window
used in SSD. When combined with a local stopping criterion, the resulting non-linear di�u-
sion process has an adaptive support behavior similar to the variable window size algorithm.
The inclusion of additional non-linearities in the Bayesian di�usion algorithm improves the
performance even more.

In addition to their simplicity and computational e�ciency, our non-linear di�usion al-
gorithms can also handle stereograms with more ambiguity than the adaptive window SSD
algorithm. Kanade and Okutomi's algorithm is based on locally adjusting the sub-pixel
disparity estimate simultaneously with growing the window size. This presupposes that the
algorithm is somehow initialized in the vicinity of the true disparity. This is achieved in their
synthetic image sequences by using small disparities, and in their real sequences by using a
multi-frame version of the basic SSD algorithm [Okutomi and Kanade, 1993]. Image pairs
with rapidly varying textures and many potential matches such as the random-dot stere-
ograms used in our experiments could not be handled by their current algorithm. Of course,
their basic method could potentially be extended to include a standard multiple disparity
search component, but the performance of such a hybrid method is as yet unknown.

In its present form, our algorithm computes monocular rather than binocular disparity
maps, i.e., the disparity map is associated with the right image. A binocular representation
would remove this restriction, enabling the representation of occluded regions in both left and
right images. Extending our di�usion algorithms to a binocular representation is relatively
straightforward: the concept of neighbors at the same disparity is modi�ed to de�ne equal
disparities in the cyclopean representation of depth, i.e., the depth seen by a camera halfway
between the original two. Such a representation would also allow us to deal with occlusions
more gracefully, allowing occluded pixels to 
oat to the same disparity as other pixels in the
background. However, it is unclear how to extend the Bayesian algorithm, since it requires
the re-normalization of disparities along each column in disparity space.

In addition to these extensions, we also plan to study better local stopping criteria based
on improved certainty measures. We would also like to investigate multi-resolution versions
of our di�usion algorithms to help �ll in regions which have few features to match.
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8 Conclusions

In this paper, we have demonstrated that di�usion-based aggregation of support is a useful
alternative to both traditional area-based correlation and to more recent adaptive window
size-based techniques. Our algorithms are simple to implement and computationally e�-
cient, and result in better quality estimates, especially near discontinuities in the disparity
surface. The addition of local termination conditions to the basic di�usion process results in
a behavior similar to that of adaptively sized windows. Furthermore, our novel non-linear
di�usion algorithm derived from a Bayesian model of stereo matching results in markedly
improved performance. We believe that further study of the basic support and aggregation
methods in stereo matching is central to developing algorithms with improved performance
over a wide range of imagery.
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A Support function for the membrane model

The support function (i.e., impulse response or kernel) for the membrane di�usion model is
a function which can be convolved with the original input data E0 to yield the �nal value of
E. This function can be computed by setting E0 to a unit impulse E(i; j) = �(i)�(j), and
setting the r.h.s. of (6) to 0.

For the discrete case (7), this involves solving the coupled set of equations

� (�(i)�(j)� f(i; j)) +
X

(k;l)2N4

(f(i+ k; j + l)� f(i; j)) = 0 (31)

(the support function is the same for all disparity levels d). Re-writing these in the Fourier
domain, we obtain

� (1 � F (!x; !y)) +
X

(k;l)2N4

�
F (!x; !y)e

j(k!x+l!y) � F (!x; !y)
�
= 0

or

F (!x; !y) =
�

� + 4� 2 cos!x � 2 cos!y
: (32)

While the inverse transform of F (!x; !y) has no closed form solution, it is simple enough to
compute numerically (see Figure 17 for a plot).
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Figure 17: Shape of the membrane support function for � = 0:7: 3-D plot and contour plot.
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