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Abstract

Search is not inherent in the correspondence problem. We propose a representation of

images, called intrinsic curves, that combines the ideas of associative storage of images with

connectedness of the representation: intrinsic curves are the paths that a set of local image

descriptors trace as an image scanline is traversed from left to right. Curves become surfaces

when full images are considered instead of scanlines. Because only the path in the space

of descriptors is used for matching, intrinsic curves loose track of space, and are invariant

with respect to disparity under ideal circumstances. Establishing stereo correspondences

then becomes a trivial lookup problem. We also show how to use intrinsic curves to match

real images in the presence of noise, brightness bias, contrast uctuations, and moderate

geometric distortion, and we show how intrinsic curves can be used to deal with image

ambiguity and occlusions. We carry out experiments on single-scanline matching to prove

the feasibility of the approach and illustrate its main features.
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1 Introduction

The computation of stereo correspondences has traditionally been associated with search: for every

point in the left image the right image is searched for a similar point. In this paper we show that

search is not inherent in the correspondence problem. The way out of search is associative memory,

and essentially inverts the way images are represented. Rather than storing image intensities by

their position in the image, the usual array I(x), we can store image positions by their appearance:

in a sense, x(I). Then, image points that look similar are stored in the same place. If both images

are stored in the same memory, correspondences are trivially established, because corresponding

points share the same memory locations. Occlusions are also easily found as points that live alone

in some location. There are two problems with this scheme: ambiguity and disguise. Ambiguity

means that di�erent image points can look the same, so memory locations can be crowded. Disguise

occurs when corresponding points in the two images look di�erent because of the viewpoint change
or of image noise. In this case, points that should go in the same memory location do not. We

address ambiguity by using a richer description of point x than just its intensity I. We deal with
disguise by analyzing possible changes between images. This analysis lets us identify occlusions,
and tells us where to look next if a memory location is missing a point. In addition, our description
of image appearance varies continuously with x, so points that are close in the images are also
close in memory. In other words, while the memory addresses are not computed from x, they vary

continuously with x, so they preserve contiguity in the image.
In this paper we illustrate this approach by matching corresponding scanlines. Matching

entire images is conceptually simpler, because it is easier to �nd rich image descriptions, but it
is technically more complex. It also makes it harder to draw plots, so the explanation would be
obscured. We discuss the necessary modi�cations for entire images in section 5. Furthermore, we

restrict our discussion to simple image descriptors: two numbers per image point. Again, richer
descriptors simplify the problem because they reduce ambiguity, but plots become more di�cult
to draw.

Here is our representation of, say, the left scanline (solid lines in �gure 2(a)). A lowpass �ltered
version of the image intensity l(x) and its derivative l0(x) are computed everywhere (solid lines in

�gure 2 (b) and (c)) and are plotted against each other (solid lines in �gures 3 (a) and (b)). When

plotting l0 versus l we lose track of space, that is, of the coordinate x which merely parameterizes
the curve l0(l). Of course, this parameter is stored, but it plays no role in the shape of the curve.
If l(x) is replaced by a shifted replica r(x) = l(x+ d), the curve of �gure 3 (b) remains the same.

Because of this invariance to displacements, we call the curve of �gure 3 (b) an intrinsic curve.

More general geometric transformations r(x) = l(�(x)) between l and r can deform an intrinsic

curve, but the deformations can be predicted as discussed in section 3. The dashed curves in

�gures 2 and 3 show the construction of the intrinsic curve for the scanline r(x) taken from a
di�erent viewing position. Matching the two intrinsic curves in �gure 3 is a nearest-neighbor

problem, as shown in section 3.
Ambiguities cause intrinsic curves to self-intersect. Clearly, the richer the description is, that

is, the higher the dimensionality in which an intrinsic curve lives, the less likely self-intersections

are. For instance, if we use three descriptors per point, rather than two, the curve lives in a
three-dimensional space. A curve in space is much less likely to intersect itself than a curve on

the plane.
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Figure 1: Test image \Trees" from SRI - frame 1.
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Figure 2: Scanline 68 from the image of �gure 1, pixels 40{60 (solid line: frame 1, dashed line: frame 2). (a)
Intensity, (b) its lowpass �ltered version, and (c) its derivative.

Occlusions are pieces of one curve that have no corresponding piece in the other (see �gures

13 and 14). We show in section 4 that occlusions produce new loops in intrinsic curves and
consequently stand out very clearly.

Thus, stereo matching can proceed by \stapling together" intrinsic curves from the two images.

Corresponding points are nearest neighbors, and occlusions are left over as unmatched loops.
Having to \look for" the corresponding point on the other curve during stapling seems to imply

that search has crept back into our solution to stereo. In section 3, however, we show that this is
not so. In fact, a nearest neighbor lookup is a much easier problem than search. In addition, we

know what direction to look in. Finally, the nearest neighbor problem arises for reasons that are
entirely di�erent from those that caused search in the traditional approaches to stereo. Search in

these approaches was necessary because of image displacements, that is, because of variations in

the domain of the function l(x). Nearest neighbor matches are now necessary because of disguise,

that is, changes of appearance. In our approach these have to do mostly with the range of l(x).

The relation of our approach with matching techniques based on Sum of Squared Di�erences
(SSD) correlation is discussed in appendix A.
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Figure 3: (a) Intrinsic curve formation: the signals of �gure 2 (b) and (c) are plotted against each other, forming
a 3-D curve whose projection on the plane x = 0 is the intrinsic curve (b)

2 Intrinsic Curves

An e�cient procedure for matching two signals is to consider a vectorial description of the local
intensity variation at every point. Then two points from the two images are match candidates
if the local descriptions are \close" to each other. A similar idea is at the basis of the stereo
algorithms of Kass [Kas84] and of Jones and Malik [JM92a]. The local description of a signal
at a given point is the vector composed by the outputs of a bank of operators (in the case of

[Kas84] and [JM92a], linear �lters) at the same point. Multiple attributes (intensity, edgeness
and cornerness) are also considered in the approach of Weng, Ahuja and Huang [WAH92]. In this
section we de�ne intrinsic curves more generally. We also identify the geometric mappings

r(x) = l(�(x)) (1)

between the two images that are compatible with any particular way to build intrinsic curves, in
the sense that they leave the curves unaltered. In other words, intrinsic curves are invariant with

respect to compatible mappings. Finally, we investigate geometrical and topological properties of
intrinsic curves.

De�nition of an intrinsic curve. Suppose that the N operators P1; : : : ; PN are applied to the
intensity signal l(x) to produce the new signals

pn(x) = [Pnl](x)

for n = 1; : : : ; N . The vector
p(x) = (p1(x); : : : ; pN (x)) (2)

describes a curve C in RN parameterized by the real variable x:

C = fp(x); x 2 Rg : (3)

C is called the intrinsic curve generated by l(x) through the operators P1; : : : ; PN .
An example of intrinsic curve construction is shown in �gures 2, 3.
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2.1 Compatible Mappings

An intrinsic curve C does not characterize its generator signal l(x). In fact, to reconstruct l(x)

from C we need (i) to know the parametrization (3) and (ii) to invert the operators Pn. The

transformation from l(x) to C has, in a sense, lost track of space, and the space coordinate x is

now but one of in�nitely many parametrizations of C. Furthermore, the operators Pn may not be

invertible.

While any reparametrization of C leaves C unchanged, reparametrizing l(x) to l(�(x)) can in

general modify C. For instance, if where the prime denotes di�erentiation, the new components

of C after the change x! �(x) become

~p1(x) = l(�(x)) and ~p2(x) = �0(x)l0(�(x))

so that ~p(x) traces a new curve that is modulated by �0(x) in its second component.

De�nition of a compatible mapping. A mapping x ! �(x) is said to be compatible with the
operators P1; : : : ; PN if for any signal l(x) the intrinsic curve generated by l(x) is equal to the

intrinsic curve generated by l(�(x)).
The set of compatible mappings depends on the choice of the operators P1; : : : ; PN .

2.1.1 Examples

Constant Displacement. Let the operators Pn in (2) be shift-invariant:

l(x)! l(x+ d)) pn(x)! pn(x+ d) :

The constant displacements
�(x) = x+ d

are compatible with shift-invariant operators.

A�ne Mapping. The a�ne mappings of the form

�(x) = ax+ d

are compatible with the operators

pn(x) = [Pnl](x) =

�
dn

dxn
l(x)

�(n+1)=n

dn+1

dxn+1
l(x)

de�ned wherever dn+1

dxn+1
l(x) 6= 0. This is proved immediately by noting that

dn

dxn
[l(ax+ d)] = an[

dnl

dxn
]l(ax+ d) :
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Semi-Commutative Mapping. If the mapping x! �(x) is regarded as an operator A applied

to l(x),

[Al](x) = l(�(x)) ;

then �(x) is compatible with operators P1; : : : ; PN if there is an operator D such that for every n

we have

PnA = DPn

where D is a di�eomorphism independent of n. In fact, in this case, the mapping x! �(x) maps

every pn(x) to [DPn](x), so the intrinsic curve is simply reparameterized. Both previous examples

are special cases of semi-commutative mappings.

Thus, intrinsic curves can be regarded as invariants with respect to the set of compatible

mappings, and provide a more general description than \classical" invariants such as function mo-

ments [BM90],[SB92],[Man94],[SC94]. A�ne mappings are a popular model for the transformation

between the two images of a stereo pair [KVD76],[Kan84],[CV92], and shift-invariant �lters are of-
ten used for image descriptors [Kas84],[JM92a],[JM92b],[Mal89],[MP90]. The fact that in general
a�ne mappings are not compatible with shift-invariant operators is therefore important. This was
pointed out in [Kas84], where a clever analysis of the e�ect of �ltering a signal undergoing a�ne
geometrical distorsion is carried out. From the results of [Kas84], we can assume that the intrinsic

curves are approximately invariant with di�eomorphisms x ! �(x), so long as the supports of
the �lters' kernels are narrow and �(x) is close to the identity function. In the remainder of this
section we assume that the mapping �(x) is a di�eomorphism (which, in particular, implies that it
is monotone and continuous). The case of discontinuous or not one-to-one �(x) will be considered
in section 4, where we treat occlusions. In addition, we assume throughout this paper that both

the input signals l(x); r(x) and the operators Pn are continuous, so that the intrinsic curves are
connected.

If the transformation between left and right image were just a mapping �(x) compatible with
the operators P1; : : : ; PN , stereo matching would be nearly trivial. In fact, to determine �(x) from
the observation of l(x) and of r(x) = l(�(x)), intrinsic curve are �rst computed from the two
signals. For each signal, the parametrization (3) is stored, so that every point on either curve

can be traced back to its image coordinate x via table lookup. Because of compatibility, the two
intrinsic curves coincide. For every point p that belongs to both of them, the corresponding image

coordinates are a match, with the sole exception of points where the intrinsic curves self-intersect.

Self-intersections are treated in chapter 3 below.
In reality, the left and right images in a stereo pair are related in a more complex way. First, the

actual mapping �(x) is at best only approximately compatible with any given set of intrinsic curve
operators. Second, photometric distortions [Kas84] �(l(x)) combine with geometric distortions

[Kas84] l(�(x)), so that the range of l is a�ected in addition to its domain. Third, noise corrupts
both l(x) and r(x). Fourth, macroscopic phenomena such as occlusions and specularities must be

dealt with in stereo matching. Photometric distortions and noise are discussed in section 3, while

section 4 shows how occlusions can be e�ectively detected by using intrinsic curves.

In the remainder of this section, however, we con�ne ourselves to single intrinsic curves, and

we show that not every curve in RN can be an intrinsic curve. In particular, for N = 2 and with

p1(x) = l(x) and p2(x) = l0(x) ;
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intrinsic curves must satisfy quite a few geometrical an topological properties, as shown in the

next subsection.

2.2 Geometrical and Topological Properties of Intrinsic Curves

Our de�nition of intrinsic curves is quite general. Their properties depend on the characteristics

of the operators Pn in (2). In this section, we concentrate on the case N = 2 with the following

choice for these operators:

p1(x) = [P1l](x) = l(x) and p2(x) = [P2l](x) = l0(x) (4)

where l0(x) is the derivative of l with respect to x. Vector p(x) is thus composed by the �rst two

terms of the Taylor expansion of l(x) around x, and each point on the intrinsic curve generated

by l(x) represents a description of the local behavior of l(x). This choice satis�es the criteria of
richness, compactness and sensitivity discussed in [Kas84], but is not stable, as the di�erentiation
is sensitive to noise. To overcome this problem, in the practical implementation of the algorithm
we will �rst low-pass �lter the input signal to reduce noise. However, in this section we ignore the
presence of this �lter and assume that its e�ect on the signal is small. In other words, we assume

that the frequency response of the �lter is at on most of the spectral support of the signal.
With the choice (4) of operators, intrinsic curves are de�ned on a plane, reminiscent of the

phase space of systems theory [Arn90]. The abscissa of a point p(x) corresponds to a value l(x),
while the ordinate corresponds to l0(x). Note that the spatial coordinate x is lost when l0 is plotted
versus l. We assume for now that the �rst and second derivative of l(x) exist for every x, so that

the curves do not have cuspidal points. Let l(x) generate curve C, and assume that a given point
p(x) is traversed just once. We can de�ne an orientation at p by computing the unit-norm tangent
t(p) of the curve:

t(p) =
(l0(x); l00(x))q

(l0(x))2 + (l00(x))2
: (5)

The values of t(p) depend on the position of p as follows:

� If p lies on the upper open half-plane, where l0(x) > 0, t(p) assumes values in the right open
half-circle f(p1; p2); p

2
1 + p22 = 1; p1 > 0g. When p lies on the lower open half-plane, t(p) is

in the left open half-circle.

� If p lies on the axis of the abscissas, where l0(x) = 0, then t(p) = (0;+�1). In other words,

when crossing the axis of the abscissas, the curve tangent forms an angle of ��=2 with it.

These rules on intrinsic curves are schematically represented in �gure 4. Note that if l0(x) =
l00(x) = 0 (e.g., in a segment where the signal is constant), p is singular with respect to x [Str88].
In such a case, the tangent can be de�ned by continuity. On the other hand, an intrinsic curve

can be singular only on the axis of the abscissas.

>From these rules it follows that intrinsic curves are naturally oriented clockwise: they are
traversed left-to-right in the upper half-plane and right-to-left in the lower. Furthermore, any loop

must intersect the axis of the abscissas. We will have more to say about loops in the sections to

come.
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Figure 4: The allowed directions for the tangent of an intrinsic curve [l; l0]. The dashed segments represent the
boundaries of the admissible regions for the tangent.

3 Stapling Intrinsic Curves Together

We have seen in section 2 that two signals l(x) and r(x) related by a compatible mapping generate
the same intrinsic curve, and stereo matching becomes a trivial lookup problem. Unfortunately,
the hypotheses that lead to this simple situation are seldom satis�ed in practice. In this section
we �rst discuss the main deviations from the ideal case and propose a �rst-order model for the
discrepancies. This model accounts for stereo disparity, image shrinkage or dilation, brightness

bias, contrast ampli�cation, and noise. We show that both brightness bias and noise can be
reduced by �ltering, while stereo disparity is exactly accounted for by intrinsic curves. We then
argue that contrast ampli�cation dominates the remaining deviations, and we describe an intrinsic
curve-matching method tuned to cope with this problem.

Both inaccuracies and gross errors can occur during any matching procedure. For inaccuracies,
we �rst show that intrinsic curves lead naturally to a resampling of the images that is denser where

matching is more reliable. Then, we analyze the disparity errors related to image shrinkage or
dilation and to a residual brightness bias that may be left even after pre�ltering. Gross errors,
on the other hand, are caused by ambiguous image regions that look similar to each other. We
propose a method for addressing ambiguity which, contrary to most previous approaches, does

not rely on disparity values, and can therefore be applied before any disparity is computed.

3.1 Deviations from the Ideal Case

Intrinsic curves of corresponding scanlines l(x) and r(x) related by a compatible mapping

r(x) = l(�(x)) (6)

are ideally identical. In reality, however, they can di�er for the following reasons.

No mapping. In certain cases, �(x) may not even exist, such as when regions of l(x) or r(x)
are occluded. Occlusions are treated in section 4.
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Incompatible mapping. The mapping x ! �(x) that relates l(x) and r(x) as in (6) is not

compatible with respect to the operators P1; : : : ; PN that are used to build the intrinsic curves.

For instance, a�ne transformations x! ax+ d are not compatible with the operators de�ned in

section 2.2, p(x) = (l(x); l0(x)). In fact, if L is the intrinsic curve generated by l(x), the intrinsic

curve R generated by r(x) = l(ax+ d) is

R = f(p1; ap2) : (p1; p2) 2 Lg (7)

which is a vertically expanded (a > 1) or compressed (a < 1) version of L.

Photometric distortion and noise. The constant-brightness hypothesis implied by relation

(6) is not satis�ed. A convenient model that accounts for both geometric and photometric distor-

tion is the following (see [HS92] for a general discussion of related issues):

r(x) = B + Cl(ax+ d) + n(x) : (8)

In this model,B and C represent the di�erence in brightness and contrast between the two images,
and are either constant or varying slowly with respect to the dynamics of the signal. The term
n(x) represents \noise", that is, any discrepancy independent of the signals. The terms a and d

represent geometric distortion and, in particular, d is the inter-frame disparity we are after.
Let us consider the e�ects of B and C alone (that is, assume n(x) = 0 and a compatible �(x)).

The intrinsic curve R generated by r(x) = B + Cl (�(x)) with compatible �(x) is

R = f(Cp1 +B;Cp2) : (p1; p2) 2 Lg : (9)

Hence, transformation (8) induces an isotropic expansion of the curve by a factor C and a dis-
placement by B along the horizontal direction. Note that the tangent at corresponding points of

the two curves is the same.
The e�ects of both brightness bias and noise can be neutralized by preprocessing both signals

with a zero-mean �lter with an otherwise lowpass frequency response. In order to reduce the e�ects

of the multiplicative term C, Kass [Kas84] suggested to work on the logarithm of the intensity.

Then, a second linear �lter would be capable of suppressing the di�erence of contrast. This
idea underlies the theory of homomorphic signal processing [OS75]. However, if we have already
extracted the mean from the signals in order to reduce the e�ects ofB, then we have to compute the

(complex) logarithm of negative values, and address the problem of \phase unwrapping" [OS75].

We choose a di�erent route. In fact, after testing several real-world images, we have observed

that the shape of intrinsic curves is altered mostly after photometric distortions, for example

as a consequence of the di�erent viewing position of the two cameras, optical attenuation and
sensitivity of the image sensors [VP87], [Kas84], [WAH92]. Large geometric distortions that

give raise to vertical dilation or shrinking of the intrinsic curve are less likely to happen than
photometric distorsions. Such an observation is in accordance with the results of Arnold and

Binford [AB78]. Consequently, we believe that the terms B and C in our model are dominant

over the geometric distortion related to a.
We therefore design our algorithm to \staple" together the two curves (that is, to determine a

pointwise correspondence between L and R) so that it does not su�er from contrast di�erence. We
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Figure 5: The radial line passing through point p (circled) in L(solid line). The match candidates are the
intersection of the radial line with curve R (dashed line).

thereby avoid the need for homomorphic preprocessing. This leaves image dilation or shrinking

(modeled by the term a in equation (8)) and a possible leftover intensity bias as the only terms of
our model (8) that have not been accounted for by our method. We analyze their e�ects in section

3.3. More macroscopic discrepancies, related to image ambiguity and occlusions, are addressed in
sections 3.4 and 4.

3.2 Stapling: Nearest Neighbor Along the Radial Line

In this section we describe the basic idea of our algorithm to \staple together" two curves. In the
previous discussion, we concluded that brightness bias and noise can be reduced by pre�ltering.
Thus, the most important cause of discrepancy, other than occlusions and ambiguity, is the bright-
ness ampli�cation term C in our model (8). The \stapling" procedure described in this section
accounts for this ampli�cation exactly.

Assume that the geometric distorsion between signal l(x) and signal r(x) is compatible. A
multiplicative photometric constant C induces isotropic expansion of the intrinsic curve. Conse-
quently, a point p of the intrinsic curve L generated by l(x) corresponds to a point pcorr of the
intrinsic curve R generated by r(x), which is collinear with p and the origin. This suggests the
following algorithm: choose the candidate matches to p among the intersections of line fsp; s 2 Rg

with R. We will call such a line the radial line. An example of radial line is shown in �gure 5.
Other criteria have been employed in [Kas84] and in [JM92a] to determine the \closest" match.

The algorithm of Kass chooses the points on R which are closest in the L2 norm to p, while Malik

and Jones looks for the closest points in the L1 norm. We can visualize such procedures through
our intrinsic curves. In the �rst case, one would expand a circle around p until it bumps into R,
while in the second case the �gure being expanded would be a diamond. Our previous arguments

prove that, at least where the di�erence of contrast is the principal source of distortion, our

technique provides the most accurate match.
It is important to realize that \searching" along the radial line is essentially di�erent from

\searching" in conventional signal matching algorithm | this is why we use term \stapling"
instead of \search" here. In fact, in an ideal situation, no search is required, as the two intrinsic

curves are identical. The need for stapling stems from departures from the ideal case due to

photometric and a�ne geometric distorsions. On the other hand, traditional stereo matching
algorithms have to perform a search even in the ideal case.
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Looking for a match on the radial line is a nearest neighbor problem. In our implementation,

intrinsic curves are represented as cubic splines, and nearest neighbors are found by looking them

up among the elements of a �ne sampling of the splines. A more e�cient and precise (but more

elaborate) algorithm can be written directly in terms of the polynomial spline segments by using

standard techniques of computational geometry. More speci�cally, the endpoints of the splines

representing each curve are stored into a sweep list (with a sweeping half-line being rotated around

the origin). Setting up this list requires O(n log n) time. The set of intersections of a given

line through the origin with each curve can then be found by binary search in O(log n) time.1

In addition, the practical time complexity of this algorithm can be reduced by using hashing

techniques, based on the fact that the two intrinsic curves can be expected to be close to each

other, and continuation methods, relying on the continuity of the intrinsic curves.

Regardless of the algorithm used to determine the nearest neighbors, the uniform sampling of

intrinsic curves yields a representation of images that emphasizes \busy" regions, where matching
can be expected to be more reliable than in \dull" regions. To see this, assume that the trajectory
p(x) goes through the points of the segment C(p1;p2) of curve delimited by p1 and p2 just once,
and let p(x1) = p1;p(x2) = p2. Then the arc length of the segment is given by

arc length C(p1;p2) =
Z x2

x1

q
(l0(x))2 + (l00(x))2dx : (10)

Thus for a given distance jx2 � x1j in the image we expect longer arc lengths if the curve lies far
from the axis of the abscissas (i.e., if l0(x) is large). Conversely, a segment of the curve with a

given arc length represents a segment of the signal l(x) which is shorter as the curve lies farther
from the axis of the abscissas.

This observation suggests a sort of \adaptive" sampling paradigm for l(x). Assume to sam-
ple the curve C at constant-width intervals, that is, by keeping the arc length of the segments
C(pi;pi+1) constant. This procedure corresponds to sampling signal l(x) on a nonuniform grid:

the grid will be less dense in areas characterized by small values of l0(x) and l00(x) (where the
signal is \at"), and denser if l0(x) and l00(x) are larger (where the signal \busyness" is higher).
This looks like a useful sampling strategy for signal matching. In fact, it is well known (see e.g.
[HS92]) that a match is expected to be less robust (with respect, for example, to noise and to

quantization errors) in regions where the signal is \at". The adaptive sampling procedure leads

to concentrating estimates in reliable areas. As an example, consider the signal of �gure 6 (a),
corresponding to the lowpass �ltered version of a scanline segment from �gure 1. The correspond-

ing intrinsic curve is shown in �gure 6(b). If we sample the curve with constant arclength period,
we induce a nonuniform sampling of the signal, as shown in �gure 6 (c). Samples are denser where

the signal busyness is higher, less dense where the signal is at.
We can extend relation (10) to curve segments containing loops by parametrizing the curve

with the arc length s de�ned by p(s) = C(p0;p) for some starting point p0. Note that s is
monotone with x: this sense of traversal is the only \memory" left of space.

1We thank Leonidas Guibas for suggesting this algorithm.
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Figure 6: A signal sampled on a uniform grid (a) and on an nonuniform grid (c) induced by the uniform arclength
sampling of the intrinsic curve (b).

3.3 Matching Inaccuracies

The stapling technique described in the previous section accounts for di�erences in contrast (image
ampli�cation) between the left and the right image. However, if other kinds of photometric

distorsion and noise are present, our match will su�er from errors. Match errors typically fall into
one of the following categories:

1. Inaccuracy: we match a point x0 of signal l(x) with a point belonging to a \small" neigh-

borhood of the corresponding point of r(x).

2. Mismatch: we match a point x0 of signal l(x) with a point x1 of r(x) which is entirely
incorrect, but such that the \local description" of r(x) around x1 is similar to the local

description of l(x) around x0. Mismatch is equivalent to local ambiguity, which must be
resolved at a higher level.

For example, in the case of correlation-based algorithms, inaccuracy corresponds to small devia-
tions of the correlation surface peak, while mismatch corresponds to wrong peak selection [BAR93].
Similar considerations apply to stapling. Noise may change the shape of curve R in such a way
that the stapling is not accurate, or may induce new potentially dangerous match candidates, i.e.,

increase ambiguity. In certain cases, the radial line may not even cross R. We address the problem

of the correct choice among matching candidates in section 3.4. In this section, we analyze the
e�ect of photometric and geometric distorsion on the match accuracy in a simple example.

Let
l(x) = sin!x ; r(x) = B +A sin (!(ax+ d)) (11)

with B 6= 0 and A; a 6= 1 (�gure 7). Signals l(x) and r(x) generate the intrinsic curves (ellipses,

�gure 8)

L = f(p1(x); p2(x)) : p1(x) = sin !x; p2(x) = ! cos!xg (12)

R = f(p1(x); p2(x)) : p1(x) = B +A sin (!(ax+ d)) ; p2(x) = Aa! cos (!(ax+ d))g : (13)

Signals l(x) and r(x) are periodic. Therefore, the intrinsic curves they generate are closed, and

in�nitely many image points x map into the same curve point p. To overcome this ambiguity, we

11
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Figure 7: (a) Signal l(x) (solid line) and r(x) (dotted line) of our example. The correct match is represented by
the solid segment, the estimated match by the dashed segment. (b) Images that generate l(x) (upper half) and
r(x) (lower half).

restrict our attention to points belonging to a period of the sinusoids including x = 0, so that the

correspondence becomes one-to-one. Namely, point p = (p1; p2) of L corresponds, for l(x), to

x =
arcsin(p1)

!
(14)

while point p = (p1; p2) of R corresponds, for r(x), to

x =
arcsin

�
p1�B

A

�
� !d

!a
(15)

Relation (11) maps point x relative to l(x) into the \correct" point

xcorr = (x� d)=a (16)

relative to r(x). For a given point p of L, corresponding to a certain x via (14), let fp̂g be the

points (if any) of R which are collinear with p and the origin. Our candidate estimates fx̂g for

xcorr are obtained applying (15) to fp̂g. Note that relation (15) works only for this example: in
general, the mapping p! x is obtained using a lookup table, as speci�ed in section 3.

Let p belong to the �rst quadrant (p1 > 0; p2 > 0), and let  = p2=p1 be the angular coe�cient

of the radial line passing through the origin and through p. The radial line crosses R in points

fp̂g with

p̂1 =
B �

r
B2 + (A2 �B2)

�
1 + 2

a2!2

�

1 + 2

a2!2

(17)

if the term under square root is not negative. It is easy to convince oneself that the positive

instance of the square root is the correct choice for the match in our case. If the term under

square root in (17) is negative, no match for p is provided by our algorithm. This circumstance is
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Figure 8: Intrinsic curves generated by signals l(x) (solid line) and r(x) (dotted line) of �gure 7. The dashed line
represents the radial line across p.

avoided if jAj > jBj, a condition that we will assume to be satis�ed. Using (17), we see that our
algorithm matches l(x) at point x with r(x) at point x̂, with

x̂ =

arcsin

0
BB@

B+

r
B2+(A2

�B2)

�
1+

2

a2+!2

�

A

�
1+

2

a2+!2

� � B
A

1
CCA� !d

!a
: (18)

Figure 7 (a) shows signals l(x) (solid line) and r(x) (dashed line) for A = 1:5, B = 0:8, a = 1:5,
! = �=6, d = 2. The two signals corresponds to the brightness intensity of horizontal slices of

the images shown in �gure 7 (b). Choosing point p = (0:253; 0:506) on curve L (corresponding to

x = 0:489), the radial line has angular coe�cient  = 2. Curves L and R are shown in �gure 8,
together with the radial line. The line intersects R in p̂ = (0:582; 1:176), which corresponds to
x̂ = �1:687. The correct match would be in pcorr = (1:180; 1:140), corresponding to xcorr =

�1:007. Figure 7 (a) shows the correct match (indicated by the solid segment), and the estimated

one (dashed segment).
Due to the terms a 6= 1 and B 6= 0, the match produced by our algorithm su�ers from error

jx̂ � xcorrj = 0:680 units (for comparison, the period of the sinusoid l(x) is twelve units). The
algorithms of Kass [Kas84] and of Jones and Malik [JM92a] (which look for a point of R with the

minimum L2 or L1 distance to p), give, in this instance, higher disparity errors, as one can verify

by observing �gure 8.

We can measure, for the proposed example, the dependence of the relative error erel
def
= jx̂�xcorr j

jx�xcorr j

on the photometric and geometric distorsion parameters. We have seen that the system is free

from errors in the cases of constant displacement and even in the presence of di�erence of contrast
(C 6= 1) between the two images. It remains to determine the dependence of erel on a�ne
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Figure 9: Relative match error as a function of (a) the di�erence of brightness B and (b) a�ne geometric distorsion
a between the two signals of �gure 7.

geometric distorsion (a) and on the di�erence of brightness (B). For simplicity, we only show the
dependence of erel on B and on a separately. The resulting functions are shown in �gure 9 (a) and
(b) respectively. Note that the errors depend on the point chosen for the match; in our simple
example, we again consider the match of sinusoid l(x) at point x = 0:489.

Figure 9 (a) indicates that the relative error depends heavily on the di�erence of brightness

B between the two images. For example, if the right image is 20% brighter than the left image,
the relative match error will be approximately 20%. This result should not be surprising: our
algorithm is tuned to images with di�erent contrast (corresponding to an isotropic expansion
of curve R with respect to L), but is sensitive to the di�erence in brightness, which induces a
displacement of R. However, as noted above, the brightness o�set can be e�ectively reduced via

a suitable preprocessing (zero-mean notch �lter), and the term B exists only as a residual.
The relative error resulting from geometric a�ne distorsion (�gure 9 (b)) is more acceptable,

as it exhibits saturation and is never greater than 10%. Geometric a�ne distorsion (a 6= 1)

induces the expansion of the intrinsic curve R along the vertical direction. Vertical lines, rather
than radial, would solve this problem, but at the expense of poor performance under di�erence of

contrast (C 6= 1). As mentioned before, the di�erence of contrast between the two images seems
to be the dominant source of distorsion for intrinsic curves, and therefore we stick to our choice

of radial line.

3.4 Resolving Ambiguities

In general, the trajectory p(x) may go through a point p more than once. This is the case
when the intrinsic curve self-intersects in p (see Fig. 3 (b) and, in fact, most of the examples of

intrinsic curves in this paper). Then, more than one values for �(x0) is feasible from our local
analysis. In other words, the local representation is not able to uniquely identify the signal in the

neighborhood of x0. Hence, to correctly match the two signals at point x0, it is necessary to take

into account the contextual information available on �(x). A self-intersection of the intrinsic curve

14



generated by l(x) means that the local description (as given by operators Pn) of l(x) is the same

at more than one point x | in other words, we have to cope with local ambiguity. The density

of self-intersections of the curve depends on (i) the choice of operators Pn and (ii) the number

N of such operators. As a matter of fact, increasing the dimensionality of the local description

should provide a richer representation (as long as the operators are independent), as noticed also

in [Kas84] and [JM92a]. The intrinsic curve representation makes such a notion apparent from a

topological standpoint; for example, using only two operators, the intrinsic curves lie in a plane,

and self-intersections are to be expected. With three operators, the curves live in a 3-D space,

where it is more likely that a path never crosses itself. A \pathological" case is when the operators

Pn are shift-invariant, and l(x) is periodic. In such a case, the intrinsic curve is closed, and in�nite

instances for �(x) are available. This fact reects the inherent ambiguity in the match of periodic

signals.

In addition to these \exact" forms of ambiguity, in which an intrinsic curve goes over itself
precisely, approximate ambiguity may occur, in which the curve loops close to itself. Regardless of
which ambiguity is present, stapling must determine a pointwise correspondence between intrinsic
curves L and R. Our algorithm chooses as candidate matches fp̂ 2 Rg to point p 2 L, the

intersections of the radial line passing through p. More than one candidate is possible, as many
points of the same image may share similar local description. Among them, we have to pick the
\correct" match. In addition, we would like to assign each match a con�dence measure. This is
an important feature of any matching algorithm which gives dense measurements. In fact, due to
the noise and to local signal characteristics, we cannot expect that every point admit a reliable

match. Hence, we should provide the higher-level parts of the system with con�dence measures
on the computed disparity �eld.

Resolving the ambiguity means selecting one match from fp̂g. This can be done only from
a global standpoint: we select a suitable \path" of matches from the sets of candidate matches
relative to each sampling point of l(x). In the literature, ambiguity is typically resolved by imposing

constraints on the disparity �eld, such as uniqueness, ordering (or monotonicity [GLY92]), and
smoothness [MP76],[Gri85], [PMF85],[BB81],[OK85],[MN85]. Note that also other algorithms that
make use of vectorial local descriptions ([Kas84], [JM92a]) need to impose constraints on the

disparity �eld: the notion of \closeness" in the representation space is not itself su�cient for a
reliable match.

The main novelty of our approach is that disparity values never enter our procedure to solve

the ambiguity. In fact, we work only on intrinsic curves, which have lost track of space: the inverse

mapping p! x is determined only after the matches have been assigned.
The �rst constraint we impose to resolve ambiguities comes naturally from the consideration

that, in ideal conditions (no photometric distorsion, compatible geometric distorsion), curves L
and R are identical. Let s be the arc length parameter on L (see (10)), and let �s be the length

of the arc C(p1;p2) between two sampling points p1;p2 on L. Then, we expect the length of

the (oriented) arc C(p̂1; p̂2) on R to be \close" to �s. Note that we still rely on the constraints
of unicity and monotonicity, as parameter s is monotone with x, but we do not need any other

quality of the disparity �eld. In other words, we simply expect that, while p moves along L, the
corresponding point p̂ moves similarly on R. The important point here is that p and p̂ di�er not

because of the disparity, but because of noise and distorsions. Hence we always have to look for

the \closest similar" point on R that satis�es this constraint on length.
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Figure 10: The correct match to p (circled) on the radial line is not the closest.

The previous observation suggests a �rst simple algorithm: assume that p̂1 is the correct match

to p1. Then, among the candidate matches for p2, choose the one such that the length of the arc
connecting it to p̂1 is closest to �s. This procedure, however, su�ers from two main shortcomings.
First, we need some evidence that p̂1 is actually a correct match. Second, we are not guaranteed
that among points fp̂g there is the correct match to p2. In fact, if p2 corresponds to a point

which is occluded in the right image, no match to p2 is available. Moreover, it may happen that,
due to noise, the correct match is \skipped" by the radial line. This last circumstance, although
very sporadic, should be taken into account.

To circumvent these problems, we use a local measure of the quality of the match. We consider
here two attributes of a candidate match (p; p̂) that can be combined in a heuristic way to produce

a measure of the local \goodness" LG(p; p̂) of the match. One property is the Euclidean distance
between p and p̂ (which corresponds to the distance in the representation space considered in
[Kas84]). Although, as suggested by �gure 10, the correct match is not necessarily the closest to p
(see also the example of �gure 8), most of the time we expect matching points to be close to each
other. The second attribute is the di�erence between the tangents of L at p and of R at p̂. As

noted previously, in the case of photometric distorsion (r(x) = B + Cl(�(x)), compatible �(x)),
the tangent of the curves at corresponding points are the same. Hence, in general we expect a
correct match to satisfy such a property to some extent. Practical tests have shown that this last

clue is actually very powerful.
In addition to using these quality measures, we also adhere to the common practice of imposing

an upper bound on the allowable displacement. In fact, intrinsic curves computed from an entire

scanline are very complicated. This is because our intrinsic curves are generated by using a very

simple local signal descriptor | the signal itself and its derivative. Matching these curves in their
entirety would be too error prone, so scanlines must be segmented before they are matched. In

our experiments we use about 30 pixels at a time, and the maximum allowed displacement must
be small with respect to this width. By using richer descriptors (like in [Kas84] and [JM92a]),

intrinsic curves live in spaces with more dimensions, and longer segments of the signals can be

matched. To cope with large displacements, multiresolution techniques can also be exploited
[Gri85],[WAH92].

In conclusion, our ambiguity resolution algorithm works on 30-pixel scanline segments, and
proceeds as follows. In the �rst step, match candidates that are not \close and similar" enough,

as measured by function LG, are eliminated. Then, the remaining match candidates, fp̂1g for p1,

fp̂2g for p2, and so forth, are grouped into \coherent" segments: each segment (p̂i1; p̂
i
2; : : :) (where
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Figure 11: Sequence \Trees" (below white line: frame 1, above white line: frame 2) with the computed disparity
�eld relative to scanline 80, and two samples of matching spaces.

p̂ij is an element of fp̂jg) is such that the length of the oriented arc C(p̂ij; p̂
i
j+1) is minimum (but

positive). In other words, points (p̂i1; p̂
i
2; : : :) follow each other closely in some arc of the oriented

curve R. A segment is terminated when (i) there are no candidate match points available to
continue the ordered sequence or (ii) the length of the arc to any next match point is larger than
some �xed bound (i.e., we are skipping a large part of the curve).

Our �nal sequence of matches is obtained by selecting the \correct" segments from our list.
To this purpose, we compute the average goodness (using function LG) of the points in each

segment, and determine a few segment matches of high quality. Then we complete our match
sequence by selecting the segments that are closer (on R) to these reliable seed segments. This

simple heuristic procedure for stapling the two intrinsic curves together has given satisfactory

results in our experimental tests, summarized in �gures 11 and 12.
We have chosen two couples of outdoor images, namely two successive frames of the test

sequence \Trees" (�gure 11, see also �gure 1) from SRI, and two succeding frames of sequence

\Library" (�gure 12), from the movie \Wings of Desire" directed by WimWenders. In both cases,

the camera was moving roughly horizontally (i.e., parallel to the scanlines).
We have preprocessed the images with a Gaussian �lter of variance �2 = 1 pixel in the case of

sequence \Trees" and �2 = 3 pixel in the case of sequence \Library". The average intensity value,
computed along the whole scanline, has been subtracted from each frame to reduce brightness

di�erence between the images to be matched (see section 3). The derivative of the signals has

been computed using a simple forward{backward di�erence scheme.

The left part of sequence \Trees" exhibits a very articulated disparity �eld, induced by the
sharp depth discontinuities along the boundaries of the branches of the trees. The central part
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Figure 12: Sequence \Library" (below white line: frame 1, above white line: frame 2) with the computed disparity
�eld relative to scanline 100, and three samples of matching spaces.
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of �gure 11 shows the corresponding image segment: the half image below the white line belongs

to the �rst frame, the one above the white line belongs to the second frame. The disparity �eld

corresponding to scanline 80, pixels 1{100, is shown above the image. No post{processing (e.g.,

�ltering) has been applied to the results. Note that in some parts we have produced a dense

disparity �eld while in other ones no measurement was available. This is due to the following

reasons: (i) the intrinsic curves are sampled with uniform arclength period, which induces the

nonuniform sampling period of the measurement �eld, and (ii) the disparity is not computed

where the \goodness of match" function LG gives too small a con�dence. As pointed out in

section 3.2, dense measurements are characteristic of high signal busyness regions, where disparity

estimates are more reliable. Figure 11 shows that the computed disparity �eld follows the depth

discontinuities of the scene very tightly, as can be checked in the two search planes [OK85] (also

called matching spaces [GLY92]) shown in the rightmost part of the �gure.

Sequence \Library" (Figure 12) is characterized by a wide disparity range (from less than
0.5 pixels corresponding to the back of the room, to approximately 10 pixels at the edge of the
bookshelves). The measurements are from scanline 100, pixels 1{700. Both the disparity jump
corresponding to the standing person's head (pixels 260{300) and the ramp corresponding to the

books on the shelf, are well tracked by our system. Note that the variance of the estimates is not
negligible, as the images are quite noisy. However, the measurements are very dense, and a simple
post{processing (e.g., median �ltering [JM92a]) would \clean" e�ectively the computed disparity
�eld.

4 Occlusions Stand Out

Any stereo algorithm must cope with occlusions. On one hand, occlusions clearly mark depth
boundaries, and can be pro�tably exploited for object recognition, motion segmentation, and
adaptive �ltering. On the other hand, occlusions are important for correctly driving the match

process: a stereo technique that does not take occlusions into account explicitly will su�er from
serious inaccuracies and mismatches near object boundaries | the most \interesting" locations.

A number of researchers have dealt with the problem of occlusions in stereo, among whom we
mention Toh and Forrest [TF90], Little and Gillet [LG90], Jones and Malik [JM92a], Belhumeur

and Mumford [BM92], Geiger, Ladendorf and Yuille [GLY92], Intille and Bobick [IB94]. The

robust and accurate detection of occlusions, however, seems still an open problem.
We will call left occlusion a situation where points of the left image l(x) do not have counterparts

in the right image r(x) (see �gure 13(a)) and right occlusion the symmetric case (see �gure 14(a)).
Let us examine the e�ect of occlusions on the disparity �eld, and what problems we should

expect (see also [GLY92], [IB94]). Assume that we are trying to match every point of l(x) with

some point of r(x).

1. Left occlusions: the disparity is not de�ned here. The problem is to avoid false matches, or
false positives [Kas84]. Ambiguity is the dangerous factor.

2. Right occlusions: the disparity �eld is discontinuous. Problems arise if we are using smooth-
ing [MP76] or disparity gradient [PMF85] constraints on the disparity �eld to resolve ambi-

guity, as such constraints are not satis�ed here.
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Figure 13: Scanline 95 from the image of �gure 1, pixels # 74{94 (solid line: l(x), dashed line: r(x)). (a)
Intensity. The part of l(x) form pixel 79 to pixel 81 is not matched by r(x). (b) Intrinsic curves. The arc of L
between the two circled points is not matched in R.
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Figure 14: Scanline 92 from the image of �gure 1, pixels 18{38 (solid line: l(x), dashed line: r(x)). (a) Intensity.
The part of r(x) form pixel 23 to pixel 25 is not matched by l(x). (b) Intrinsic curves. The arc of R between the
two circled points is not matched in L.

Intrinsic curves are a novel and pro�table framework to detect occlusions. In fact, a left
occlusion manifests itself as an arc of curve of L which is not matched by R, and similarly does
a right occlusion. Just before and just after the unmatched arc of curve of L in a left occlusion

(or of R in a right occlusion), the curves are expected to coincide. This situation appears clearly

in �gures 13(b) and 13(b), where the intrinsic curves of the signals of �gures 13(a) and 13(a) are
depicted: occlusions stand out as \anomalous" arcs of one of the intrinsic curves.

A promising clue for detecting occlusions, currently under research, is the analysis of the

topological characteristics of the two intrinsic curves. For example, both curve L in �gure 13(b)

and curve R in �gure 14(b) contain a loop in correspondence of the occluded area, which is not

matched by the other curve. This is actually a necessary condition in order to add a new segment

to a curve, if the assumptions on intrinsic curves described in section 2.2 are satis�ed.
In general, the presence of an unmatched loop is not by itself su�cient evidence of occlusion.

Loops may be produced sometimes by noise, and we must look for a more robust topological
characterization. However, it is clear that an occlusion manifests itself as a \perturbation" of

only one of the two intrinsic curves in a limited region. It seems therefore that the detection and

analysis of occlusions should be easier in this setting, rather than observing the pro�les of the two
signals in their \natural" spatial domain. In other words, the phase space is the appropriate place

20



to look whether two signals match | or they don't.

5 From Scanlines To Images

In this paper we have made the point that search is not inherent in the stereo correspondence

problem, but just in the usual way of approaching it. Our notion of intrinsic curves is a clean

and useful way to think about stereo, and leads to practical matching algorithms. To the idea

of associative storage and retrieval of images, intrinsic curves add the powerful constraint of

connectedness. We do not propose our matching algorithm as the ultimate implementation of

these concepts, but just as evidence that the approach is feasible and can deal with real, noisy

images with uctuations in brightness and contrast as well as a moderate amount of geometric

distortion. Intrinsic curves are also a useful tool for the detection of occlusions, one of the most

important problems in stereo matching, and lead to a natural resampling of images that emphasizes
the \busier" regions where matching is more reliable.

Better algorithms can be devised, richer or more stable descriptors can be studied, occlusion

detection methods can be proposed even in the single-scanline domain. We hope that the concept
of compatible mappings elucidates the basic issues in the design of local image descriptors. Exten-
sions to full images are at the same time conceptally straightforward and technically challenging,
and are likely to improve performance because images have richer descriptors than scanlines. In
fact, even if we restrict ourselves to the image intensities and their �rst derivatives, we already go

from two to three descriptors. But descriptors can be made even richer through the concepts of
local frequency analysis and multiresolution descriptions, both active areas of research in computer
vision today.

Intrinsic curves, or surfaces, or manifolds can presumably also be tracked usefully, a direction
of research that we are starting to investigate. Rather than looking at separate snapshots, we plan
to track curves as a camera moves. Intrinsic curves, under ideal circumstances, do not move at

all, so we expect tracking to be much easier than it is when done directly in the image domain.
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A Relation with SSD-Based Matching

In this Appendix, we show a possible applications of signal description via intrinsic curves to

correlation{based matching techniques. We consider here the SSD (Sum of Squared Di�erences)

criterion, which can be easily extended to other similarity measures (normalized SSD, correlation,

etc.) [ADM81]. Given the endpoints of our measure interval [x0; x1], we consider a continuous

version of SSD, de�ned as

S(y) =
Z x1

x0

(l(x� y)� r(x))
2
dx (19)

Then the disparity in [x0; x1] is de�ned as the value y which minimizes S(y).

Consider now the intrinsic curves L;R generated by signals l(x) and r(x) as described in

Section 2.2. Let pl(x) = (pl1(x); p
l
2(x)) = (l(x); l0(x)) be a generic point on L, and pr(x) =

(pr1(x); p
r
2(x)) = (r(x); r0(x)) a generic point on R. Then it follows from (19) that

S(y) =
Z x1

x0

�
pl1(x� �x)� pr1(x)

�2
dx : (20)

Hence, minimizing S(y) means minimizing the integral of the horizontal distance between pl(x�y)
and pr(x). It is important to notice that, while we can visualize (19) by shifting signal l(x) by
quantity y, in the case of (20) the curves remain the same, and we simply change the parametriza-
tion of L according to y.

Relation (20) suggests a di�erent disparity measure, which derives from a di�erent parametriza-

tion of the curves. Let s(x) be the arclength parameter referred, say, to curve L. To account for

the new parametrization, let us de�ne ql(s)
def
= pl(x) and qr(s)

def
= pr(x), where s is related to x

as described in section 3.2). Then, we can consider a new measure of similarity as

L(y) =
Z x1

x0

(ql1(sy)� qr2(s))
2 ds (21)

where sy(x)
def
= s(x� y). We can see the convenience of using L(y) instead of S(y) by noting that

a change of variable yields

L(y) =
Z x1

x0

(l(x� y)� r(x))
2
q
(l0(x))

2
+ (l00(x))

2
dx (22)

Relation (22) shows that measure L(x) is actually a weighted sum of squared di�erences, the

weight depending on the signal activity (expressed by term
q
(l0(x))2 + (l00(x))2). Areas of high

signal activity typically are the most reliable for the match [HS92]. Note that in section 3.2 we

devised in a similar fashion a dependence on the signal activity of the sampling intervals for the
matches. Thus, the arclength parametrization of the intrinsic curves seems to be a pro�table

choice for signal matching.
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