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Abstract
An approach to automatically generate 3–D polygonal
models from stereoscopic image pairs of piecewise planar
objects is presented. Dense disparity maps are computed by
constrained epipolar block matching. Local surface
orientations are computed from the quantized disparity map
using a spline approximation under explicit consideration of
quantization noise. The local surface orientation is then
clustered into regions of similar surface orientation to find
the dominant object planes. A photo realistic 3–D polygonal
model of the object is constructed by fitting planar polygons
to the surfaces and by mapping original image texture to the
model.

1 Introduction

The recent advances in multimedia technology and virtu-
al reality applications show that there is a wide range of
applications where computer generated 3–D environments
are desirable, like in architecture visualization [1], virtual
television studios [2], virtual presence for video commu-
nications [3] and general ”virtual reality” applications. In all
these applications real objects have to be scanned and 3–D
models must be generated automatically with low cost.

There have been some developments towards systems
that automatically compute such models in a controlled en-
vironment like 3D scanners [4][5]. We concentrate on a
system that analyses 3–D scenes from stereoscopic image
sequences and operates either data driven [10] or by inter-
preting the scene based on explicit knowledge about the
objects [7]. This system consists of three main modules:
Stereoscopic image analysis, 3–D reconstruction, and Scene
interpretation using an explicit knowledge base. Image anal-
ysis extracts 3–D features from the image sequence while
the 3–D reconstruction solves the problem of view point
estimation and data fusion from multiple view points. The
interpretation module controls the modeling and maintains
the modeling and scene knowledge.

This contribution focuses on the image analysis module,
namely the reliable extraction of 3–D surface descriptions
from a dense disparity map. The other modules of the scene
analysis system are described in other publications [6][9].

Man–made objects like buildings are mostly composed
of planar surfaces and can be approximated by 3–D polygo-

nal models. The presented approach extracts such polygonal
models from stereoscopic image pairs by segmenting ste-
reoscopic depth maps into planar regions and extracting the
bounding contours of these. Depth map segmentation can be
viewed in the context of range segmentation and quite some
work has been done in this field. Segmentation from local
differential surface geometry was investigated[11],[12] as
well as fitting parametric models [13]. Simultaneous regu-
larization and crease detection is another way of surface
segmentation [14]. According to [13], the main drawback of
the differential methods is that data smoothing in the pres-
ence of sensor and quantization noise is difficult. Our ap-
proach exploits local surface properties but the data smooth-
ing is adapted to the sensor noise (especially the
quantization noise) and is able to compute local surface
differentials while maintaining tight data fit and preserving
discontinuities in surface orientation.

The generation of a generic 3D surface model from ste-
reoscopic image pairs by computing image correspondence,
surface interpolation and triangular mesh approximation is
described in [9]. Based on the assumption that the object
consists of locally planar surfaces, as is the case with build-
ings, the object can be segmented into planes by searching
for the regions of similar surface orientations. The process
of modeling 3–D polygonal objects will be described in this
contribution.

Section 2 describes the computation of local surface
orientation and segmentation from quantized disparity maps
which are computed by stereoscopic correspondence analy-
sis. Section 3 deals the generation of a 3–D polygonal model
and Section 4 summarizes the approach.

2 Surface segmentation from a stereoscopic
image pair

This section deals with the segmentation of an object into
planar regions. The object is observed with a calibrated ste-
reoscopic camera and a dense disparity map is estimated by
image correspondence analysis. The disparity map is inter-
polated with a continuous spline surface to smooth the dis-
parity measurements. From the spline surface the local sur-
face orientation is computed by spatial differentiation and
regions of similar orientation are clustered to find planar
object surfaces.



In order to compute depth from the camera pair a sensor
calibration is needed. In an off-line calibration process [16]
before the actual scene recording, the internal camera pa-
rameters focal length and radial distortion are computed
together with the relative position and orientation of both
cameras in a sensor calibration coordinate system. The
images are then rectified with projective mapping onto a
virtual camera target in such a way that the virtual camera
system has coplanar image planes. This rectification greatly
simplifies the disparity estimation because epipolar search
lines coincide with the image scan lines.

2.1 Disparity estimation

Disparity estimation exploits the fact that a surface point
of the real object projects onto the images of the stereoscopic
camera at different positions in each image. The projected
image positions are constrained to lie on the epipolar lines
because of the epipolar constraint in stereo vision. The posi-
tion difference along the epipolar line is called disparity
[17]. The algorithm used in this contribution was described
in detail by Falkenhagen[18]. A disparity map is obtained by
searching along the epipolar lines using correlation match-
ing and dynamic programming. The search for the best
match between the points on the epipolar line is controlled
by uniqueness and ordering constraints. These constraints
are based on the fact that there can be no more than one
match between left and right image points and that matches
are in order for physical surfaces [15]. All possible corre-
spondences are evaluated in an optimum search procedure
using dynamic programming that matches all correspon-
dences between left and right image that lie on the same
epipolar line. The dynamic programming algorithm was
adapted from the work of Cox et al. [19]. Further details on
this procedure can be found in [18].

The disparity estimates are quantized to 1 pixel resolu-
tion due to the step size of the search procedure. Because the
disparity in smooth regions changes slowly with low dispar-
ity variance the quantization error will effect the signal and
must be taken into account. In addition to the disparity esti-
mate di an estimate of the measurement quality ci is com-
puted by the local normalized cross correlation (NCC) and
recorded in a disparity confidence map.

2.2 Disparity interpolation

The estimated disparity map contains only discrete and
quantized estimates of the real disparity from which local
surface derivative can not be computed directly. Instead the
disparity map is interpolated with a second order spline
approximation that can be differentiated easily. A multi grid
surface reconstruction algorithm described by Terzopou-
los[21] was chosen to calculate the interpolation with a finite
element approximation. It is assumed that the surface con-
tains a smooth coherent surface that can be modeled as a thin
plate with a certain stiffness and that inside such a region the
disparity measurement is either corrupted by white gaussian
noise or no estimate is available. The physical model of a
thin plate can be formulated as a variational functional of the
Euler–Lagrange equation �2u(x,y) = 0 with additional
constraints. The interpolation solves the problem of mini-
mizing the total energy function E that consists of the inner
energy of a thin plate u(x,y) which is deformed by external
forces of the disparity measurements di at position (xi, yi).
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The indices (x,y) of u indicate the partial derivatives with
respect to x and y. E consists of a measurement term and a
regularization term. The measurement error (ui – di) is con-
trolled by an individual weight �i for each measurement di
inside the object region U, while the plate energy term is
weighted by the regularization factor �. A high value for �
results in a smooth surface (strong regularization) while a
small value of  �� allows to fit the data more closely (weak
regularization). The mechanical analogue to Eq. (1) is the
model of a thin plate under external forces which are formed
by springs with spring constant �i and elongation (ui–di).
The measurement weight �� is derived from the disparity
confidence ci. It is switched off in undetermined areas with
measurement confidence below a threshold cmin. Undeter-
mined areas are merely interpolated.
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Fig. 1 displays some results of disparity estimation and
interpolation. Fig. 1a shows the left original image of a ste-
reoscopic image pair from the sequence VILLA, Fig. 1b the
estimated disparity map, and Fig. 1c the interpolated dispar-
ity map. Disparity maps are printed color coded: light inten-
sity values correspond to large disparities,  dark values to
small disparities, and transparent areas are undetermined. 

Fig . 1: Disparity estimation and interpolation for 
   the object VILLA.

a) left image (with
measurement profile)

b) quantized
disparity map

c) interpolated 
   disparity map

A: :B

2.3 Interpolation of quantized disparity maps

The interpolation function as defined in Eq. (1) is only
valid for the model of uncorrelated gaussian measurement
noise. The disparity map, however, is quantized due to the
limited resolution of the search procedure. If the quantiza-
tion is coarse and the measurement noise is small compared
to the quantizer steps, then quantization noise is correlated
with the signal and the minimization of E approximates the
quantized signal rather then the true signal [20]. To circum-
vent this problem the quantization must be considered di-
rectly as part of the signal. From the assumption of locally
planar surfaces we know that the surface has locally constant
slope but changes rapidly at the region boundaries which are
unknown in advance. This produces conflicting conditions
for the regularization. Inside a planar region the data should
be smoothed (strong regularization), at the boundaries the
surface should fit to the data (weak regularization). We are
therefore looking for a regularization that automatically



adapts to region boundaries. Such a signal adaptive regular-
ization can be found by introducing a quantizer threshold to
the weight �i.

All disparity measurements with a measurement error
below the quantizer error do not contribute to the surface
minimization and have to be discarded. Only measurement
errors above the quantizer threshold are considered. This
condition can be satisfied by non–linear switching of the
measurement energy term in Eq. (1). The measurement
weight in Eq. (2) is modified to incorporate the quantization
noise. The mechanical analogue of this is to have a non
linear spring constant with zero force below an elongation
of |(ui–di)| < q/2.
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Minimizing Eq. (1) with weights according to Eq. (3)
results in an adaptive interpolation. The disparity profile is
smooth in planar regions but fits closely to the data at corners
and boundaries.

The advantage of the proposed method is demonstrated
in Fig. 2 by analyzing a disparity profile A:–:B that was
taken from the roof area of the house extending over 280
pixel in x–direction (Fig. 1a). Parts of the front wall, the roof
area and a small roof window area are covered by the profile.
The disparity profile changes orientation at the corners of

Fig . 2: Comparison of interpolation for
  disparity profile A:–:B from Fig. 1a

b) Interpolated profile (strong regularization)
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c) Interpolated profile (weak regularization)
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a) Profile of quantized disparities (280 pixel)
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d) Interpolated profile (adaptive regularization)
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the object. Between the corners a smooth and almost linear
disparity profile is expected. In Fig. 2a) the disparity profile
from disparity estimation is displayed. The disparity range
is about 30 pixel. The quantization effects can be seen as
steps in the estimated disparity profile. Interpolation of the
quantized profile is displayed in Profiles b= strong regular-
ization, c=week regularization and d=adaptive regulariza-
tion with the proposed method. In Fig. 2b the profile is
smooth but deviates from the input data at orientation dis-
continuities. Weak regularization in Fig 2c fits closely to the
data but the quantization error is visible. Interpolation ac-
cording to Eq. (1) and (3) demonstrates the advantage of the
proposed method. The quantizer error is eliminated and the
disparity profile 2d is smooth while maintaining the surface
creases.

2.4 Segmentation into planar regions

This segmentation exploits the knowledge that the scene
to be modeled mostly consists of smooth or planar surfaces
that may have some creases and breaks. The approach for the
segmentation is therefore to extract regions of similar sur-
face orientation and then to group these regions to form
surfaces. Local surface orientation computed from the spa-
tial surface derivative of the interpolated disparity map for
each pixel and a two–dimensional histogram of surface
orientations is accumulated. For each surface normal the
corresponding horizontal and vertical angle is computed and
added to the histogram. The local peaks in the histogram
correspond to the most likely surface orientations while the
valleys correspond to the boundaries between surfaces [22].

The surface orientation histogram is clustered by search-
ing for the valleys and assigning each peak a surface label.
Clustering takes into account that only major peaks of the
histogram contain reliable region information and minor or
local peaks are merged. Only the dominant directions re-
ceive an orientation label. Projection of the orientation la-
bels into the image reveals the clustered surface regions. Fig.
3a shows the result of orientation clustering in the orienta-
tion histogram. Each color conforms to a certain surface
orientation. The projection of the orientation labels onto the
image plane in Fig. 3b reveals that all major orientations
were segmented properly.
 
 +90
    
  vert.
 angle
  –90

 –90    0    +90
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b) orientation
      segments

a) clustered 
orientation histogram

Fig . 3: Segmentation from histogram clustering

c) segmentation 
superimposed on 
image

Some post processing is performed to ensure spatial ho-
mogeneity of the surface regions and to cope with outliers
due to noise. Small regions are merged with neighboring
regions if the following conditions are met:
– the neighboring region is much larger than the observed

region,



– the orientation angle between the regions is smaller than
a threshhold,

– the average surface distance between the regions is smal-
ler than a threshhold.
The selection of the conditions and the thresholds depend

on the desired level of detail. For polygonal modeling only
the dominant planes are kept and all the smaller regions (like
the chimney and the balcony in the example VILLA) are
discarded. For a very detailed surface model all regions are
kept which may result in a complicated surface structure. In
this case it may be appropriate to construct a generic wire–
frame that covers the details [9]. The level of detail is chosen
interactively or may be generated by an automatic scene
interpretation system as discussed in [7]. In Fig. 3c the seg-
mentation for the five largest planar regions is shown. Su-
perimposing the region boundaries onto the image in Fig. 3c
displays a good fit to the true surface boundaries.

3 Modeling of a 3–D polygonal surface 
model

Each segmented region corresponds to a smooth 3D–sur-
face with boundaries at orientation discontinuities. For po-
lygonal objects each region describes a planar surface. Each
object consists of K surfaces and each surface is described
by surface normal n, surface distance l, and the surface re-
gion boundary with arbitrary shape. For efficient surface
representation a polygonal description is needed that
approximates the true object shape with only a few points.

3.1 Plane fitting and plane intersection

The object is composed of K surfaces. If the surface k
contains I surface points, a weighted least squares regression
is computed to estimate the surface parameters (nk, lk). The
surface point Pi is computed from the disparity value di and
the calibrated sensor parameters [10]. The weight �i of each
surface point is computed from the image uncertainty in Eq.
(2).
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Each surface is bounded either by the boundary between
object and background with an arbitrary shape or by the
intersection with neighboring planes. The plane intersection
is a 3D–line which corresponds to the edge between two
object surfaces. It projects as a straight line segment onto the
image. The intersection of three surfaces conforms to a point
at an object corner. The intersection lines between two sur-
faces are of infinite length. The lines are limited by intersect-
ing the projected line segments with the neighboring region
boundaries in the image. Only intersections that project into
the segmented surface regions and that are not occluded by
other surfaces are considered.

3.2 Boundary approximation and polygonal sur-
face modeling

Surface boundaries between object and background have
an arbitrary shape that is approximated by straight line seg-
ments based on a distance threshold that measures the dis-
tance between the line segment and the boundary in the
image plane. This threshold can be varied to control to the
level of detail that should be preserved. The approximating

Fig . 4: 3–D polygonal surface modeling

b) plane intersection
boundaries super–
imposed on image

b) 3–D polygonal model and c)
    wire–frame approximation
    (top view, shaded)

line segments form a 3–D polygon for each region. Each
polygon is tessellated into a triangular mesh. The original
image texture is projected onto the triangles which allows to
synthesize photo realistic views of the model from arbitrary
view points [8].

Fig. 4 displays results of polygonal modeling for the
scene VILLA. The intersections of the surface planes Fig. 4a
shows a good fit with the true object boundaries when super-
imposed onto the image. A maximal boundary deviation of
5 pixel was allowed during boundary approximation. The
polygonal model consists of six planar surfaces (Fig. 4b)
that are approximated by 46 triangles (Fig. 4c). The oc-
cluded regions at the roof window were closed and form a
good approximation of the true surface. The fine details,
however, like the chimney and the balcony are suppressed.

Fig . 5: Synthesized views of textured model 
  VILLA from arbitrary positions

right view left view

top view bottom view



The model was textured from two original images of the
sequence and synthetic views of the model are displayed in
Fig. 5. Four different views with angles about +/– 45�

around the original viewing position were synthesized from
the textured 3–D model and show good reconstruction re-
sults. Note, however, that due to the planar approximation
the chimney and the balcony are not modeled and appear at
wrong positions in the images. This problem can only be
solved when finer details for the model are included.

4 Conclusions
An approach to automatically generate 3–D polygonal

models from stereoscopic image pairs of piecewise planar
objects was presented. From a quantized disparity map a
smooth spline approximation was computed under explicit
consideration of quantization noise. Regions of similar sur-
face orientation were then clustered to find the dominant
object planes. A photo realistic 3–D polygonal model of the
object was constructed by fitting planar polygons to the
surfaces and by mapping original image texture to the mod-
el.

The approach is embedded in a knowledge–based system
to interpret 3–D scenes and to model objects from multiple
stereoscopic image pairs [6][7]. At present some interaction
of the user is still needed to adapt the segmentation thresh-
olds and to classify which surfaces are relevant for the mod-
eling and which can be discarded during the approximation.
We are presently working to further automate this process
during scene interpretation.
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