
Real Time Compression of Triangle Mesh Connectivity

Stefan Gumhold, Wolfgang Straßer�

WSI/GRIS University of T¨ubingen

Abstract

In this paper we introduce a new compressed representation for the
connectivity of a triangle mesh. We present local compression and
decompression algorithms which are fast enough for real time ap-
plications. The achieved space compression rates keep pace with
the best rates reported for any known global compression algorithm.
These nice properties have great benefits for several important ap-
plications. Naturally, the technique can be used to compress trian-
gle meshes without significant delay before they are stored on ex-
ternal devices or transmitted over a network. The presented decom-
pression algorithm is very simple allowing a possible hardware re-
alization of the decompression algorithm which could significantly
increase the rendering speed of pipelined graphics hardware.

CR Categories: I.3.1 [Computer Graphics]: Hardware Archi-
tecture; I.3.3 [Computer Graphics]: Picture/Image Generation—
Display algorithms

Keywords: Mesh Compression, Algorithms, 3D Graphics Hard-
ware, Graphics

1 Introduction and Related Work

The ability to handle very large geometric data sets becomes more
and more important. Powerful compression techniques are manda-
tory to solve this task. The compression approach presented in this
paper has several advantages. The compression and decompression
algorithms are fast and simple. The achieved space compression ra-
tios are among the best known results and the algorithms act locally
such that only a fraction of the vertices must be accessible. None
of the available techniques combines these properties. All lack a
very fast compression algorithm and therefore the compressed rep-
resentation must be pre-computed before rendering. No speed up
through compression could be achieved so far in the visualization of
meshes with changing connectivity. The related work concentrates
either on fast rendering or on maximum compression and therefore
the following discussion is divided into two sections.

1.1 Compression for Fast Rendering

In this section we discuss representations of triangle meshes that
are used for transmission to graphics hardware. 3D-hardware sup-
port is primarily based on the rendering of triangles. Each triangle

�Email: fsgumhold/strasserg@gris.uni-tuebingen.de

is specified by its three vertices, where each vertex contains three
coordinates, possibly the surface normal, material attributes and/or
texture coordinates. The coordinates and normals are specified with
floating point values, such that a vertex may contain data of up to
36 bytes1. Thus the transmission of a vertex is expensive and the
simple approach of specifying each triangle by the data of its three
vertices is wasteful as for an average triangle mesh each vertex must
be transmitted six times.

The introduction of triangle strips helped to save unnecessary
transmission of vertices. Two successive triangles in a triangle strip
join an edge. Therefore, from the second triangle on, the vertices
of the previous triangle can be combined with only one new vertex
to form the next triangle. As with each triangle at least one vertex
is transmitted and as an average triangle mesh has twice as many
triangles as vertices, the maximal gain is that each vertex has to
be transmitted only about two times. Two kinds of triangle strips
are commonly used – thesequentialand thegeneralized triangle
strips. In generalized triangle strips an additional bit is sent with
each vertex to specify to which of the free edges of the previous
triangle the new vertex is attached.Sequential stripseven drop this
bit and impose that the triangles are attached alternating. OpenGL
[7] which evolved to the commonly used standard for graphics li-
braries allowed [5] generalized triangle strips in earlier versions, but
the current version is restricted to sequential strips. Therefore, the
demands on the stripping algorithms increased. None of the exist-
ing algorithms reaches the optimum that each vertex is transmitted
only twice. The algorithm of Evans et al. [4] produces strips such
that each vertex is transmitted about2:5 times and this is currently
the best algorithm.

Arkin et al. [1] examined the problem of testing whether a tri-
angulation can be covered with one triangle strip. For generalized
triangle strips this problem is NP-complete, but for sequential strips
there exists a simple linear time algorithm. But no results or algo-
rithms were given to cover a mesh with several strips.

To break the limit of sending each vertex at least twice Deer-
ing [3] suggests the use of an on-board vertex buffer of sixteen
vertices. With this approach, which he callsgeneralized mesh
theoretically only six percent of the vertices have to be transmit-
ted twice. But up to now no corresponding algorithms have been
presented. Bar-Yehuda et al. [2] examined different sized vertex
buffers. They prove that a triangle mesh withn vertices can be
optimally rendered, i.e. each vertex is transmitted only once, if
a buffer for 12:72

p
n vertices is provided. They also show that

this upper bound is tight and no algorithm can work with less than
1:649

p
n buffered vertices. In their estimation they neglect the time

consumed by the referencing of buffered vertices, which makes it
impossible to determine the suitability of the approach for connec-
tivity compression. Again the algorithms to compute the rendering
sequences are not fast enough for on-line generation.

Our connectivity compression technique also utilizes a vertex
buffer where each vertex has to be transmitted only once. As our
technique is hard to analyze theoretically, we can only give exper-
imental results of the size. These are all less than12:72

p
n. By

defining a fixed traverse order our approach minimizes the number

1where we assumed four bytes per floating point value and one byte per
color component

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

of indices needed to reference vertices in the buffer, which results in
an additional speed up for rendering. If these indices are Huffman-
encoded, in the average only two bits per triangle are needed for
references.

1.2 Maximum Mesh Compression

The work on fast rendering explained in section 1.1 can also be
used for the compression of triangle mesh connectivity. Instead of
retransmitting a vertex, a reference is inserted into a compressed
representation. If a vertex from the buffer is referenced its index
within the buffer enters the compressed representation. In the tri-
angle strips of Evans et al. [4] each vertex appears about2:5 times.
The vertices can be rearranged into the order they appear the first
time and only the indices of1:5n vertices need to be inserted in
the compressed representation. One additional bit per triangle is
needed to specify whether the next vertex is used the first time
or the index of an already used vertex follows. This sums up to
about1 + 0:75 � dlog

2
ne bits per triangle. The disadvantage of

this approach is that the storage needs grow with the size of the
triangle mesh. The measurements of Deering in [3] show that the
generalized mesh approach theoretically consumes between eight
and eleven bits per triangle if an optimal stripper is available.

The work of Bar-Yehuda et al. [2] cannot be compared to our
work as no appropriate measurements are available.

Taubin et al. [8] propose a very advanced global compression
technique for the connectivity of triangle meshes. The method is
based on a similar optimization problem as for sequential trian-
gle strips and the authors guess that it is NP-complete. Their ap-
proximation allows compression to only two bits per triangle and
there exist triangle meshes which consume only one bit per trian-
gle. The decompression splits into several processing steps over the
complete mesh, which makes the approach unsuitable to speed up
hardware driven rendering. Their compression and decompression
algorithms are more complex than ours and although the asymp-
totic running time should be the same we strongly believe that a
comparable optimized implementation of our algorithms is several
times faster than the algorithms proposed by Taubin. Our compres-
sion technique yields nearly equivalent compression of the mesh
connectivity.

So far we described only lossless compression techniques. For
applications which allow lossy compression also the vertex data can
be compressed and the connectivity can be simplified. Deering [3]
uses the proximity of the vertices independently of the connectiv-
ity. Taubin et al. [8] propose to predict the coordinatesvn of the
vertex, which is to be compressed next, from the precedingK ver-
ticesvn�1; : : : ; vn�K and only encode the difference�(vn) to the
predicted position

�(vn) = vn � P (�; vn�1; : : : ; vn�K);

where � specifies the parameters for the predictor functionP ,
which was implemented as the linear filter

PK

i=1
�ivi and the pa-

rameters where chosen to minimize the square sum of all�(vn).
In both approaches of vertex data compression the positions are
additionally entropy encoded after the delta compression. Similar
techniques are used to compress the normals and the material data.
Our approach of connectivity compression can be used with both of
these geometry compression techniques. The result is a significant
speed up in both cases and the improvement of the compression
ratios of Deering’s approach2.

2The compression ratios for the models (triceratops, galleon, viper,
57chevy, insect) measured in Deering’s paper would increase from (5.8X,
8.2X, 9.2X, 9.2X, 7.2X) to (7.4X, 11.2X, 11.6X, 12.0X, 11.4X)

Figure 1: Non manifold vertices must be duplicated in order to
make their neighborhood 2-manifold with border.

2 Compression and Decompression

Let us introduce the ideas of compression and decompression by
comparison with generalized triangle strips. This approach utilizes
a vertex buffer of only three vertices but in turn has to transmit each
vertex twice. Thus the first idea is to simply increase the size of
the vertex buffer, such that all the undecided vertices can be stored.
The undecided vertices are those, which have not finally been in-
corporated into the so far decompressed triangle mesh, i.e. for these
vertices exist adjacent triangles which will be transmitted later.

The increased vertex buffer is not very useful, if still indices of
the vertices must be transmitted to localize them within the buffer.
The transmission of most indices can be avoided by fixing the or-
der in which the edges formed by the vertices in the vertex buffer
are traversed. Therefore, the traverse order need not be encoded.
The rules to fix the traverse order must be chosen carefully as they
constitute most degrees of freedom for optimization. In turn the
compression algorithm becomes nearly as fast as the decompressed
algorithm. In the case of generalized triangle strips the traverse or-
der is not fixed. Each of the additional bits encodes which of the
two free edges of the previous triangle the next triangle is attached
to.

To allow the encoding of an arbitrarily connected and oriented
triangle mesh in one run, several basic building operations must be
encodable. In the case of triangle strips there is only one operation
– the attachment of a new triangle to an existing edge. This has
the advantage that the type of operation need not be encoded. In
our approach all of the building operations also introduce one new
triangle, but the new triangle can additionally be formed exclusively
by buffered vertices.

Section 2.1 introduces the rules which fix the order in which the
triangle mesh is traversed. Then the different building operations
are discussed in section 2.2. The building operations are Huffman
encoded in a variable length bit stream to achieve the best compres-
sion of the connectivity. Section 2.3 explains how to combine the
bit stream with the vertex data and additional data.

In what follows we assume that the triangle meshes consist
of several connected components, all orientable and locally 2-
manifold with borders. Thus the neighborhood of each vertex can
be continuously mapped to a plane or to a half-plane if the vertex
belongs to the border of a component. Our approach is extended
to non orientable 2-manifold triangle meshes in section 5.1. Non
manifold models must be cut into manifold models by duplication
of non manifold vertices as indicated in figure 1.

8

9

4
3

2 9

87

0

7

3

1516
1011
4

2

10

9

87

413

10
2

3

6

1516

10

1
0

16

6
5

15 1516

19

8
714

4

12

1
0
2

3

6

c)

f)

1 5 5

d)

5
13

a) b)

e)

12

15
6

7 8

2
5

6

13
12

0
9

12
13

1516

10
15

3
4
1011

16

10 11

14

13
11

14

6

1414

11

14

4
12

13
12

3
0
2

87

9

11

Figure 2: The shown sample triangle mesh is traversed in a breadth-
first order.

2.1 Traverse Order

Figure 2 illustrates a breadth-first traverse order of a sample trian-
gle mesh. The buffered vertices are connected with bold lines. The
collection of these lines is called thecut-border. The cut-border
divides the triangle mesh into two parts, the so far decompressed
part – theinner part (shaded) – and the rest – theouter part. The
edges on the cut-border are enumerated in the order they are pro-
cessed. Each time a cut-border edge is processed, a new triangle
is added to this edge with a basic building operation imposed by
the connectivity of the triangle mesh. The new triangle introduces
new cut-border edges and the processed edge is removed from the
cut-border.

These are the basic rules which define the traverse order. The
degrees of freedom lay in the choice of the initial triangle, which
constitutes the initial cut-border, and in the way the new edges are
enumerated. It will turn out in section 4.2, that the choice of the
initial triangle doesn’t influence the compression significantly. In
the breadth-first strategy the new cut-border edges obtain increasing
numbers, such that the cut-border is grown in a cyclic way. A depth-
first order is achieved by enumerating the new cut-border edges in a
decreasing order, such that the last introduced cut-border edges are
processed first. The complete information in the vertex buffer can
be used to determine the position of the new cut-border edges. As
we concentrate on real time compression, only the strategies which
consume no additional computation time are analyzed in section
4.2.

2.2 Building Operations

Let us take a closer look at figure 2 as nearly all basic building
operations arise in this small example. The triangle mesh is always
built from an initial triangle consisting of the first three vertices.
The initial building operation is not encoded but will be denoted
with the symbol“ �” . Between figure 2a and 2b to each of the three
initial cut-border edges a triangle is attached in the same way as to a
triangle strip. Each operation introduces a new vertex and two new
edges to the cut-border. Let us call this building operation“new
vertex” and abbreviate it with the symbol“ * ” . The new cut-border
edges are enumerated in the order they are added to the cut-border
in order to bring about a breadth-first traverse order.

Between figure 2b and 2c the triangle of the outer part, which is

a)

split cut border

cut border
part 2

cut border
part 1

4

3
6

5

21
-1

n"

7

n=6

"

b)

cut
border
union

x

y

p" i"

z

Figure 3: The“split cut-border” -/“cut-border union”-operation
needs one/two indices to specify the third vertex with which the
current cut-border edge forms the next triangle. The vertices of the
current edge are shaded dark and the newly attached triangle light.

adjacent to edge3, is added to the so far (de)compressed triangle
mesh. This time no new vertex is inserted, but edge3 forms a
triangle with the preceding cut-border edge. This operation will be
called“connect backward”and is represented by the symbol“ ” .

Moving on to figure 2d, two“new vertex”-operations arise at
the cut-border edges4 and5. At the cut-border edge6 the mirror
image of the“connect backward”-operation is applied to connect
this edge to the subsequent edge. Naturally, this operation is called
“connect forward” and is abbreviated with“ !” . No triangle is
added to cut-border edge9 as it is part of the mesh border. This
fact has to be encoded, too, and is called“border” (“ ”)-operation.

A more complex operation appears at cut-border edge10 in fig-
ure 2e. The adjacent triangle in the outer part is neither formed
with the preceding nor with the subsequent cut-border vertex, but
with a vertex further apart. The result is that the cut-border splits
into two parts. In figure 2f the first part is formed by the edges11,
12 and16 and the second part by13, 14 and15. This operation
will be called“split cut-border” (“1i”), which takes the indexi
to specify the third vertex relative to the current cut-border edge.
Figure 3a shows another“split cut-border” -operation. The rela-
tive indices are written into the cut-border vertices. The“split cut-
border”-operation has two consequences. Firstly, the cut-border
cannot be represented anymore by a simple linked list, but by a list
of linked lists. And secondly, the choice of the next cut-border part
to be processed after a“split cut-border” -operation yields a new
degree of freedom for the traverse order. To minimize the number
of cut-border parts the cut-border part with fewer vertices is chosen.

Another operation arises in figure 2f at cut-border edge11. The
adjacent triangle closes the triangle mesh and the current cut-border
part is removed. This operation is called“close cut-border” and is
denoted by“r” . As the size of the current cut-border part is known
during compression and decompression, the“close cut-border”-
operation can also be encoded with“connect forward” or “connect
backward” and the different symbol is only introduced for didactic
reasons. On the other hand if there really is a hole in the form of a
triangle, three“border” -operations are encoded.

Finally, there exists a somewhat inverse operation to the“split
cut-border”-operation – the“cut-border union”-operation. An ex-
ample is visualized in figure 3b. The figure shows in perspective a
cube with a quadratic hole. The so far compressed inner part con-
sists of the two green shaded regions. There are two cut-border
parts which are connected by the new yellow triangle, which is at-
tached to the current edge (dark blue vertices). Therefore, this oper-
ation is called“cut-border union” or for short“

Si

p
” . Two indices

are needed to specify the second cut-border partp and the indexi
of the vertex within the second cut-border part. The vertices in a
cut-border part are enumerated according to the cut-border edges.
Therefore, the vertex at the beginning of the cut-border edge with
the smallest index in the cut-border partp is numbered zero, the
vertex at the second smallest cut-border edge is numbered one and
so forth.

op.: vertex inner edge border edge triangle
� 3 0 0 1
* 1 1 0 1
!/ 0 2 0 1

0 0 1 0
1i 0 1 0 1
r 0 3 0 1Si

p
0 1 0 1

Table 1: The table shows for each basic building operation which
mesh elements are finally placed into the inner part.

It can be shown that the number of“cut-border union”-
operations is exactly the genus of the compressed triangle mesh.
Seen from a different angle, the operations“r” , “!/ ” , “1i”
and“

Si

p
” provide the possibility to connect the current cut-border

edge to any possible vertex in the cut-border, whereas the opera-
tions“ �” and“ * ” utilize new vertices.

2.3 Compressed Representation

The encoding of the sequence of atomic building operations
uniquely defines the connectivity of a triangle mesh. The connectiv-
ity of the sample mesh in figure 2 can be encoded by the following
sequence of operations:

*** ** ! 12!

The symbols for the different operations can be encoded with Huff-
man Codes to achieve good compression rates. Therefore, the mesh
connectivity is sequentially stored in abit stream.

The geometry and material data must be supplied additionally.
For each vertex this data can include the vertex position, the sur-
face normal at the vertex and the texture coordinates or some mate-
rial information. We will refer to all this data with the termvertex
data. The material of the mesh can also be given for each triangle.
Similarly, data can be supplied for the inner edges and the border
edges of the mesh. We will collect the different kinds of data in the
termstriangle data, the inner edge dataand theborder edge data.
Thus for each type of mesh element, data can be supplied with the
connectivity of the mesh. We refer to the collection of all additional
data with the termmesh data.

Depending on the application there exist two approaches to com-
bine the connectivity and the mesh data of a compressed triangle
mesh.

If an application is supplied with enough storage for the com-
plete mesh data, the bit stream for the connectivity can be stored
separately. For each type of mesh element the specific data is stored
in an array. While the triangle mesh is traversed a vertex, trian-
gle, inner edge and border edge index is incremented after each
operation, such that the current mesh elements can be found in the
corresponding arrays with the suitable indices. Table 1 shows the
increments for each index after the different operations. For ex-
ample after a“connect forward”-operation the inner edge index is
incremented by two and the triangle index by one. The advantage
of this representation is that the mesh data can be processed with-
out traversing the mesh, for example to apply transformations to the
coordinates and normals.

If the compressed triangle mesh is passed to the graphics board
or if the mesh data is encoded with variable length values, no ran-
dom access to the vertex data is possible. Then the mesh data is
inserted into the bit stream for the mesh connectivity. After each
operation symbol in the stream, the corresponding mesh data is sent

to the stream appropriately. For example after a“split cut border” -
symbol the mesh data for one inner edge and one triangle is trans-
mitted (see table 1). If we only assume vertex and triangle data and
denote the vertex data for theith vertex withvi and the triangle
data for trianglej with tj , the extended bit stream representation of
the mesh in figure 2 would be:

v0v1v2t0* v3t1* v4t2* v5t3 t4* v6t5* v7t6!t7 12t8!t9

Remember that the initial triangle is implicitly stored without sym-
bol and introduces the verticesv0; v1; v2 and the trianglet0.

If the triangle mesh consists of several unconnected components,
the compressed bit stream representation consists of the concatena-
tion of the bit streams of the different components.

3 Implementation

All algorithms which process the compressed representation are
based on the implementation of the data structure for the cut-border
as introduced in section 3.1. This data structure implements the
rules which define the traverse order. All other algorithms such
as the compression and decompression algorithms presented in the
sections 3.2 and 3.3 use this implementation. Further algorithms
such as homogeneous transformations of the mesh geometry would
also use the cut-border data structure to iterate through the com-
pressed representation

The data structures and algorithms in this section are given in
a C++-like syntax. For readability and brevity parentheses were
replaced by indentation and additional key-words.

3.1 Cut-Border Data Structure

Data Structure 1 cut border
struct Part

int rootElement, nrEdges, nrVertices;
struct Element

int prev, next;
Data data;
bool isEdgeBegin;

struct CutBorder
Part * parts,* part;
Element * elements,* element;
Element * emptyElements;

CutBorder (int maxParts,int maxElems);
bool atEnd();
void traverseStep(Data &v0, Data &v1);

void initial (Data v0, Data v1, Data v2);
void newVertex(Data v);
Data connectForward/Backward();
void border();
Data splitCutBorder(int i);
Data cutBorderUnion(int i, int p);

bool findAndUpdate(Data v, int i, int p);

The data structure for the cut-border is a list of doubly linked lists
storing the vertex data of the buffered vertices. All elements in the
doubly linked lists of the different parts are stored within one homo-
geneous buffer namedelements. The maximum number of vertices
in the buffer during the compression or decompression defines its
size. The maximum buffer size is known once the triangle mesh

is compressed and can be transmitted in front of the compressed
representation. For the first compression of the mesh the maximum
number of vertices can be estimated by10

p
n (see section 4.2),

wheren is the number of vertices in the triangle mesh. With this
approach a simple and efficient memory management as described
in [6] is feasible. Only the pointeremptyElementsis needed, which
points to the first of the empty elements in the buffer. Any time a
new element is needed, it is taken from the empty elements and the
deleted elements are put back to the empty elements. On the one
hand the memory management avoids dynamic storage allocation
which is not available on graphics boards and on the other hand it
speeds up the algorithms by a factor of two if no memory caches
influence the performance.

The different parts can be managed with an arrayparts with
enough space for the maximum number of parts which are created
while the mesh is traversed. Again this number must be estimated
for the first compression and can be transmitted in front of the com-
pressed representation. Thus the constructor for the cut-border data
structure takes the maximum number of parts and the maximum
number of cut-border elements.

part and elementpoint to the current part and the current ele-
ment within the current part respectively. Each part stores the index
of its root element, the number of edges and the number of vertices.
These numbers may differ as each part is not simply a closed poly-
gon. Any time a“border” -operation arises one cut-border edge is
eliminated but the adjacent cut-border vertices can only be removed
if they are adjacent to two removed edges. Therefore, each cut-
border element stores in addition to the indices of the previous and
next element and the vertex data, a flag which denotes whether the
edge beginning at this cut-border element belongs to the cut-border
or not.

The cut-border data structure provides methods to steer the
traversal via a bit stream or with the help of a triangle mesh. The
methodsatEnd() andtraverseStep(& v0, &v1) are used to form the
main loop. The methodtraverseStep(& v0 , &v1) steps to the next
edge in the cut-border data structure and returns the vertex data of
the two vertices forming this edge. If no more edges are available,
atEnd() becomes true.

During decompression the operations are read from the bit
stream and the cut-border data structure is updated with the cor-
responding methodsinitial , newVertex, connectForward/Backward,
border, splitCutBorderandcutBorderUnion. For compression ad-
ditionally the methodfindAndUpdateis needed to localize a vertex
within the cut-border data structure. The part index and vertex in-
dex are returned and can be used to deduce the current building op-
eration. If the vertex has been found by thefindAndUpdate-method,
it is connected with the current cut-border edge.

3.2 Compression Algorithm

Besides the cut-border we need two further data structures for the
compression algorithm — a triangle mesh, with random access to
the third vertex of a triangle given a half edge, and a permutation.
The random access representation of the triangle mesh provides two
methods – thechooseTriangle(v0 ; v1; v2) -method, which returns
the vertex datav0; v1; v2 of the three vertices in an initial triangle,
and the methodgetVertexData(i0; i1) , which takes the vertex in-
dicesi0 and i1 of a half edgev0v1 and returns the vertex data of
the third vertex of the triangle containingv0v1. The permutation is
used to build a bijection between the vertex indices in the random
access representation and the vertex indices in the compressed rep-
resentation. It allows to map an index of the first kind to an index
of the second kind and to determine whether a certain vertex index
in the random access representation has been mapped.

Given a random access triangle mesh, the compression algorithm
computes the mentioned permutation and the compressed represen-

Algorithm 1 compression

Input: RAM : : : random access representation
Output: bitStream : : : compressed representation

perm : : : permutation of the vertices

vertexIdx = 3;
RAM.chooseTriangle(v0, v1, v2);
perm.map((v0.idx, 0), (v1.idx, 1), (v2.idx, 2));
bitStream<< v0 << v1 << v2;
cutBorder.initial(v0, v1, v2);
while not cutBorder.atEnd() do

cutBorder.traversalStep(v0 , v1);
v2 = RAM.getVertexData(v1.idx,v0.idx);
if v2.isUndefined() then

bitStream<< “ ” ;
cutBorder.border();

else
if not perm.isMapped(v2.idx) then

bitStream<< “* ” << v2;
cutBorder.newVertex(v2);
perm.map((v2.idx, vertexIdx++));

else
cutBorder.findAndUpdate(v2 , i, p);
if p> 0 then bitStream<< “

Si

p
” ;

else if i == �1 then bitStream<< “!/ ” ;
else bitStream<< “1i” ;

tation of the mesh, which is sent to a bit stream. The current vertex
index of the compressed representation is counted in the indexver-
texIdx. After the initial triangle is processed, the cut-border data
structure is used to iterate through the triangle mesh. In each step
the vertex datav0 andv1 of the current cut-border edge is deter-
mined. From the vertex indices the vertex data of the third vertex in
the triangle adjacent to the current edge is looked up in the random
access triangle mesh. If no triangle is found, a“border” -operation
is sent to the bit stream. Otherwise it is checked whether the new
vertex has already been mapped, i.e. sent to the cut-border. If not,
a “new vertex”-operation is sent to the bit stream and the vertex
index is mapped to the current index in the compressed represen-
tation. If the third vertex of the new triangle is contained in the
cut-border, thefindAndUpdate-method is used to determine the part
index and the vertex index within that cut-border part. If the part
index is greater than zero, a“cut-border union”-operation is writ-
ten. Otherwise a“connect forward/backward”-operation or a“split
cut-border”-operation is written dependent on the vertex index.

3.3 Decompression Algorithm

The decompression algorithm reads the compressed representation
from an input bit stream and enumerates all triangles. The trian-
gles are processed with the subroutinehandle(v0,v1,v2) , which
for example renders the triangles. As in the compression algorithm,
firstly, the initial triangle is processed and then the mesh is re-built
with the help of the cut-border methodsatEndandtraversalStep. In
each step the next operation is read from the bit stream and the cor-
responding method of the cut-border data structure is called such
that the third vertex of the new triangle is determined in order to
send it to the subroutinehandle.

4 Measurements and Optimizations

In this section we analyze our software implementation of the com-
pression and decompression algorithm. Firstly, we introduce the

Algorithm 2 decompression

Input: bitStream : : : compressed representation
Output: handle : : : processes triangles

bitStream>> v0 >> v1 >> v2;
handle(v0, v1, v2);
cutBorder.initial(v0, v1, v2);
while not cutBorder.atEnd() do

cutBorder.traversalStep(v0 , v1);
bitStream>> operation;
switch (operation)

case “!/ ” :
handle(v1, v0,

cutBorder.connectForward/Backward());
case “1i” :

handle(v1, v0, cutBorder.splitCutBorder(i));
case “

Si

p
” :

handle(v1, v0, cutBorder.cutBorderUnion(i,p));
case “* ” :

bitStream>> v2;
cutBorder.newVertex(v2);
handle(v1, v0, v2);

case “ ” :
cutBorder.border();

triangle mesh compr decom storage
name t n jbdj k�=s k�=s bits=t
genus5 144 64 0 386 782 4.23�5.7%
vase 180 97 12 511 796 2.15�6.0%
club 515 262 6 541 857 2.09�3.5%
surface 2449 1340 213 490 790 1.87�0.8%
spock 3525 1779 30 496 820 1.97�0.7%
face 24118 12530 940 430 791 1.81�0.3%
jaw 77692 38918 148 332 809 1.62�0.5%
head 391098 196386 1865 321 796 1.71�0.1%

Table 2: The basic characteristics of the models, the compression
and decompression speed and the storage needs per triangle.

test set of models in section 4.1. Then we examine the influence of
the traverse order on the compression ratio and the size of the cut-
border (section 4.2). And finally we gather the important results on
the performance of the presented algorithms in section 4.3.

4.1 The Models

The measurements were performed on the models shown in figure
4. All models are simple connected 2-manifolds and differ in their
size. From top left: genus5, vase, club, surface, spock, jaw, face,
head. The detail of the head model is hidden in the small interior
structures. Therefore, we present in figure 4 a view into the inside
of the head.

The basic characteristics of the models are shown in the left half
of table 2. Here the number of trianglest, the number of verticesn
and the number of border edgesjbdj are tabulated for each model.

4.2 Traverse Order and Cut-Border Size

In section 2.1 we defined the traverse order up to the choice of the
initial triangle and the enumeration of newly introduced cut-border
edges. To study the influence of the initial triangle we measured
the storage needs for the compressed connectivity of each model

Figure 4: The models used to analyze the compression and decom-
pression algorithms.

several times with randomly chosen initial triangles. Then we com-
puted for each model the average value and the standard deviation
as tabulated on the very right of table 2. The influence of the ini-
tial triangle vanishes with increasing size of the model and is still
less than ten percent for the smallest models. With the same mea-
surements the fluctuation of the cut-border size was determined as
shown in table 3. Here the fluctuation is higher and reaches up to
twenty percent for the jaw and the club models.

There are a large number of enumeration strategies for the newly
introduced cut-border edges. For performance reasons and the sim-
plicity of the implementation, we favored the enumeration strate-
gies which can be implicitly handled with the cut-border data struc-
ture introduced in section 3.1. Therefore a newly introduced cut-
border edge may either be delayed until all present edges are pro-
cessed or the new edge is processed next. These two strategies ap-
ply to the“connect forward/backward”-operations and correspond
to attaching the next highest and the next smallest edge index re-
spectively to the new edge. In the case of a“new vertex”-operation
two new edges are introduced to the cut-border. In this case three
possible strategies are feasible. Either the first/second new edge is
processed next or both edges are delayed. The“split cut-border” -
and the“cut-border union”-operations arise much more rarely and
therefore were excluded from the analysis of the traversal strategy.
Thus we were left with twelve strategies, three choices for the“new
vertex”-operation and for each“connect”-operation two choices.
Luckily, it turned out that the strategy, where the new edge is pro-
cessed next after both“connect”-operations and where the second
edge is processed next after a“new vertex”-operation, is superior
over all others. This strategy achieved best compression and kept
the cut-border smallest for all models.

Table 3 shows for each model the maximum number of parts and
the maximum number of buffered vertices needed for mesh traver-

name part
max

vertmax prop
genus5 3.21�12.7% 32.75�15.4% 5.35
vase 2.30�24.2% 22.56�10.2% 2.99
club 3.11�11.9% 44.24�21.0% 4.45
surface 3.10� 9.7% 83.16�12.1% 3.10
spock 3.24�13.2% 120.10� 4.5% 3.23
face 3.40�15.6% 329.08�14.5% 4.22
jaw 4.76�10.7% 564.42�19.7% 4.55
head 9.00�11.1% 1255:20� 8.6% 3.56

Table 3: The maximum number of parts and the maximum number
of buffered vertices needed for mesh traversal. The last column
gives the quantityprop= (vertmax + 6 � svert)/

p
n.

sal. The values are averaged over several random choices of the
initial triangle. As the values fluctuate significantly we add three
standard deviations to the values such that 99.73% of the values
are smaller than our estimation if we suppose a normal distribution.
The maximum number of cut-border parts is comparably small and
can safely be estimated by 100 for the first compression of a triangle
mesh. To show that the maximum number of buffered vertices in-
creases with

p
n we divide the measured values plus three standard

deviations by
p
n and get values between three and six independent

of the size of the model. Thus a save estimation for the size of the
vertex buffer in a first compression of a triangle mesh is10

p
n.

4.3 Performance

The last column of table 2 shows that our approach allows com-
pression of the connectivity of a triangle mesh to two bits per tri-
angle3 and less. The theoretical lower limit is1:5 bits per triangle
which is achieved with uniform triangle meshes. To understand this
fact let us neglect the“split cut-border” - and“cut-border union”-
operations. Each“new vertex”-operation introduces one vertex and
one triangle, whereas each“connect”-operation only introduces a
triangle to the mesh. To arrive at a mesh with twice as many tri-
angles as vertices, equally many“new vertex”- and “connect”-
operations must appear. The Huffman code for the“new vertex”-
operation consumes one bit and the“connect”-operations are en-
coded with two and three bits as still other operations must be en-
coded. If both“connect”-operations are equally likely, we get a
compression to1:75 bits per triangle. If on the other hand one
“connect”-operation is completely negligible a compression to1:5

bits is feasible. The optimal traversal strategy found in the previous
section avoids“connect backward”-operation and therefore allows
for better Huffman-encoding than the other strategies.

Table 2 also shows the compression and decompression speed in
thousands of triangles per second measured on a 175MHz SGI/O2
R10000. The decompression algorithm clearly performs in linear
time in the number of triangles with about 800,000 triangles per
second. But the performance of the compression algorithm seems
to decrease with increasingn. Actually, this impression is caused
by the 1 MB data cache of the O2 which cannot keep the com-
plete random access representation of the larger models, whereas
the small cut-border data structure nicely fits into the cache during
decompression. On machines without data cache the performance
of the compression algorithm is also independent ofn. The com-
pression algorithm is approximately half as fast as the decompres-
sion algorithm. About 40% of the compression time is consumed
by the random access representation of the triangle mesh in order to
find the third vertex of the current vertex. The other ten percent are
used to determine the part and vertex index within the cut-border.

3The genus5 model consumes more storage as its genus forces five“cut-
border union”-operations and the model is relatively small.

If our compression scheme is used to increase the bandwidth
of transmission, storage or rendering, we can easily compute the
break-even point of the bandwidth. The total time consumed by
our compression scheme is the sum of the times spent for com-
pression, transmission and decompression. The total time must be
compared to the transmission time of the uncompressed mesh. Let
us assume for the uncompressed representation an index size of 2
bytes, such that each triangle is encoded in 6 bytes. If we further
use the estimation that the triangle mesh contains twice as many tri-
angles as vertices, the break-even point computes4 to a bandwidth
of 12MBit/sec. Thus the compression scheme can be used to im-
prove transmission of triangle meshes over standard 10MBit Ether-
net lines. As our approach allows us to compress and decompress
the triangle mesh incrementally, the triangle mesh can also be com-
pressed and decompressed in parallel to the transmission process.
Then even the transmission over a 100MBit Ethernet line could be
improved.

5 Extensions

In this section we describe how to extend our method on non ori-
entable triangle meshes. Additionally, we show how to encode at-
tributes which are attached to vertex-triangle pairs.

5.1 Non Orientable Triangle Meshes

As we restricted ourselves to 2-manifold triangle meshes, the neigh-
borhood of each vertex must still be orientable even for non ori-
entable meshes. From this follows that each cut-border part must
be orientable at any time: a cut-border part is a closed loop of adja-
cent edges. The orientation of one edge is passed on to an adjacent
edge through the consistent orientation of the neighborhood of their
common vertex. Therefore, only the“split cut-border” - and“cut-
border union”-operations need to be extended as they introduce or
eliminate cut-border parts. Both operations connect the current cut-
border edge to a third vertex in the cut-border, which is either in the
same or in another cut-border part. The only thing which can be
different in a non orientable triangle mesh is that the orientation of
the cut-border around this third vertex is in the opposite direction as
in the orientable case. Therefore, only one additional bit is needed
for each“1i” - and“

Si

p
” -operation, which encodes whether the

orientation around the third vertex is different. During compression
the value of the additional bit can be checked from the neighbor-
hood of the third vertex. Previously a“split cut-border” -operation
produced a new cut-border part. In the new case with different ori-
entations around the third vertex, the orientation of one of the new
parts must be reversed and the parts are concatenated again as illus-
trated in figure 5. In a“cut-border union”-operation the cut-border
part containing the third vertex is concatenated to the current cut-
border part and in the new case the orientation of the cut-border part
with the third vertex is reversed before concatenation.

5.2 Attributes For Vertex-Triangle Pairs

A lot of triangle meshes contain discontinuities that force attach-
ment of certain vertex attributes to vertex-triangle pairs. See for ex-
ample the genus5 model in figure 4, which contains a lot of creases.
For each vertex on a crease exist two or more different normals
which must be attached to the same vertex which is contained in
different triangles. Thus for models with creases it must be possible
to store several different vertex normals for different vertex-triangle
pairs. Similarly, discontinuities in the color attribute force storage

4with a compression rate of 400,000 triangles per second and a decom-
pression rate of 800,000 triangles per second

re-orientate

cut-border

cut-border cut-border

Figure 5: After some“split cut-border” -operations of a non ori-
entable manifold half of the cut-border (drawn in red) must be re-
oriented and no new part is generated.

crease
cut-border

crease

crease

v
v
t

3

v
v

2
vt2

t
t

v
1

t3v tv 1 2tv

3tv

Figure 6: Creases divide the neighborhood of a vertex into regions.
Each region contains the triangles with one vertex-triangle attribute.

of several RGBA values within the vertex-triangle pairs. A simple
solution to support vertex-triangle attributes is to encode these at-
tributes with every appearance of a vertex-triangle pair. This im-
plies that the same vertex-triangle attributes for one vertex may
be replicated several times. On the other hand if we duplicated
these vertices, which lay on creases, the vertex coordinates would
be replicated.

With a small amount of overhead we can do better and encode
each vertex location and each vertex-triangle attribute exactly once.
Let us denote the collection of all vertex specific data as for ex-
ample its coordinates withv and the different collections of the
vertex-triangle data withvt1 ; vt2 ; : : :. As an example let us de-
scribe the encoding ofvt in the case of creases as illustrated in
figure 6. The neighborhood of each vertex is split by the creases
into several regions. Within each region there is exactly one vertex-
triangle attribute valid for the vertex and all triangles in this region.
On the right side of figure 6 a cut-border vertex is shown during
compression or decompression. We see that at any time it is suffi-
cient to store besides the vertex datav two vertex-triangle attributes
v
tleft andvtright for each vertex within the cut-border. When a new

triangle is added to the cut-border, the vertex-triangle attributes of
a vertex can only change, if the vertex is part of the current cut-
border edge and if this edge is a crease. If one of the vertex-triangle
attributes for examplevtleft changes after an operation which adds a
triangle, there are two possible cases. Either a new vertex-triangle
attribute is transmitted over the bit stream or the new attribute is
copied fromv

tright.
To encode when a new vertex-triangle attribute has to be trans-

mitted we transmit one or two control bits after each operation,
which adds a triangle to the current cut-border edge. Two control
bits are needed only for the“connect”-operations as the new trian-
gle contains two cut-border edges. The control bits encode whether
the affected cut-border edges are creases. Afterwards, for each cut-
border vertex on a cut-border edge, which is a crease, we trans-
mit one further bit which encodes whether a new vertex-triangle
attribute is transmitted or the attribute should be copied from the
other vertex-triangle attribute stored in the cut-border. If we de-
note the total number of inner edges withe and the total number
of crease edges withec this approach results in an overhead of less

thane+ 2ec bits.

6 Conclusion

The presented compression technique provides not only a fast de-
compression algorithm but also a compression algorithm which per-
forms in only double the amount of time of the decompression al-
gorithm. The slow down of the compression algorithm is primarily
caused by the uncompressed random access mesh representation.
Faster mesh data structures must be investigated as well as the us-
age of hash tables to speed up the search for vertices within the
cut-border.

The simplicity of the algorithms allow for hardware implemen-
tation and suitable hardware will be designed in future work. But
also software implementations perform extremely well as shown in
the previous section. Beside the good performance and the sim-
plicity of the approach the connectivity of a triangle mesh is com-
pressed similarly well as by the best known compression methods.
Therefore even globally optimizing compression algorithms can be
replaced by the faster and simpler approach.

Acknowledgments

Many thanks to Reinhard Klein and Andreas Schilling for inspiring
discussions and to Michael Doggett for reviewing the paper.

References

[1] E. M. Arkin, M. Held, J. S. B. Mitchell, and S. S. Skiena.
Hamiltonian triangulations for fast rendering.Lecture Notes
in Computer Science, 855:36–57, 1994.

[2] Rueven Bar-Yehuda and Craig Gotsman. Time/space tradeoffs
for polygon mesh rendering.ACM Transactions on Graphics,
15(2):141–152, April 1996.

[3] M. Deering. Geometry compression. InComputer Graphics
(SIGGRAPH ’95 Proceedings), pages 13–20, 1995.

[4] Francine Evans, Steven S. Skiena, and Amitabh Varshney. Op-
timizing triangle strips for fast rendering. InIEEE Visualization
’96. IEEE, October 1996. ISBN 0-89791-864-9.

[5] Silicon Graphics Inc. GL programming guide. 1991.

[6] Scott Meyers.Effective C++: 50 specific ways to improve your
programs and designs. – 2. ed.Addison-Wesley, Reading, MA,
USA, 1997.

[7] Jackie Neider, Tom Davis, and Mason Woo.OpenGL Pro-
gramming Guide — The Official Guide to Learning OpenGL,
Version 1.1. Addison-Wesley, Reading, MA, USA, 1997.

[8] Gabriel Taubin and Jarek Rossignac. Geometric compres-
sion through topological surgery. Technical report, Yorktown
Heights, NY 10598, January 1996. IBM Research Report RC
20340.

