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Abstract

We develop a progressive refinement algorithm that generates an
approximate image quickly, then gradually refines it towards the fi-
nal result. Our algorithm can reconstruct a high-quality image after
evaluating only a small percentage of the pixels. For a typical scene,
evaluating only 6% of the pixels yields an approximate image that
is visually hard to distinguish from an image with all the pixels
evaluated. At this low sampling rate, previous techniques such as
adaptive stochastic sampling suffer from artifacts including heav-
ily jagged edges, missing object parts, and missing high-frequency
details.

A key ingredient of our algorithm is the directional coherence
map (DCM), a new technique for handling general radiance dis-
continuities in a progressive ray tracing framework. Essentially an
encoding of the directional coherence in image space, the DCM per-
forms well on discontinuities that are usually considered extremely
difficult, e.g. those involving non-polygonal geometry or caused by
secondary light sources. Incorporating the DCM into a ray tracing
system incurs only a negligible amount of additional computation.
More importantly, the DCM uses little memory and thus it preserves
the strengths of ray tracing systems in dealing with complex scenes.

We have implemented our algorithm on top of RADIANCE.
Our enhanced system can produce high-quality images signifi-
cantly faster than RADIANCE – sometimes by orders of magni-
tude. Moreover, when the baseline system becomes less effective
as its Monte Carlo components are challenged by difficult lighting
configurations, our system will still produce high quality images
by redistributing computation to the small percentage of pixels as
dictated by the DCM.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation.
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1 Introduction

Despite the rapidly increasing power of computers, global illumina-
tion is far from being a real-time process. Accurate radiance eval-
uations often require hours of computation for complex scenes. To
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balance rendering speed and visual realism, global illumination al-
gorithms often take a “progressive refinement” approach. In the
radiosity framework, Cohen [8] extended earlier work by Bergman
[2] and developed a progressive refinement algorithm that produces
successive approximations, refining continuously towards the final
radiosity solution.

As an acceleration strategy, the idea of progressive refinement
is readily applicable to radiance evaluation, which must account
for all major modes of light transport. One approach to progres-
sive radiance evaluation is to combine progressive radiosity with
ray tracing in a multi-pass system (e.g. [6, 27]). Alternatively, we
can use a progressive ray tracing algorithm based on Monte Carlo
light transport [16]. Compared to the multi-pass approach, pro-
gressive ray tracing has several important advantages in real-world
applications. In particular, ray tracing uses much less memory than
radiosity, while placing fewer restrictions on surface geometry and
reflectance models.

This paper develops a radiance evaluation algorithm using pro-
gressive ray tracing. Based on the hierarchical integration technique
by Kajiya [16], Painter has proposed an adaptive sampling method
for progressively refining a ray traced image [23] (see also [37]).
One of his important contributions was to recognize that in a pro-
gressive ray tracing system, different sampling strategies apply to
the task of locating image features and the task of increasing pixel
confidence [23].1 Our main goal is to capture image features early
and generate high-quality images as quickly as possible. A funda-
mental obstacle facing adaptive sampling techniques (including the
edge following methods for anti-aliasing [3, 12, 38]) is that these
techniques cannot produce high-quality images before densely sam-
pling all the high-frequency details. We overcome this obstacle with
knowledge about discontinuities.

Researchers have been aware of the importance of discontinu-
ities for decades, and investigations in this area have led to algo-
rithms for shadows (e.g. [10, 7, 5, 30, 32, 28, 11]) and disconti-
nuity meshing (e.g. [14, 20]). The discontinuities computed by
these object-space algorithms may be projected and inserted into
an image-plane discontinuity mesh (IPDM), as was proposed by
Pighin [24]. The IPDM produces dramatically better shadows from
early on, but there are problems, including difficulties in handling
non-polygonal geometry and discontinuities caused by secondary
sources, as well as the substantial space requirements for discon-
tinuity computations with a complex scene. A big source of in-
efficiency in the existing discontinuity algorithms is that they try
to locatepotentialdiscontinuities instead of the actual discontinu-
ities. In addition, these object-space algorithms cannot deal with the
view-dependent specular components of radiance discontinuities.

A key ingredient of our algorithm is thedirectional coherence
map(DCM), a new technique for handling general radiance discon-
tinuities in a progressive ray tracing framework. The DCM includes

1The task of increasing pixel confidence has attracted extensive research
in the context of anti-aliasing [13]. We do not develop new anti-aliasing
techniques; instead we construct our progressive renderer on top of a base-
line ray tracer such that the pixel confidences of our system depend on the
sampling strategy of the baseline system. By building our progressive ren-
derer this way, we know in advance that we will capture the same set of
features as the baseline system does.

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

Supplemental Materials
Supplemental materials for this paper are available in the papers/guo directory.



two main components: an adaptive partition of the image plane into
square blocks, such that each block is simple enough to have at most
one discontinuity edge, and an estimation of the orientation of the
discontinuity edge in each block. The DCM helps us to capture ra-
diance discontinuities through a finite element approximation to the
radiance function, with the finite elements on each block oriented
in accordance with the orientation of the discontinuity within that
block.

In facing the challenge of treating general radiance discontinu-
ities, our overall strategy is to combine object-space and image-
space data. Specifically, we efficiently obtain object boundaries in
the image using the Z-buffer hardware [36]. By doing so we benefit
from thea priori knowledge of the scene. We extract other discon-
tinuities from densely evaluated pixels on the block boundaries in
the DCM. Extracting discontinuity information from radiance sam-
ples is a unique feature of our algorithm. This feature not only
allows us to treat several types of discontinuities ignored by pre-
vious algorithms, but also saves us time by focusing on theactual
discontinuities.

We have implemented our progressive rendering algorithm us-
ing RADIANCE [33] as the baseline system. To render images of
comparable quality, our system typically takes1=4 to 1=15 of the
time needed by RADIANCE. When their Monte Carlo components
are challenged by difficult lighting configurations, RADIANCE and
other ray tracing systems for global illumination [27] will become
less effective. In this situation, our system can still produce high
quality images by reallocating computational resources to increase
the accuracy of the small percentage of pixels needed by the DCM.
Fig. 12 demonstrates this capability. The DCM performs well on a
variety of discontinuities, including those that can be handled by ex-
isting discontinuity algorithms (see, e.g., Fig. 10 with fine shadows
cast by polygonal occluders) and those that cannot (see, e.g., Fig. 13
with closely packed surfaces which are both curved and specular).
Finally, compared to Painter’s successful system based on progres-
sive adaptive sampling [23], our system generates far better images
for the same amount of computation time, as Fig. 2 (c) and Fig. 4
show.

The remainder of the paper is organized as follows. In Section 2,
we give a high level overview of the progressive rendering pipeline
in our system. Section 3 describes the treatment of a block with
simple discontinuities, which serves as the foundation of the DCM
and is based on the least discrepancy direction and oriented finite el-
ements. Section 4 discusses the initialization and refinements of the
DCM, detailing steps for partitioning the image plane into blocks
and tests for determining if a block has only simple discontinuities.
Section 5 provides the details of our implementation. Results are
presented in Section 6, followed in Section 7 by conclusions and
suggestions for future work.

2 System Overview

Our progressive rendering system relies on a baseline ray tracing
system for pixel radiance evaluations. This type of ray tracing sys-
tem was first proposed by Kajiya [16], building on earlier work by
Cook [9] and Whitted [35]. For simplicity, we assume the base-
line system generates an anti-aliased image by filtering an enlarged
work imageof super-sample resolution (this assumption can be re-
laxed to allow baseline ray tracers that collect super-samples for
individual pixels of the output image). Our progressive rendering
system augments the baseline system with a component responsible
for deciding where to sample and how to reconstruct an approxi-
mate image on user demand.

The rendering pipeline of our system, shown in Fig. 1, has two
main stages. The first is the regular subdivision stage, in which we
use a quadtree to partition the image plane into small blocks. We
refer to these blocks as elementary blocks. To perform the regular
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Figure 1: The rendering pipeline of our system. The approximate
image is available any time, on demand. When all blocks are of
the pixel size, the iterative block refinement terminates with the
approximate image output as the final image.

subdivision, we start with the entire image plane as the root block
and recursively subdivide each block in four until the current block
has become an elementary one. During the regular subdivision, the
four corners of each block are sampled, and an approximate image
may be created for display at any time by interpolating the corner
values. Fig. 2 (a) shows an example image at the end of the regular
subdivision stage.

The second stage is an iterative process in which we begin con-
structing and refining the DCM. In each iteration, we select a sub-
set of blocks as edge blocks and analyze them for discontinuities;
blocks not selected simply go through another step of regular subdi-
vision. On each edge block, we densely sample the block boundary
(not just the four corners) and subdivide the block into four quads
for the next iteration. From the evaluated boundary pixels and some
additional object-space data, we infer the discontinuities on each
edge block and record the information into the DCM. With this in-
formation, an oriented finite element approximation is constructed
on the block. The oriented finite elements on edge blocks and the
bilinear interpolants on the other blocks may be resampled into an
approximate image at the user’s request. Figs. 2 (b) and (c) are
images from the second stage. Fig. 2 (d) is the final image.

3 Blocks with Simple Discontinuities

Taking a divide-and-conquer approach, the DCM treats discontinu-
ities by partitioning the image plane into small blocks so that most
blocks are crossed by no more than one discontinuity edge. More-
over, the edge is expected to have small curvature like the example
in Fig. 3 (a) as opposed to the corner in Fig. 3 (b). Since the ef-
fectiveness of the DCM depends on its performance on blocks with
simple discontinuities, we wish to capture such discontinuities us-
ing a small number of samples. Traditionally, adaptive sampling
techniques [22, 23, 13] are used to reduce the amount of sampling
needed to capture features or discontinuities. Adaptive sampling is
effective in that it significantly reduces sampling in areas away from
discontinuities. However, adaptive sampling is not completely sat-
isfactory for us because it does not produce good images unless
the discontinuity areas have been densely sampled. In this section,
we explore an alternative based on least discrepancy directions and
oriented finite elements.

3.1 Discontinuity Characteristics

A simple way to capture a discontinuity edge within a block is to
build a mathematical model for the edge. Since the block is small,
the edge can be regarded as straight, and we can model its behavior
by locating the endpoints on the block boundary. This is essentially
the approach we take, even though the basic idea is modified in
several ways to accommodate the special properties of image data.



Figure 2: Progressive renderings of an office scene lit by sunlight transferred through a light shelf. (a) The approximate image at the end
of the regular subdivision, with 1.6% evaluated pixels located at the corners of the8 � 8 blocks in the work image. (b) The approximate
image after boundary evaluations for all8 � 8 edge blocks in the work image, with 5% of pixels evaluated. (c) The approximate image
after evaluating about 6% of the pixels, whose locations are shown in Fig. 5 (bottom left). (d) The final image as rendered by the baseline
RADIANCE system. The scene model was supplied courtesy of Greg W. Larson.
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Figure 3: Discontinuity analysis on a block. The discontinuity in
(a) is considered simple whereas that in (b) is not, because of the
corner. The geometry for the least-discrepancy direction is given in
(c). In (d) we show the construction of a typical bilinear element
fe(x) on a quadrilateralQ = [z1z2z3z4] with known node val-
uesfn(zi); i = 1 : 4. Essentially this construction is a Gouraud
interpolation with the scanline rotated to be parallel with the least-
discrepancy direction. Note that (d) is a zoomed version of the
shaded element in (f). Finally, oriented finite elements are shown in
(e) through (h) for four different orientations.

Working with image data differs fundamentally from working
with geometric data. The discontinuity edges computed by discon-
tinuity meshing algorithms have two properties. First, the discon-
tinuities are abstract mathematical lines with no shape or width.
Second, discontinuities are either present or absent at a given lo-
cation. In contrast, image edges have spatial scales (e.g. sharp
or fuzzy) and their existence at a given location is modulated by
their strength [21] (a weak edge may be just a faint wisp). These
properties of image edges create challenges. For example, it is no
longer trivial to define the location of the edge. In addition, the fact
that image edges have characteristics such as shape and strength re-
quires more information to be estimated with the small amount of
sampling at our disposal.

The least discrepancy direction and oriented finite element dis-
cussed below form an integrated approach to extracting discontinu-
ity information from image data and modeling the discontinuities in
a finite element approximation to the block radiance function. This
approach does not explicitly refer to discontinuity locations, and
it models edge shape as well as strength. Our discussions on the
least-discrepancy direction and oriented finite elements can be eas-
ily extended to any convex image blocks, including the non-square
blocks often encountered in a quadtree subdivision of the image
plane.



3.2 The Least Discrepancy Direction

The least discrepancy directionm(Bk) of a k � k block Bk is
defined to be the unit vector that minimizes the contour integral

d(n) =
1

s

Z
C

(f(x+ t(x) n)� f(x))2 ds;

whereC is the boundary contour ofBk and s is arc length (the
reader may observe that the integration actually only needs to ex-
tend over half the contour). For a fixed directionn and a point
x on C, the scalart(x) is chosen such that the parametric line
y(t) = x+ t n intersects the contourC atx andy = x+ t(x) n,
as is shown Fig. 3 (c). Once the radiance functionf(x) is known
on the contourC through boundary evaluation, thedirectional dis-
crepancyd(n) is a well-defined function of the directionn.

For implementation, we letn = [cos �; sin �] and discretize
the angular range0 � � < � into h different directions�i =
i�=h; i = 0 : (h� 1). For each directionni = [cos �i; sin �i], the
directional discrepancyd(ni) is evaluated as

di = d(ni) =
1

4(k � 1)

X
p2P

(f(p+ t(p) ni)� f(p))2;

whereP is the set of all pixels inC andt(p) is chosen such that
the liney(t) = p + t ni intersects the contourC at p andp0 =
p + t(p) ni. Even thoughp is a pixel location,p0 may not be, in
which casef(p0) is linearly interpolated from two adjacent pixel
values. From the evaluated sequencefd0; :::; dh�1g, we find the
minimizerdj = min fd0; :::; dh�1g and set the least discrepancy
directionm(Bk) = nj .

3.3 Oriented Finite Elements

Once the least discrepancy direction is known, the radiance func-
tion is approximated by a finite element function whose elements
are oriented along the least discrepancy direction. This finite ele-
ment approximation is a continuous function consisting of bilinear
elements (quadratic polynomials). Fig. 3 (e) through (h) describes
oriented finite elements for an8� 8 block withh = 8 (the angular
range0 � � < � is discretized into eight different directions). In
this case, there are eight different types of oriented finite elements,
one for each discretized direction. Only four of them are shown in
the figure; the other four are obtained from the ones shown by a 90-
degree rotation. The integer values in Fig. 3 (e) mark the locations
of the pixel centers on the block boundary. These locations are also
the locations for the node values of the finite elements. In Fig. 3
(e) and (h), there are nodes situated halfway between two pixels.
For a node of this sort, the node value is taken to be the average of
the two adjacent pixels. In general, for an arbitrary� some nodes
of the bilinear elements may not coincide with the pixel locations,
and these nodes values are linearly interpolated from the adjacent
pixels.

To compare the quality of images generated using oriented finite
elements and Painter’s adaptive stochastic sampling method [23],
Fig. 4 (bottom) examines zoomed views of the same region in Fig. 2
(c) and Fig. 4 (top) (both images are filtered down from their work
images using a Gaussian). For the same sampling rate, the DCM al-
ready produces a high-quality image while Painter’s method suffers
from artifacts including heavily jagged edges, missing objects parts,
and missing high-frequency details. Fig. 5 shows the sampling pat-
terns of Painter’s method and the DCM. Also compare the zoomed
views in Fig. 4 with the zoomed sampling patterns in Fig. 5 (the
zoomed sampling pattern of the DCM does not include the extra
samples needed for the first-order test described in Section 4.3, but
the extra sampling is included in the 6% sampling rate reported).

Figure 4: Comparison between the DCM and adaptive stochastic
sampling with the office example. The top image, rendered by sam-
pling 6% of the pixels using Painter’s adaptive stochastic sampling
technique, should be compared with the 6% DCM image in Fig. 2
(c). The bottom image contains four zoomed views of the same re-
gion: 6% Painter image in (a) with its work image in (b), and 6%
DCM image in (c) with its work image in (d).

Notice that Painter’s method very gracefully locates the features,
but the number of samples at our disposal is just too small to make
this method effective. We have also compared the DCM with adap-
tive super-sampling [35] and stratified sampling [19]. Painter’s
method performs much better than the other two because its un-
derlying hierarchical integration sampling technique combines the
strengths of adaptive and stratified sampling by stratifying samples
with strata that are dynamically adjusted as more samples are taken
[16].

3.4 Directional Coherence

Why does the least discrepancy direction work? Simply stated, it
works because of image-space coherence. According to Sutherland
[29], coherence is the degree to which parts of a scene or its pro-
jection exhibit local similarities. Often we think of a discontinuity
edge as the break of coherence, since image data change abruptly
across the edge. However, discontinuities do not break all forms
of coherence. Specifically, image data are typically coherent along
the direction of the discontinuity edge even if they change abruptly
across the edge [21]. Contour-based image coding (e.g. [21]) and
more broadly, second generation image coding [18] takes advan-
tage of this form of coherence. For a block with a simple discon-
tinuity edge, the least discrepancy direction is really the direction



Figure 5: Comparison of the sampling patterns of adaptive stochastic sampling (top row) and the DCM (bottom row). The patterns in the
left column are taken from RADIANCE work images described in Section 5. Some of the fine features are shown in zoomed views of the
sampling patterns in the right column. These zoomed views correspond to the same region as the zoomed views in Fig. 4.

of maximal coherence as can be inferred from the evaluated bound-
ary pixels. By orienting the finite elements along this direction, we
maximize the likelihood of capturing the discontinuity edge along
with its characteristics (section 4.3 on block simplicity tests for the
treatment of more complex discontinuities such as corners).

4 Coherence Map Construction and Re-
finements

A DCM consists of a partition of the image plane into square
blocks, with some selected blocks having a direction� (0 � � < �)
assigned to each of them. These selected blocks are called edge
blocks; all other blocks are smooth blocks. The boundary of every
edge block is densely evaluated, whereas a smooth block only has
its four corners evaluated. To reconstruct an approximate image, we
bilinearly interpolate each smooth block and build a finite element
approximation on every edge block, with the elements oriented to
the direction recorded in the DCM.

The main reason for separating edge and smooth blocks is effi-
ciency. Since it is much more expensive to sample an edge block,
we wish to reserve edge blocks for areas with discontinuities. In
our block classification procedure, we select edge blocks based on
evaluated pixel radiance and object-space data. Thus projections
of object boundaries are taken into consideration from the begin-
ning even for small objects. To further reduce the chance of miss-
ing blocks with discontinuities, a smooth block is not automatically

subdivided into four smooth quads in the block refinement step. In-
stead, each quad is reevaluated to see if it contains discontinuities.

The DCM is a divide-and-conquer technique: it aims to parti-
tion the image plane into blocks with simple structures (i.e., blocks
crossed by at most one discontinuity edge). At any given stage
of the progressive radiance evaluation, the oriented finite elements
produce good results on edge blocks with simple structures; the re-
sults on more complex edge blocks are less certain. Naturally, we
wish to identify these complex blocks so that we can focus our sam-
pling efforts on them at the next stage of the radiance evaluation.
With this goal in mind, we have designed block simplicity tests for
edge blocks. An edge block is a simple edge block if it passes these
simplicity tests; otherwise it is a complex edge block.

A big concern with the block simplicity tests is that, in general,
it is not possible to guarantee that a block is crossed by at most
one edge as long as the block interior is not fully sampled. Nev-
ertheless, with the evaluated block boundary we can identify many
offending blocks. Our experiments indicate that with carefully de-
signed simplicity tests, we can identify and subdivide sufficiently
many offending blocks for the purpose of generating high-quality
images. To further avoid mistreating a block with complex interior
discontinuities, we constantly reassess the simplicity of a block as
more evaluated pixels become available. This verification is done
as part of the lazy boundary evaluation described later.
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Figure 6: Lazy boundary evaluation on a simple edge block. (a)
A simple edge block, with the light grey boundary representing
evaluated pixels. (b) The difference between a newly evaluated
pixel (marked by the grey dot) and the value predicted by the fi-
nite element approximation is within the prescribed tolerance, and
no boundary evaluation is invoked. (c) One of the newly evaluated
pixels, marked by the black dot, deviates too much from the value
predicted by the current finite element approximation. (d) Bound-
ary evaluations are triggered for the surrounding blocks.

4.1 Refinement Steps for the DCM

As mentioned in Section 2, the iterations for the DCM construc-
tion and refinements begin after the regular subdivision stage has
partitioned the image plane into elementary blocks. Each iteration
of the DCM refinement takes five steps. First, the block classi-
fication step examines the pool of smooth blocks to select edge
blocks. For the first iteration, this pool consists of all elementary
blocks. In any later iteration, the pool is formed by collecting the
four quads subdivided from the smooth blocks in the previous itera-
tion. The classification also marks as edge blocks the four quads of
every complex edge block from the previous iteration. In the sec-
ond step, the boundary evaluation procedure densely samples the
block boundary of every edge block. Then, the simplicity test step
analyzes every edge block and labels as complex edge blocks those
that fail any block simplicity test. The fourth step builds oriented
finite elements, and the fifth step subdivides every block into four
quads for the next iteration.

The four quadsBi; i = 1 : 4 of a simple edge blockB from the
previous iteration are computed using a lazy boundary evaluation
procedure as shown in Fig. 6. SinceB is a simple edge block, we
already have a finite element approximationf(x) on B. Our ex-
periments indicate that this finite element approximation is usually
of very good quality unless some complex structures in the interior
of B have gone undetected in the previous iteration. Thus before
going through the normal boundary evaluation withBi, we evalu-
ate the corner pixels ofBi and compare the resulting pixel values
with the pixel values predicted by the existing finite element ap-
proximationf(x). If the predicted values are within a prescribed
tolerance (1% relative error in our system) from the evaluated pixel
values, then the simplicity ofB is re-confirmed and we continue
to usef(x) on the new blocksBi with small modifications. More
specifically, we skip the normal boundary evaluation procedure and
substitutef(x) for the pixel values everywhere on the boundary of
Bi except at the corners, where the evaluated pixels are used. With
the block boundary so obtained, we construct a finite element ap-
proximationfi(x) onBi with the least discrepancy direction ofB.
By incorporating the evaluated pixels intofi(x), we force the ap-
proximate image to converge to the final image as rendered by the
baseline system.

4.2 Block Classification

A smooth block can be reclassified as an edge block through the fol-
lowing two steps. First, a block contrast value is computed for each
block and this value is tested against the prescribed contrast thresh-
old tc. The block is classified as an edge block if its block contrast
value exceeds the thresholdtc. Second, a visible-line rendering of

(a) (b) (c)

Figure 7: Block simplicity test examples. Case (a) passes both the
zero order and first order tests. Case (b) passes the zero order test
but not the first order. Case (c) fails both tests. The black and light
grey line segments on the block boundary are spans.

the scene is generated, and every block crossed by a visible line is
classified as an edge block.
Contrast Thresholding. For an elementary block with corner lu-
minance valuesfg1; :::; g4g, the block contrast quantifies the ratio
between the average luminance�g and the deviation�g from the
average. Following Mitchell [22], we compute the block contrast
asmax�min

max+min
, wheremax andmin are the maximum and minimum

of the corner luminance valuesfg1; :::; g4g respectively. The cri-
terion for locating high-frequency details has a significant impact
on the effectiveness of the initial edge block selection. The issue
here is not the loss of details since the progressive rendering even-
tually produces the same image as the baseline rendering system.
The main concern is whether certain details will appear at earlier
stages of the rendering process. In this regard, a criterion based
on contrast�g=�g compares favorably with methods that use devia-
tion �g alone [19], because the nonlinear human visual sensitivity
to the change in light intensity is closely modeled by the contrast
�g=�g rather than just�g. This logarithmic contrast perception
model is the most widely used among other models [15]. In our
implementation, we settc = 0:05.
Computing Visible Lines. The visible lines that we choose in-
clude both object boundaries from the scene geometry and their re-
flections in planar mirrors. These visible lines are efficiently com-
putable through the standard graphics pipeline [36], which supports
both polygonal objects and commonly-used curved objects. We
use polygon offset to avoid the “stitching” artifact that could result
from a naive Z-buffer implementation [36], because stitching turns
a solid line into a dotted line and thus allows it to pass through an
elementary block undetected. For a curved object the visible-line
renderer is instructed to draw the silhouette only [36]. The mirror
reflections of visible lines are computed as in [24].

Note that a pure contrast-driven classification can be deceptive
for large blocks. To alleviate this problem, we use visible lines to
account for object boundaries and at each iteration we reclassify
smooth blocks to recover features missed in the previous iteration
due to the larger blocks and fewer available samples.

4.3 Block Simplicity Tests

The simplicity tests in our system are designed systematically based
on the traditional methodology of proof-by-contradiction. First we
assume that the block is crossed by at most one edge. From this
assumption, we derive facts about the discontinuities on the block
boundary. The derived facts can be verified using the known ra-
diance values on the block boundary. The block fails the tests if
any contradiction arises. Fig. 7 provides examples for some of the
following tests.
Zero Order Test. For a block crossed by a single edge, we should
be able to find a luminance thresholdtb, such that the block can be
divided into two simply connected regions (connected and having
no holes): one for pixels with luminance above the threshold and
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Figure 8: The first order test for block simplicity. (a) The tangent
direction for the edge passing throughx0 can be estimated from the
transition pointsx0 andx00 on two adjacent layers. (b) To pass the
first order test, the line segment[x0 x1] (the thin black line) and the
tangent directions at the two transition pointsx0 andx1 (the two
thick black lines) must be nearly parallel.

the other for those below. The zero order test identifies the blocks
that cannot be so divided, using the evaluated boundary pixels of
the block. In our system, we settb = 0:5(b1 + d1), whereb1 is the
highest luminance on the block boundary andd1 the lowest.

Thresholding withtb converts the block boundary into a binary
pattern consisting of “1-pixels” that exceedtc and “0-pixels” that
do not. Juxtaposed 1-pixels can be collected together to form a “1-
span”, and likewise 0-pixels form “0-spans” (Fig. 7). Two spans are
separated by a transition point, which is defined as a 1-pixel having
at least one 0-pixel neighbor. To simplify this binary pattern, we
apply a median filter of length three to eliminate spans of one-pixel
long. This simplification is needed because of the Monte Carlo
component in the baseline ray tracing system, and the median fil-
tering helps to eliminate the spurious spans caused by Monte Carlo
noise. To reduce noise effects, we also apply a length-three Bartlett
filter to the luminance values on the block boundary before thresh-
olding. The filtered values are only used for computing the spans,
not for constructing the block radiance approximation. With spans
of length one removed, the number of transition points on the block
boundary must be even. If there are more than two transition points,
the block fails the zero order test. Otherwise the block survives the
test and moves onto the first order test.
First Order Test . A block with no transition points passes the first
order test by default. For a block having two transition points, let
the transition points bex0 andx1. If the block is crossed by a single
edge passing throughx0 andx1, the tangent vectors of the edge at
the two points should be close in direction. The first order test com-
putes the tangent vectors atx0 andx1 and measures the difference
between the tangent directions against a prescribed tangent thresh-
old tm. If the measured difference exceeds the threshold, the block
fails the test. Let�01 be the direction of the line segment[x0 x1]
that connectsx0 andx1, whose tangent directions are determined
by angles�0 and�1 respectively. The difference of the tangent di-
rections is measured bym01 = max(j�0� �01j; j�1� �01j). Fig. 8
(b) illustrates the geometry. The thresholdtm is set to0:05� times
theL2 norm jjx1 � x0jj2 in our implementation.

A challenging technical problem in the first order test is the ef-
ficient computation of tangent vectors at the transition points. We
have developed a technique that estimates tangent directions at the
cost of a few additional pixel radiance evaluations. To estimate the
angle�0 atx0, we evaluate the luminance function at pixels along
a short line segmentS next tox0 on the inner layer of pixels, as is
shown in Fig. 8 (a). The luminance thresholdtb and a length-three
median filter are applied to these additional luminance values to ex-
tend the binary pattern from the boundary layer to the line segment
S. The evaluation process starts from the pixel next tox0 in the
inner layer and elongatesS in both directions, stopping as soon as
the transition pointx00 corresponding tox0 is found onS. At pixel

resolution, the transition pointsx00 andx0 determine the tangent
angle�0.

Binarizing images to extract geometric patterns is not new; re-
searchers have used this technique in the field of video coding [15].
An example is the geometric-structure-based directional filtering
proposed by Zeng [39]. Even though the patterns extracted in his
work are complex and uncertain, he has successfully used these pat-
terns to improve block-based video coding at low bit rates.
Object Test. We enforce the constraint that no more than two
object tags are allowed on the boundary of a block. In addition,
the object tags also form object spans similar to the spans in the
zero order test, and only two object spans are allowed on the block
boundary. A block violating these constraints will not be consid-
ered simple. The object tags are returned by the baseline ray tracer
as by-products of pixel radiance evaluations.

If a block fails any of the above block simplicity tests, it is la-
beled as a complex edge block. In the next iteration of block re-
finement, we devote more sampling to a complex edge blockBc

by performing real (i.e. not lazy) boundary evaluations on the four
quads subdivided fromBc.

4.4 Discussion

The DCM is useful because it allows us to generate high-quality im-
ages from a small percentage of evaluated pixels. Unfortunately, the
danger of serious approximation errors also grows with the num-
ber of unevaluated pixels. For this reason, it is desirable to have a
technique that uses known data (e.g. scene geometry and evaluated
pixels) to bound the errors, possibly with the help of some analyti-
cal formulation [31, 26, 1]. We have not derived such a technique.
Instead, we have built two simple principles into the DCM con-
struction. First, we always incorporate the newly evaluated pixels
into the DCM and never overwrite them. As a result, the approx-
imate image is guaranteed to converge to the final image as ren-
dered by the baseline system, and all approximation errors are thus
eliminated eventually. The second principle is that we regularly
re-examine our previous decisions in partitioning blocks to detect
errors: smooth blocks are tested for discontinuities and simple edge
blocks are probed for complex structures. These error detections are
done using newly evaluated pixels as part of the block classification
and lazy boundary evaluation.

In practice, failure to detect discontinuities means the delay of
high-quality images. In this regard, the DCM performs better with
object boundaries than shadows and highlights, which can go un-
detected with larger blocks. In fact, small highlights and shadows
in the block interior will certainly go undetected until the block is
subdivided. Fig. 2 (c) contains errors of this sort (e.g. the cup on
the table). These performance problems often have solutions, albeit
at additional cost. For example, one way to improve on shadows is
to include shadow edges as in [24].

5 Implementation

We have implemented our progressive rendering algorithm using
the RADIANCE system developed by Ward [33]. RADIANCE is a
physics-based lighting simulation system that has gained consider-
able reputation because of its successful use in real-world projects
[33]. Our progressive rendering system allows the user to exam-
ine the approximate image any time during the rendering process.
When their Monte Carlo components are challenged by difficult
lighting configurations, RADIANCE and other ray tracing systems
for global illumination [27] will become less effective. In this sort
of situation, our system uses the confidence relocation technique
described in Section 6.2 to generate images of high visual quality.
Progressive Rendering with RADIANCE. In the baseline RADI-
ANCE system, a work image is first generated at a super-sample
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Figure 9: Boundary evaluation procedures for a8 � 8 block. The
small grey squares stand for evaluated pixels. Other pixels on the
block boundary are linearly interpolated. For a simple edge block,
we follow the sequence (a), (b), (c), and (d), which evenly dis-
tributes evaluated pixels on the block boundary. For a complex edge
block, we also need to distribute evaluated pixels in the block inte-
rior, and we follow the sequence (a), (b), (c), (e), (f), (g), and (h).

resolution by a hybrid deterministic and Monte Carlo ray tracing
program. This work image is then filtered down to the resolution of
the output image for anti-aliasing. To generate high-quality images
with penumbra from a scene with fine geometric details, as is the
case with our examples, the work image is3 � 3 times as large as
the output image, and every pixel is evaluated through ray tracing.

For pixel radiance evaluation, our progressive rendering system
uses exactly the same calculation parameters as the baseline sys-
tem. Like the baseline system, our progressive system performs the
rendering in batch mode. Anytime during the rendering process,
the finite element approximation to the radiance function can be as-
sembled “on-demand” in a few seconds, and then re-sampled onto
the work image. For the images in this paper, we filtered the work
image using the Gauss filter provided with RADIANCE to produce
the output image. For the DCM construction, we choose the size of
the elementary block to be8 � 8 and discretize the angular range
[0; �] into 8 different directions. All the other DCM-related param-
eters have been given in the previous sections.

Fig. 9 explains boundary evaluations for8� 8 blocks. The idea
is to evenly distribute evaluated pixels in order to allow the con-
struction of oriented finite elements even before every pixel on the
block boundary is evaluated. Note that for a complex edge block,
we jump from Fig. 9 (c) to (d) because in (c) the distance between
evaluated pixels (2) is already smaller than the size of the quads (4)
and when this happens we start distributing evaluated pixels on the
boundaries of the four quads of a complex edge block.
Generating Better Images by Confidence Relocation. Normally
our approximate image progresses towards a final image deter-
mined by some given calculation parameters. If this final image
suffers from severe artifacts, we must raise the quality standard and
progress towards a better final image. This approach is especially
relevant to the Monte Carlo components of radiance evaluation.
The Monte Carlo computations introduce noise while capturing dif-
fuse interreflections. A common approach to noise reduction is to
increase the sampling rates. However, as Rushmeier argues, the
sampling rates needed can be impractically high for certain diffi-
cult lighting configurations [25].

With the DCM, it is possible to generate images with high vi-
sual quality even when the Monte Carlo calculations make it too
costly to evaluate every pixel accurately. The basic idea is sim-
ple: the Monte Carlo noise is not part of the radiance function by
nature, but a manifestation of the limitations of our radiance evalua-
tion techniques. This means that when the pixel values are accurate,
they will exhibit the image-space coherence we see in photographs.

image L1(L2) error time (C) time (NC)
office 6% 0.008(0.02) 0.9 hrs 8.9 hrs
office final - 16.5 hrs 38.5 hrs
museum 7% 0.005(0.016) 0.05 hrs 1.2 hrs
museum final - 1 hrs 5 hrs

Table 1: Progressive rendering statistics. The “time (C)” column
lists timings for scenes with cached irradiances, while the “time
(NC)” column lists timings for scenes without caching.

In particular, directional coherence will be present and we can use
the DCM to reconstruct high-quality images from a small percent-
age of evaluated pixels. Improvement of pixel accuracy is usually
achieved by increasing our confidence in the pixel values through
variance reduction. When the available computation is more or less
uniformly spread over the entire image plane, so is our confidence
in the pixel values. If the resulting image is poor, we can try to
improve the accuracy of every pixel, but that usually means a dra-
matic increase in computational costs. An alternative is to improve
the accuracy of pixel values in a progressive system based on the
DCM. Since the progressive system can generate high-quality im-
ages with a small percentage of evaluated pixels, we usually obtain
high-quality images without additional computation. When taking
the second approach, we relocate the uniformly spread low confi-
dence to concentrated high confidence in the small percentage of
pixels needed by the DCM.

In our implementation, we use hierarchical integration [16] to
reduce the variance within each pixel, stopping when a confidence
interval test passes [23].
Time and Space Considerations. Compared to the cost of pixel
radiance evaluations, the time needed for managing the DCM and
oriented finite elements is negligible. More specifically, the time
complexity of DCM-related construction is no greater than an in-
verse discrete cosine transform (DCT), which is used for decoding
JPEG images [15]. For a typical image included in this paper, gen-
erating an approximate image can be generated on the order of sec-
onds as opposed to the few hours needed for evaluating the pixel
radiance. The memory requirements are also modest. In addition
to the storage needed by the baseline RADIANCE, we need only
store a list of edge blocks and a horizontal strip of the work image.
The complete work image is stored on the disk and it is retrieved
only when the user demands the system to display the current ap-
proximate image.

6 Results

All the high-quality approximate images reported in this paper are
obtained after the progressive rendering system finished processing
all 4�4 edge blocks. At this point, the approximate images become
visually hard to distinguish from the final images for most scenes.

6.1 Progressive Rendering

Fig. 2 shows a series of images progressively rendered from an of-
fice scene lit by sunlight transferred through a light shelf. This
scene was introduced in [33] to demonstrate how RADIANCE pre-
processes “virtual” light sources to optimize light calculations for
certain difficult environments. Both the baseline and the progres-
sive systems have included that optimization. As is typical with the
other scenes we have tested, 6% evaluated pixels allow us to gener-
ate a high-quality image that is hard to distinguish visually from the
final image. See Fig. 5 for the locations of the 6% samples. Fig. 10



Figure 10: Progressive renderings of a museum scene lit by skylight
through the window. Notice the fine shadows cast by the polygonal
occluders. The top image is the approximate image after evaluating
about 7% of the pixels. The bottom image is the image rendered by
the baseline RADIANCE system. The scene model was provided
courtesy of Charles Ehrlich.

shows another example, which is a museum lit by skylight through
the window.

To quantify the errors in a high-quality approximate image, we
subtract it from the final imageF to get an error imageE. Then we
compute the relative error as eitherjjEjj1=jjF jj1 or jjEjj2=jjF jj2,
where jj:jj1 and jj:jj2 is theL1 andL2 norms respectively. The
resultingL1 andL2 errors for the two examples are in Table 1.

Table 1 also compares the computation times for the high-quality
approximate images and the final images. All timings are taken on
a 180 MHz SGI Indy workstation with 64 Mb of main memory.
The time indicated for each final image is the time needed by the
baseline RADIANCE system. The time for an approximate image
includes not only the time for pixel radiance evaluations but also all
the computation related to the DCM.

An important factor that affects the timings is the irradiance
caching in RADIANCE [34]. The diffuse interreflections in the
rendering equation can be calculated using Monte Carlo ray trac-
ing [16], but to reduce the variance to a tolerable level, hundreds
of rays must be spawned for each eye-ray that strikes a surface.
To avoid invoking this expensive calculation at every pixel, RADI-
ANCE caches indirect diffuse contributions and interpolates them
over each surface in the scene. At an early rendering stage, there is
little irradiance cached in the scene to interpolate from, and an eye-
ray is more expensive to evaluate. As time goes by, more cached
values become available, and the radiance evaluation accelerates.

Figure 11: Error distributions for the office example. The top im-
age shows the errors in the approximate image with 1.6% evalu-
ated pixels. The bottom image is for the approximate image with
6% evaluated pixels. Even though the two distributions are taken
from very different stages of the rendering process, the most signif-
icant errors are clustered around the image discontinuities for both
distributions. This attests to the importance of properly handling
discontinuities when generating high-quality images.

We tabulate two timings for each example: one measured with the
lighting simulation starting without irradiance cached, and the other
with the irradiance cached from a previous rendering from a dif-
ferent viewpoint. Note that even when irradiance caching is not a
dominant factor, there is no exact correspondence between the time
percentage and the percentage of pixels evaluated. In fact, the time
percentage can be smaller than the pixel percentage when there is a
large amount of irradiance cached in a scene, as is the case with the
“museum” example.

Fig. 11 provides error images at different stages of the rendering
process. The intensities of both images have been scaled up to make
the errors more visible. As a result, the error images mainly show
the error distributions.

6.2 Confidence Relocation

Fig. 12 provides an example of generating better images with con-
fidence relocation.2 Each pixel in the512 � 342 image on the left
corresponds to3�3 pixels in the work image, but for the penumbra
areas this sampling rate is insufficient. Fig. 12 (a) and (c) show ar-
tifacts in the left image with zoomed views of two regions. Fig. 12

2For information on luminaires, the reader is referred to the scene model
at http://radsite.lbl.gov/radiance/pub/models/bath.tar.Z



Figure 12: The image on the left is rendered using the baseline RADIANCE system by setting the quality to the highest level available. On
the right, (a) and (c) are zoomed views of two regions from the left image. Notice the striping artifacts and missing penumbra boundaries.
In (b) and (d), we show zoomed views of the same two regions from an image rendered in less time by our progressive renderer (for the
complete image see the Conference Proceedings CD-ROM). The scene model was provided courtesy of Greg W. Larson.

(b) and (d) are zoomed views of the same two regions from an im-
age rendered using confidence relocation. The image generated by
confidence relocation is also a512�342 image, filtered down from
a work image3 � 3 times as large. But this time, instead of eval-
uating every pixel of the work image, we only evaluate 6.7% of
the pixels and we super-sample these pixels to increase pixel con-
fidence. The computation times for the left image of Fig. 12 and
the image with confidence relocation are 5.5 hours and 2.7 hours
respectively on our SGI Indy with each computation initiated with-
out irradiance caching. When there is caching, the left image takes
1.4 hours and the image generated with confidence relocation takes
about1=7 of the time. The correctness of the image by confidence
relocation has been verified with a benchmark image generated by
taking256 super-samples for each pixel of the final image.

6.3 Discontinuity Varieties

We have tested the DCM on a variety of scenes with very differ-
ent discontinuities. Fig. 10 is a scene with fine shadows cast by
polygonal occluders. For this sort of scene, discontinuity meshing
works well. The main advantage of the DCM in this case is the abil-
ity to handle large scenes without suffering the storage overhead of
meshing.

Fig. 13 is from a scene filled with specular surfaces placed next
to each other. Discontinuity meshing cannot cope with this scene
well because of the view-dependent specular highlights and curved
geometry. Moreover, discontinuity meshing seeks to track down all
potential discontinuities prior to radiance evaluation [20], which is
extremely difficult to do here due to the closely packed specular sur-

faces. To render the scene, we incorporate the DCM into Rayshade
[17], a well-known system for classical ray tracing [35]. We choose
to do so partly because RADIANCE does not handle torus primi-
tives – we also wanted to see how easy it is to incorporate the DCM
into a typical ray tracing system. Rayshade collects radiance sam-
ples for individual pixels of the output image as follows. First, one
sample is collected for each output pixel and a contrast value is
computed based on the current pixel and its four neighbors. If high
contrast is encountered, the current pixel and the four neighbors
are anti-aliased by taking3� 3 samples for each pixel (the default
setting). To incorporate the DCM into the system, we first create a
work image3�3 times as large as the output image. Then we carry
out DCM-related construction as in our RADIANCE implementa-
tion.

The top right image in Fig. 13 is rendered after evaluating 10%
of the pixels of the work image. The percentage is higher than
usual because the complex interactions between the tightly packed
specular surfaces lead to high contrast almost everywhere. As
shown in Fig. 13 (bottom left), the high contrast also causes much
super-sampling in Rayshade. Fig. 13 (bottom row) compares the
Rayshade and DCM sampling patterns in the RADIANCE work im-
age using zoomed views of a chosen region (for clarity, the zoomed
sampling pattern for the DCM does not include the extra samples
needed for the first-order test described in Section 4.3, but the extra
sampling is included in the 10% samples reported). On our Indy
workstation, the top image of Fig. 13 takes 10 minutes to render
with Rayshade, whereas the bottom image takes 1.4 minutes when
the DCM is used.



Figure 13: The top left image is a benchmark image rendered by Rayshade. The top right image is rendered using the DCM after a small
percentage of pixels have been evaluated. The main purpose of this experiment is to test the DCM’s capability in treating discontinuities that
cannot be handled by existing discontinuity algorithms. The bottom row provide zoomed views of the sampling patterns for the same region of
the work image (left pattern for Rayshade and right for the DCM). The grey dots indicate the locations of the samples. Compared to Rayshade,
the DCM performs much less sampling yet can produce an image of similar quality because of the effective treatment of discontinuities. The
scene model was provided courtesy of Stuart Warmink.

7 Conclusions

We have presented a progressive refinement algorithm for radiance
evaluation, by showing how to handle general radiance discontinu-
ities using a novel technique called the Directional Coherence Map.
The DCM subdivides the image plane into blocks with simple dis-
continuities and captures the discontinuities on each block with the
least discrepancy direction and oriented finite elements. By com-
bining object-space data with discontinuity information extracted
from evaluated pixel radiance, the DCM achieves both time and
storage efficiency. Thus it is possible to treat discontinuities in a
complex scene that could barely be loaded into the main memory of
our computer. The DCM is also shown capable of effectively treat-
ing a variety of discontinuities, including several types that cannot
be handled by existing discontinuity algorithms. For a global illu-
mination scene consisting of smooth surfaces, the DCM generates
high-quality images much faster than progressive ray tracing sys-
tems based on adaptive sampling. When the Monte Carlo compo-
nents of a lighting calculation system are challenged by very dif-

ficult lighting configurations, our algorithm can still produce high-
quality images efficiently by relocating the computational resources
to the small percentage of pixels needed by the DCM.

Several related research topics remain to be explored. The DCM
gains its power from the directional coherence in the image plane.
Other forms of coherence in the radiance function should also be
investigated. An example is Teller’s radiance interpolant, which
makes use of the coherence between images from nearby view-
points [31]. Another area of research is the use of sophisticated
color vision models to improve our refinement strategy so that less
computation is distributed to areas of little perceptual importance.
Bolin’s work has shown promising results in this direction [4]. Fi-
nally, we expect to see growing interest in image-space discontinu-
ities in the near future. Our experiments not only indicate the im-
portance of properly treating image-space discontinuities, but also
demonstrate the power of image-space discontinuity information.
In general, we believe techniques for manipulating image data will
become more important as the average size of the polygons passing
through the graphics pipeline approach the size of individual pix-



els, and we hope that our work stimulates future research in this
increasingly exciting area.
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