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Abstract

During the last years the concept of multi-resolution modeling has

meshes are already sufficiently close to the smooth limit after only
a few refinement steps.
Within a multi-resolution framework, subdivision schemes pro-

gained special attention in many fields of computer graphics and vide a set of basis functiorg j = (p(zi -—j) which are suitable to

geometric modeling. In this paper we generalize powerful multi-

build a cascade of nested spades spari[@ j];j) [4, 33]. Since the

resolution techniques to arbitrary triangle meshes without requiring functionsq ; are defined by uniform refinement of a given control

subdivision connectivity. Our major observation is that the hierar- meshM 2 \/y, the space¥; have to be isomorphic to meshik
chy of nested spaces which is the structural core element of mostyith subdivision connectivity

multi-resolution algorithms can be replaced by the sequence of in-

While being much more flexible than classical (tensor-product)

termediate meshes emerging from the application of incremental gp|ine techniques, the multi-resolution representation based on the

mesh decimation. Performing such schemes with local frame cod-

ing of the detail coefficients already provides effective and efficient
algorithms to extract multi-resolution information from unstruc-

tured meshes. In combination with discrete fairing techniques, i.e.,

uniform refinement of a polygonal base mesh is still rather rigid.
When analyzing a given medMly, i.e., when decomposing the
mesh into disjoint frequency band$ =V, 1\ Vi, we have tanvert

the uniform refinement operatidf — Vi 1. Hence, the input mesh

th_e constrained minimizatio_n of discr_ete energy functionals, we ob- always has to be topologically isomorphic to an iteratively refined
tain very fast mesh smoothing algorithms which are able to reduce pzge grid. In general this requires a global remeshing/resampling

noise from a geometrically specified frequency band in a multi-

of the input data prior to the multi-resolution analysis [7]. More-

resolution decomposition. Putting mesh hierarchies, local frame gyer, if we want to fuse several separately generated subdivision

coding and multi-level smoothing together allows us to propose
a flexible and intuitive paradigm for interactive detail-preserving

meshes (e.g. laser range scans) into one model, restrictive compat-
ibility conditions have to be satisfied. Hence, subdivision schemes

mesh modification. We show examples generated by our meshge aple to deal with arbitrappologybut not with arbitrarycon-

modeling tool implementation to demonstrate its functionality.

1 Introduction

Traditionally, geometric modeling is based on piecewise polyno-
mial surface representations [8, 16]. However, while special poly-
nomial basis functions are well suited for describing and modify-
ing smooth triangular or quadrilaterphtches it turns out to be
rather difficult to smoothly join several pieces of a composite sur-
face along common (possibly trimmed) boundary curves. As flex-
ible patch layout is crucial for the construction of non-trivial geo-

nectivityt

Thescalesof subdivision based multi-resolution mesh represen-
tations are defined in terms of topological distances. Since every
vertexp; j on each level of subdivisioM; represents the weight
coefficient of a particular basis functign; with fixed support, its
region of influence is determined by topological neighborhood in
the mesh instead of geometric proximity. Being derived from the
regular functional setting, the refinement rules of stationary subdi-
vision schemes only depend on the valences of the vertices but not
on the length of the adjacent edges. Hence, surface artifacts can
occur when the given base mesh is locally strongly distorted.

Assume we have a subdivision connectivity mesh and want to

metric shapes, spline-based modeling tools do spend much effort togpply modifications on a specific scale The usual way to im-

maintain the global smoothness of a surface.

plement this operation is to run a decomposition scheme several

Subdivision schemes can be considered as an algorithmic gen-steps until the desired resolution level is reached. On this level
eralization of classical spline techniques enabling control meshesthe meshM; is modified and the reconstruction starting wivty

with arbitrary topology [2, 5, 6, 18, 22, 39]. They provide easy

yields the final result. The major draw-back of this procedure is the

access to globally smooth surfaces of arbitrary shape by iteratively fact that coarse basis functions exist for the coarse-mesh vertices

applying simple refinement rules to the given control mesh. A se-

only and hence all low-frequency modifications have taligned

quence of meshes generated by this process quickly converges to & the grid imposed by the subdivision connectivity. Shifted low-

smooth limit surface. For most practical applications, the refined
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frequency modifications can be faked by movirgreupof vertices
from a finer scale simultaneously but this annihilates the mathemat-
ical elegance of multi-resolution representations.

A standard demo example for multi-resolution modeling is
pulling the nose tip of a human head model. Depending on the
chosen scale either the whole face is affected or just the nose is
elongated. On uniformly refined meshes this operation only works
if a coarse-scale control vertex happens to be located right at the
nose tip. However, for aautomaticremeshing algorithm it is very
difficult, if not impossible, to place the coarse-scale vertices at the
semantically relevant features of an object.

In this paper we present an alternative approach to multi-
resolution modeling which avoids these three major difficulties, i.e.
the restriction to subdivision connectivity meshes, the restriction to
basis functions with fixed support and the alignment of potential
coarser-scale modifications.
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The first problem is solved by using mesh hierarchies which In the literature on mesh decimation we find many examples for
emerge from the application of a mesh decimation scheme. In Sec-hierarchies built on arbitrary meshes [11, 15, 20, 24, 27, 31, 35].
tion 2 we derive the necessary equipment to extract multi-resolution The key is always to build the hierarchy top-down by eliminating
information from arbitrary meshes and geometrically encode detail vertices from the current mesméremental reduction, progressive
information with respect to local frames which adapt to the local meshes Running a mesh decimation algorithm, we can stop, e.g.,
geometry of the coarser approximation of the object. every time a certain percentage of the vertices is removed. The in-

To overcome the problems arising from the fixed support and termediate meshes can be used as a level-of-detail representation
aligned distribution of subdivision basis functions, we drop the [15, 23].
structural concept of considering a surface in space to be a linear In both cases, i.e., the bottom-up or the top-down generation
combination of scalar-valued basis functions. On each level of de- of nested (vertex-) grids, the multi-resolution concept is rigidly at-
tail, the lower-frequency components of the geometric shape aretached to topological entities. This makes sense if hierarchies are
simply characterized by energy minimizatidaifing). In Section 3 merely used to reduce the complexity of the representation. In the
we overview the discrete fairing technique [19, 38] and show how a context of multi-resolution modeling, however, we want the hierar-
combination with the non-uniform mesh hierarchy leads to highly chy not necessarily to rate meshes according to tgirsenesbut
efficient mesh optimization algorithms. Due to the local smoothing rather according to thesmoothnes¢cf. Fig 1).

properties of the fairing operators, we are able to defigeamet- We will use multi-resolution hierarchies for two purposes. First
ric threshold for the wavelength up to which a low-pass filter should we want to derive highly efficient algorithms for mesh optimiza-
remove noise. tion. In Section 3 we will see that topologically reduced meshes are

With an efficient hierarchical mesh smoothing scheme available, the key to significantly increase the performance (levels of coarse-
we propose a flexible mesh modification paradigm in Section 4. ness). On the other hand, we want to avoid any restrictions that are
The basic idea is to let the designer freely define the region of in- imposed by topological peculiarities. In particular, when interac-
fluence and the characteristics of the modification which both can tively modifying a triangle mesh, we do not want any alignment.
be adapted to the surface geometry instead of being determined byThe supportof a modification should have no influence where
the connectivity. The selected region defines the "frequency” of the this modification can be applied (levels of smoothness).
modification since it provides the boundary conditions for a con-  To describe the different set-ups for multi-resolution repre-
strained energy minimization. Nevertheless the detail information sentation uniformly, we define a generic decomposition scheme
within the selected region is preserved and does change accordingA = (Ao|Ay)" (analysi$ as a general procedure that transforms a
to the global modification. Exploiting the efficient schemes from given meshM; into a coarser/smoother oy _1 = Ao M; plus de-
Section 3 leads to interactive response times for moderately com-tail coefficientsD;_; = AgM;. In the standard wavelet setting the

plex models. cardinalities satisfy B;_; +#M;_1 = #M; since decomposition is
Throughout the paper, we consider a modeling scenario where a proper basis transform.
a triangle mestM with arbitrary connectivity igiven (no from- If a (bi-orthogonal) wavelet basis is not known, we have to

scratch design). All modifications just alter the position of the ver- store more detail information %_1 +#M;_; > #M;) since the

tices but not their adjacency. In particular, we do not consider ad reconstruction operatok 1 might be computationally expensive

infinitum subdivision to establish infinitesimal smoothness. The or not even uniquely defined. Well-known examples for this kind

given meshM = My represents per definition the finest level of  of decomposition with extra detail coefficients are the Laplacian-

detail. pyramid type of representation in [40] and the progressive mesh
representation [15].

. . ) WhenAg is merely a smoothing operator which does not change

2 Multi-resolution representations the topological mesh structure M; we haveAy = Id — A and
#Di_1 =#M,_1 = #M;.

Most schemes for the multi-resolution representation and modifica-

tion of triangle meshes emerge from generalizing harmonic analysis

techniques like the wavelet transform [1, 23, 30, 33]. Since the fun- 2.1 Local Frames

daémentals_hgve _been derived in the scalar-valued f_unctlonnal setting| multi-resolution representation of a geometric obldct= My,
R® — R, difficulties emerge from the fact that manifolds in space the detail coefficient®;_ describe the difference between two ap-
are in general not topologically equivalent to simply connected re- proximationsM;_; and M; having different levels of detail. For
gions in R, parametric surfaces, the detail coefficients, i.e., the spatial location
The philosophy behind multi-resolution modeling on surfaces of the vertices inM; have to be encoded relative to the local ge-
is hence to mimic the algorithmic structure of the related func- ometry of the coarser approximatidf;_;. This is necessary since
tional transforms and preserve some of the important properties modifications on the coarser level should have an intuitive effect on
like locality, smoothness, stability or polynomial precision which the geometric features from finer scales.
have related meaning in both settings [9, 12, 40]. Accordingly, the  First proposed by [10] it has become standard to derive local
nested sequence of spaces underlying the decomposition into dis-coordinate frames from the partial derivative information of the
joint frequency bands is thought of being generated bottom-up from coarse representatidvl; ;. Since we do not assume the existence
a coarse base mesh up to finer and finer resolutions. This impliesof any global structure or auxiliary information in the sequence of
that subdivision connectivity is mandatory on higher levels of de- meshesM;, we have to rely on intrinsic geometric properties of
tail. Not only the mesh has to consist of large regular regions with the triangles themselves. Depending on the intended application
isolated extra-ordinary vertices in between. Additionally, we have we assign the local frames to the triangles or the verticdd;of;.
to make sure that the topological distance between the singulari- A detail vector is then defined by three coordinate valjueg, n|
ties is the same for every pair of neighboring singularities and this plus an index identifying the affine framé; = [p;,U;, Vi, Ni] with
topological distance has to be a power of 2. respect to which the coordinates are given.
Such special topological requirements prevent the schemes from
being applicable to arbitrary input meshes. Global remeshing and5 1 1  vertex-based frames
resampling is necessary to obtain a proper hierarchy which gives
rise to alias-errors and requires involved computations [7]. We can use any heuristic to estimate the normal védtat a vertex
Luckily, the restricted topology is not necessary to define dif- pj in a polygonal mesh, e.g., taking the average of the adjacent tri-
ferent levels of resolution or approximation for a triangle mesh. angle normals. The vecttf = E — (ET N;)N; is obtained by pro-



Figure 1: The well-known Stanford-Bunny. Although the original mesh does not have subdivision connectivity, mesh decimation algorithms
easily generate a hierarchy of topologically simplified meshes. On the other hand, multi-resolution modeling also requires hierarchies of
differently smoothapproximations. Notice that the meshes in the lower row have identical connectivity.

jecting any adjacent eddeinto the tangent plane ail:= N; x U;. Let the verticeps, p4, andps be projected tdus, v3), (Us,vs), and

The data structure for storing the mddgl_; has to make sure that  (us, vs) according to the fram@o, p1,p2]. To additionally stabilize

E is uniquely defined, e.g. as the first member in a list of neighbors. the interpolation scheme, we introduce a tension parameté®, 1]
which trades approximation error g, p4, andps for minimizing

212 Face-based frames the bending energfg, + 2f2, + f2,. Using (1) we obtain

It is tempting to simply use the local frame which is given by two Tug(us—1) uzvs 2va(vz-1)

triangle edges and their cross product. However, this will not lead to Tup(us—1) Ugva Sva(va—1)

convincing detail reconstruction after modifying the coarser level. 2744 4va 2valla fuu

The reason for this is that the local frames would be rigidly attached % Us(Us—1) UsVs %Vs (vs—1 ( uv ) =

to one coarse triangle. In fact, tracing the dependency over several T 0 0 fuv

levels of detail shows that the original mesh is implicitly partitioned 0 21 0

into sub-meshes being assigned to the same coarse tritngle- 0 0 T

plying a transformation t@ implies the same transformation for all

vertices being defined relative To This obviously leads to artifacts (P3—Po) +Us (Po —P1) +V3 (Po —~P2)

between neighboring sub-meshes in the fine mesh. (P4 —Po) +Us (Po — P1) +Va (Po —P2)
A better choice is to use local low order polynomial interpolants Ps —Po) + Us (Po 6 P1) + Vs (Po— P2)

or approximants that depend on more than one single triangle. Let 0

po, P1, andpy be the vertices of a triangl€ € M;_; andps, pa, 0

andps be the opposite vertices of the triangles adjacert @f.

Fig. 2). To construct a quadratic polynomial which has to be solved in a least squares sense.

2 2 To compute the detail coefficien8, v, h| for a pointq with re-
F(u,v) = f4+ufy+vfy+ > fuu+uvfu+ 5 fuv spect toT , we start from the centér,v) = (%, %) and simple New-
ton iteration stepsu,v) < (u,v) + (Au, Av) with d = g — F(u,v)
approximating thep; we have to define a parameterization first. an T T T
Note that the particular choice of this parameterization controls the ( FgFu F¥Fv ) < Au ) — < F¥d )
quality of the approximant. Since we want to take the geometric FoFv R R Av Fud
constellation of thep; into account, we define a parameterization

by projecting the vertices into the supporting pland of quickly converge to the poirfe(U, V) with the detail vectod per-
Exploiting the invariance of the polynomial interpolant with re- pend!cularT to the surfacg(u,v). The third coefficient is then
spect to affine re-parameterizations, we can reqif0) := po, h=sign(d’ (Fux Fy))|ld]|. o , , o
F(1,0) := py1, andF(0,1) := p which implies Although the parameter valugg, V) can lie outside the unit tri-
angle (which occasionally occurs for extremely distorted configu-
f = po rations) the detail coefficien@, v, h is still well-defined and recon-
1 struction works. Notice that the scheme might produce counter-
fu = p1—po—3fuu 1) intuitive results if the maximum dihedral angle betwdeand one

fu = pa—po— %fw_ of its neighbors becomes larger thgnn this case the parameter-



ization for ps3, p4, andps could be derived by rotation aboiits
edges instead of projection.

Figure 2: Vertex labeling for the construction of a local frame.

Obviously, the detail coefficieridi, v, h] is not coded with respect
to a local frame in the narrow sense. However, it has a similar se-
mantics. Recovering the vertex positighrequires to construct the
approximating polynomiaF'(u,v) for the possibly modified ver-
ticesp], evaluate af(, V) and move in normal direction by. The
distanceh is a measure for the "size” of the detail.

In our current implementation on a SGI R10000/195 MHz work-
station the analysig — [, V, h] takes about 20Swhile the recon-
struction|[(, ¥, h] — g takes approximately| &S Since a progressive

closest to the removed vertgx The position ofp is then coded
with respect to the local frame associated with this triangle.

The inverse operation of an edge collapse isvitreex splif15].

Since during reconstruction the vertices are inserted in the reverse
order of their removal, it is guaranteed that, wieis inserted, the
topological neighborhood looks the same as when it was deleted
and hence the local frame to transform the detail coefficienpfor
back into world coordinates is well-defined.

During the iterative decimation, each intermediate mesh could
be considered as one individual level of detail approximation. How-
ever, if we want to define disjoint frequency bands, it is reasonable
to consider a whole sub-sequence of edge collapses as one atomic
transformation from one levé!l; to M;_;.

There are several criteria to determine which levels mark the
boundaries between successive frequency bands. One possibility
is to simply defineM; to be the coarsest mesh that still keeps a
maximum tolerance of less than sogeto the original data. Al-
ternatively we can require the number of verticeMp_1 to be a
fixed percentage of the number of verticedMln. This simulates
the geometric decrease of complexity known from classical multi-
resolution schemes. We can also let the human user decide when
a significant level of detail is reached by allowing her to browse
through the sequence of incrementally reduced meshes.

In order to achieve optimal performance with the multi-level
smoothing algorithm described in the next section, we decided in
our implementation to distribute the collapses evenly over the mesh:
When a collaps@ — q is performed, all vertices adjacentdcare
locked for further collapsing (independent set of collapses). If no

mesh representation introduces two triangles per vertex split, this more collapses are possible, the current mesh defines the next level

means that for the reconstruction of a mesh with ttlangles, the

of detail and all vertices are un-locked. One pass of this reduction

computational overhead due to the local frame representation is lessscheme removes about 25% of the vertices in average.

than half a second.

2.2 Decomposition and reconstruction

To complete our equipment for the multi-resolution set-up we have
to define the decomposition and reconstruction operations which

separate the high-frequency detail from the low-frequency shape

and eventually recombine the two to recover the original mesh.

We apply different strategies depending on whether decomposition
generates a coarser approximation of the original geometry or a

smoother approximation.

In either case the decomposition operaas applied to the orig-
inal meshM; and the detail®;_; are coded in local frame coordi-
nates with respect th;_;. Since the reconstruction is an extrapo-
lation process, it is numerically unstable. To stabilize the operation

we have to make the details as small as possible, i.e., when encod

ing the spatial position of a point e R3 we pick that local frame
on M;_; which is closest ta.

Usually the computational complexity of generating the detail
coefficients is higher than the complexity of the evaluation during
reconstruction. This is an important feature since for interactive
modeling the (dynamic) reconstruction has to be done in real-time

while the requirements for the (static) decomposition are not as de-

manding.

2.2.1 Mesh decimation based decomposition

When performing an incremental mesh decimation algorithm, each

2.2.2 Mesh smoothing based decomposition

For multi-resolutionrmodelingwe have to separate high frequency
features from the global shape in order to modify both individu-
ally. Reducing the mesh complexity cannot help in this case since
coarser meshes do no longer have enough degrees of freedom to
be smooth, i.e., to have small angles between adjacent triangles.
Hence, the decomposition operatdg becomes a mere smooth-
ing operator that reduces the discrete bending energy in the mesh
without changing the topology (cf. Section 3).

A natural way to define the detail coefficients would be to store
the difference vectors between the original vertex positjcend
the shifted positiorg’ with respect to the local frame defined at
g’. However, in view of numerical stability this choice is not op-

timal. Depending on the special type of smoothing operaigr

the vertices can move "within” the surface such that another vertex
p' € Mi_1 = AoM; could lie closer tay thang’ (cf. Fig. 3).

reduction step removes one vertex and retriangulates the remain- 4 4 i i

ing hole [15, 31]. We use a simplified version of the algorithm
described in [20] that controls the reduction process in order to op-

timize the fairness of the coarse mesh while keeping the global ap-

proximation error below a prescribed tolerance.
The basic topological operation is thelf edge collapsevhich
shifts one vertey into an adjacent verteg and removes the two

degenerate triangles. In [20] a fast algorithm is presented to deter-

mine that triangldl in the neighborhood of the collapse which lies

Figure 3: Although the bending energy minimizing smoothing op-
eratorAg is applied to glanetriangulation, the vertices are moved
within the plane since linear operators always do the fairing with re-
spect to a specific parameterization (cf. Section 3).

To stabilize the reconstruction, i.e., to minimize the length of the
detail vectors, we apply a simple local search procedure to find the



nearest vertex’' € M;_; to g and express the detail vector with
respect to the local frame pt or one of its adjacent triangles. This

respectively. Obviously, low degree polynomials satisfy both differ-
ential equations and hence appropriate (Dirichlet-) boundary condi-

searching step does not noticeably increase the computation timetions have to be imposed which make the semi-definite functionals

(which is usually dominated by the smoothing operatiag) but
leads to much shorter detail vectors (cf. Fig 4).
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Ewm andErp positive-definite.

The discrete fairing approach discretizes either the energy func-
tionals (2-3) [19, 38] or the corresponding Euler-Lagrange equa-
tions (4-5) [17, 36] by replacing the differential operators with di-
vided difference operators. To construct these operators, we have to
choose an appropriate parameterization in the vicinity of each ver-
tex. In [38] for example a discrete analogon to the exponential map
is chosen. In [17] theimbrella-algorithmis derived by choosing a
symmetric parameterization

0,...,n-1 (6)

i i .
(ui,vi) = (cos(Znﬁ),sm(Znﬁ)), i=
with n being the valence of the center verfexcf. Fig 5). This pa-
rameterization does not adapt to the local geometric constellation
but it simplifies the construction of the corresponding difference

Figure 4: The shortest detail vectors are obtained by representingoPerators which are otherwise obtained by solving a Vandermonde
the detail coefficients with respect to the nearest local frame (left) System for local polynomial interpolation. With the special param-

instead of attaching the detail vectors to the topologically corre-
sponding original vertices.

3 Discrete fairing

From CAGD it is well-known that constrained energy minimization
is a very powerful technique to generate high quality surfaces [3, 13,
25, 28, 37]. For efficiency, one usually defines a simple quadratic
energy functionaE (f) and searches among the set of functions
satisfying prescribed interpolation constraints for that function
which minimizesE.

Transferring the continuous concept of energy minimization to
the discrete setting of triangle mesh optimization leads to the dis-
crete fairing approach [19, 38]. Local polynomial interpolants are
used to estimate derivative information at each vertex by divided

difference operators. Hence, the differential equation characteriz-

ing the functions with minimum energy is discretized into a linear
system for the vertex positions.
Since this system is global and sparse, we apply iterative solving

algorithms like the GauRR-Seidel-scheme. For such algorithms one

iteration step merely consists in the application of a simple local
averaging operator. This makes discrete fairing an easy accessibl
technique for mesh optimization.

3.1 The umbrella-algorithm

eterization (6) the discrete analogon of the Laplaciainturns out
to be the umbrella-operator

Up) =

ﬁi;pi—p

with p; being the direct neighbors @f (cf. Fig. 5). The umbrella-
operator can be applied recursively leading to

1 n-1
5 % Uk~ Up)

U?(p)
as a discretization of\2f.

H

Pnfl

R

Gi:igure 5. To compute the discrete Laplacian, we need the 1-

neighborhood of a vertex (— umbrella-operator).

The boundary conditions are imposed to the discrete problem
by freezing certain vertices. When minimizing the discrete version

The most prominent energy functionals that are used in the theory of Ey, we hold a closed boundary polygon fixed and compute the

and practice of surface design are the membrane energy

Enm(f) = /f5+fV2 )

which prefers functions with smaller surface area and the thin plate

energy

Erp(f) = /f5u+2f5V+fV2V 3)

which punishes strong bending. The variational calculus leads to
simple characterizations of the corresponding minimum energy sur-

faces

Af = fuu+fvv =0 (4)

or

N2 = fuuuut 2 fuuw+ fovw = 0 %)

membrane that is spanned in between. For the minimizatiér pf

we need two rings of boundary vertices, i.e., we keep a closed strip
of triangles fixed. This imposes a (discre®)boundary condition

to the optimization problem (cf. Fig 6). All internal vertices can
be moved freely to minimize the global energy. The properly cho-
sen boundary conditions imply positive-definiteness of the energy
functional and guarantee the convergence of the iterative solving
algorithm [29].

The characteristic (linear) system for the corresponding uncon-
strained minimization problem has row(pj) = 0 or U2(p;) =0
respectively for the free verticgg. An iterative solving scheme
approaches the optimal solution by solving each row of the system
separately and cycling through the list of free vertices until a stable
solution is reached. In case of the membrane enEjgyhis leads
to the local update rule

pi < pi+U(pi) )



and for the thin plate enerdytp , we obtain

Pi pi*%Uz(pi) (8)

with the "diagonal element”

wheren; andn; j are the valences of the center verppand itsjth
neighbor respectively.

Figure 6: A closed polygon or a closed triangle strip provife
or C! boundary conditions for the discrete fairing. On the left the
triangle mesh minimizeEy on the right it minimizeErp.

Although the rule (8) can be implemented recursively, the perfor-
mance is optimized if we use a two step process where all umbrella
vectorsU (p;) are computed in a first pass aktf(p;) in the sec-
ond. This avoids double computation but it also forces us to use in
fact a plain Jacobi-solver since no intermediate updates from neigh-
boring vertices can be used. However thet 2) : 2 speed-up for
a vertex with valence amortizes the slower convergence of Jacobi
compared to Gaul3-Seidel.

3.2 Connection to Taubin’s signal processing ap-
proach

The local update operator (7) in the iterative solving scheme for
constrained energy minimization is exactly the Laplace smoothing
operator proposed by Taubin in [34] where he derived it (also in the
context of mesh smoothing) from a filter formalism based on gener-
alized Fourier analysis for arbitrary polygonal meshes. In his paper,
Taubin starts with a matrix version of the scaled update rule (7)

[pi] == (1+AU)pi]

where is a damping factor and formally rewrites it by using a
transfer function notation

f(k) := 1—-Ak

with respect to the eigenbasis of the (negative) Laplace operator.
Since no proper boundary conditions are imposed, the continued
filtering by f(k) leads to severe shrinking and hence he proposes
combined filters

f(k) := (1—AK)(1—pk) 9)
whereA andp are set in order to minimize the shrinking. A feasible
heuristic is to choose pass-band frequency

11
A

keg (0.01...0.1]

and sef\ andp while observing the stability of the filter.

Obviously, the update rule for the difference equalibfp;) = 0
which characterizes meshes with minimum membrane energy cor-
responds to a special low-pass filter with transfer funcfigfk) =
(1—Kk). For the minimization of the total curvature, characterized
by U?(p;) = 0, the iteration rule (8) can be re-written in transfer
function notation as

1 1
vV v
which corresponds to a combined Laplace filter of the form (9)
with pass-band frequendypg = 0. Although this is not optimal
for reducing the shrinking effect, we observe that the transfer func-
tion happens to have a vanishing derivativekat 0. From sig-
nal processing theory it is known that this characterizes maximal
smoothness [26], i.e., among the two step Laplace filters Jthe
filter achieves optimal smoothing properties. To stabilize the filter
we might want to introduce a damping factoxQs < %v into the
update-rule

ek = (1 0K) = (14 K1~ k)

pPi « Pi— g U?(pi)

3.3 Multi-level smoothing

A well-known negative result from numerical analysis is that
straight forward iterative solvers like the Gaul3-Seidel scheme are
not appropriate for large sparse problems [32]. More sophisticated
solvers exploit knowledge about te&uctureof the problem. The
important class of multi-grid solvers achieve linear running times
in the number of degrees of freedom by solving the same problem
on grids with different step sizes and combining the approximate
solutions [14].

For difference £ discrete differential) equations of elliptic type
the Gaul3-Seidel iteration matrices have a special eigenstructure that
causes high frequencies in the error to be attenuated very quickly
while for lower frequencies no practically useful rate of conver-
gence can be observed. Multi-level schemes hence solve a given
problem on a very coarse scale first. This solution is used to predict
initial values for a solution of the same problem on the next refine-
ment level. If these predicted values have only small deviations
from the true solution in low-frequency sub-spaces, then Gaul3-
Seidel performs well in reducing the high-frequency error. The
alternating refinement and smoothing leads to highly efficient varia-
tional subdivision schemes [19] which generate fair high-resolution
meshes with a rate of several thousand triangles per second (linear
complexity?!).

As we saw in Section 2, the bottom-up way to build multi-
resolution hierarchies is just one of two possibilities. To get rid
of the restriction that the uniform multi-level approach to fairing
cannot be applied to arbitrary meshes, we generate the hierarchy
top-down by incremental mesh decimation.

A complete V-cycle multi-grid solver recursively applies opera-
tors ®; = WP ®;_1 RY where the first (right}¥ is a generic (pre-
)smoothing operator — a Gaul3-Seidel scheme in our dasse.a
restriction operator to go one level coarser. This is where the mesh
decimation comes in. On the coarser level, the same scheme is ap-
plied recursively,®;_1, until on the coarsest level the number of
degrees of freedom is small enough to solve the system directly (or
any other stopping criterion is met). On the way back-up, the pro-
longation operatoP inserts the previously removed vertices to go
one level finer againP can be considered as a non-regular subdi-
vision operator which has to predict the positions of the vertices in
the next level’s solution. The re-subdivided mesh is an approxima-
tive solution with mostly high frequency error. (Post-)smoothing
by some more iteration® removes the noise and yields the final
solution.

Fig 7 shows the effect of multi-level smoothing. On the left you
see the original bunny with about 70K triangles. In the center left,



Figure 7: Four versions of the Stanford bunny. On the left the original data set. In the center left the same object after 200 iterations of the
non-shrinking Laplace-filter. On the center right and far right the original data set after applying the multi-level umbrella filter with three or
six levels respectively.

we applied the Laplace-filter proposed in [34] wikthk= 0.6307 and variance in the lengths of the edges. For the bunny example, we can
Hw= —0.6732. The iterative application of the local smoothing op- keep the standard deviation from the average edge length below one
erator percent for incremental decimation down to about 5K triangles.

pi < pi + AW U(pi) (10) By selecting the lowest levé\ly down to which the V-cycle

. . . . multi-level filtering iterates, we set the threshad= ¢(Mp) for
removes the hlgh_est frequency noise after a few iterations but doesyet,i| being removed by the multi-level smoothing scheme. The
not have enough impact to flatten out the fur even after several hun-yhresholding works very well due to the strong local and poor global
dred iterations. On the right you see the meshes after applying acqnyergence of the iterative update rule (8). Fig. 8 shows the base

multi-level smoothing with the following schedule: Hierarchy lev-  \eshes for the multi-level smoothing during the computation of the
els are generated by incremental mesh decimation where each levej,, right bunnies of Fig. 7.

has about 50% of the next finer level’s vertices. The pre-smoothing
rule (8) is applied twice on every level before going downwards

level filters (excluding restriction and prolongation) corresponds to
about(2+5)(1+ 0.5+ 0.5% +...) < 14 double-steps of the one-
level Laplace-Filter (10).

and five times after coming back up. On the center right model - _r"
we computed a three level V-cycle and on the far right model a ff".'; |
six level V-cycle. Notice that the computation time of the multi- L "‘“h

3.4 Geometric filtering

The bunny example in Fig. 7 is well suited for demonstrating the
effect of multi-level smoothing but we did not impose any bound-
ary conditions and thus we applied the smoothing as a mere filte
and not as a solving scheme for a well-posed optimization prob-
lem. This is the reason why we could use the number of levels to
control the impact of the smoothing scheme on the final result. For
constrained optimization, it does not make any sense to stop the
recursion after a fixed number of decimation levels: we always re-
duce the mesh down to a small fixed number of triangles. Properly : . . :
chosen boundary condition will ensure the convergence to the true4 Multi-resolution mOdelmg on tnangle
solution and prevent the mesh from shrinking. meshes

Nevertheless, we can exploit the effect observed in Fig. 7 to de-
fine more sophisticated geometric low-pass filters. Since the sup-In this section we describe a flexible and intuitive multi-resolution
port of the Laplace-filters is controlled by the neighborhood relation mesh modeling metaphor which exploits the techniques presented
in the underlying mesh, the smoothing characteristics are definedin the last two sections. As we discussed in the introduction, our
relative to a "topological wavelength”. Noise which affects every goal is to get rid of topological restrictions for the mesh but also
other vertex is removed very quickly independent from the length to get rid of difficulties emerging from the alignment of the basis
of the edges while global distortions affecting a larger sub-mesh are functions in a hierarchical representation and the rigid shape of the
hardly reduced. Fageometricfilters however we would like to set  basis function’s support.
the pass-band frequency in terms of Euclidian distances by postu- From a designer’s point of view, we have to distinguish trsee
lating that all geometric features being smaller than some threshold manticlevels of detail. These levels are defined relative to a specific
€ are considered as noise and should be removed. modeling operation since, of course, in a multi-resolution environ-

Such filters can be implemented by using an appropriate mesh ment the features that are detail in a (global) modification become
reduction scheme that tends to generate intermediate meshes wittthe global shape for a minute adjustment.
strong coherence in the length of the edges. In [20] we propose a
mesh decimation scheme that rates the possible edge collapses ac- Lo - ’
cording to some generic fairness functional. A suitable objective of the current modification. Intuitively, the designer selects a
function for our application is to maximize theundnessf trian- piece of the global shape and applies a transformation to it.
gles, i.e., the ratio of its inner circle radius to its longest edge. If e Thestructural detailare features that are too small to be mod-
the mesh decimation scheme prefers those collapses that improve ified by hand but still represent actual geometry. This detail
the global roundness, the resulting meshes tend to have only little should follow the modification applied to the global shape in a

Figure 8: Base meshes where the V-cycle recursion stopped when
r generating the right models in Fig. 7. The final meshes do not loose
significant detail (watch the silhouette). Notice how in the left ex-
ample the fur is removed but the bunny’s body preserved while in
the right example the leg and the neck start to disappear.

e Theglobal shapas that part of the geometry that is the subject



Figure 9: The wooden cat mod®ly (178K triangles, left) is in progressive mesh representation. The high resolution is necessary to avoid
alias errors in the displacement texture. The center left mble{23K triangles) is extracted by stopping the mesh reduction when a
prescribed complexity is reached. On this level interactive mesh modification is done which yields theéMiiddehter right). The final
resultM (right) is obtained by running the reconstruction on the modified mesh.

geometrically intuitive manner. The preservation of structural The interior regiorMl, is to be affected by the following modifica-
detail during interactive modeling is crucial for plausible vi- tion.
sual feed-back (cf. the eyes and ears of the wooden cat model A second polygon (not necessarily closed) is marked within the
in Fig. 9). first one to define thdandle The semantics of this arbitrarily
shaped handle is quite similar to the handle metaphor in [37]: when
the designer moves or scales the virtual tool, the same geometric
transformation is applied to the rigid handle and the surrounding
meshM., follows according to a constrained energy minimization
principle.
The freedom to define the boundary sfipnd the handle geom-
etry allows the designer to build "custom tailored” basis functions
X - X . - 'St 8for the intended modification. Particularly interesting is the defini-
mesh modeling environment which provides flexible mesh modifi- jon of 5 closedhandle polygon which aliows to control the char-
cation functionality and allows the user to adapt the mesh complex- ;5 teristics of a bell-shaped dent: For the same relylon a tiny
ity to the available hardware resources. _ring-shaped handle in the middle causes a rather sharp peak while a
In an off-line preprocessing step, an incremental mesh decima- yigger ring causes a wider bubble (cf. Fig 10). Notice that the mesh

tion algorithm is applied and the detail coefficients are stored with yertices in the interior of the handle polygon move according to the
respect to local frames as explained in Section 2.2.1. This trans- gnergy minimization.

forms the highly complex input model into a progressive-mesh type
multi-resolution representation without any remeshing or resam-
pling. The representation allows the user to choose an appropriate
number of triangles for generating a mesh model that is fine enough
to contain at least all the structural detail but which is also coarse
enough to be modified in realtime. This pre-process removes the
textural detail prior to the actual interactive mesh modification.
Suppose the original mesh modéd, is transformed into the pro-
gressive mesh sequen@dy, ..., Mg] with Mg being the coarsest
base mesh. If the user picks the médhand applies modifications
then this invalidates the subsequeridg_1, ..., Mo]. If the work-
ing resolution is to be reduced afterwarddMg (j < i) then the in-
termediate meshes have to be recomputed by online mesh decima- ) o o
tion. The textural detail encoded in the subsequéhtg. .., Mi1] Figure 10: Controlling the characteristics of the modification by the
however remains unchanged since it is stored with respect to localSize of a closed handle polygon.
frames such that reconstruction starting from a modified niésh
leads to the intended resiM,. Fig. 9 shows an example of this
procedure.

e Thetextural detaildoes not really describe geometric shape.
It is necessary to let the surface appear more realistic and is
often represented by displacement maps [21]. In high qual-
ity mesh models it is the source for the explosive increase in
complexity (cf. the wood texture in Fig. 9).

Having identified these three semantic levels of detail, we suggest

Since we are working on triangle meshes, the energy minimiza-
tion on M, is done by discrete fairing techniques (cf. Section 3).
The boundary triangleS provide the correcE! boundary condi-
tions for minimizing the thin plate energy functional (3).

4.1 Interactive mesh modeling by discrete fairing The handle imposes additional interpolatory constraints on the
location only — derivatives should not be affect by the handle.
The most important feature in the proposed multi-resolution mesh Hence, we cannot have triangles being part of the handle geome-
modeling environment is the modification functionality itselfqd- try. We implemented the handle constraint in the following way:
eling metaphayrwhich hides the mesh connectivity to the designer. like the boundary polygon, the handle polygon defines a strip of

The designer starts by marking an arbitrary region on the mesh triangles being intersected by it. Whether the handle polygon is
M;. In fact, she picks a sequence of surface points (not necessarilyopen or closed, we find two polygons of mesh edges on either side
vertices) on the triangle mesh and these points are connected eitheof that strip. We take any one of the two polygons and collect ev-
by geodesics or by projected lines. The strip of trian@leshich ery other mesh vertex in a set bandle vertices Keeping these
are intersected by the geodesic (projected) boundary polygon sep-handle vertices fixed during the mesh optimization is the additional
arates an interior regiolvl. and an exterior regioM; \ (M, US). interpolatory constraint.



The reason for freezing only every other handle vertex is that 5 Conclusions and future work
three fixed vertices directly connected by two edges build a rigid
constellation leaving no freedom to adjust #reglebetween them. We presented a new approach to multi-resolution mesh represen-
During discrete optimization this would be the source of undesired tation and modeling which does not require the underlying trian-
artifacts in the smooth mesh. gle mesh to have subdivision connectivity. By adapting multi-level
With the boundary conditions properly set we perform the thin techniques known from numerical analysis to the non-regular set-
plate energy minimization by using the umbrella algorithm de- ting of arbitrary mesh hierarchies, we are able to approximately
scribed in Section 3.1. To obtain interactive response times, we Solve constrained mesh optimization in realtime. Combining the
exploit the multi-level technique: a mesh decimation algorithm is two results allows us to present a flexible metaphor for interactive
applied to the mesM, US to build up a hierarchy. Then starting mesh modeling where the shape of the modification is controlled
from the coarsest level, we apply th# smoothing filter alternat- ~ PY €nergy minimization while the geometric detail is preserved and
ing with mesh refinement. This process is fast enough to obtain sev-uPdated according to the change of the global shape.
eral frames per second when modeling with meshes\bf # 5K ~ Our current implementation of an experimental mesh model-
triangles (SGI R10000/195MH?z). Typically, we set the ratio of the NG tool already provides sufficient functionality to apply sophis-
complexities between successive meshes in the hierarchy to 1 : 2 orficated realtime modifications to arbitrary input meshes with up to
1:4 and iterate the smoothing filter 3 to 5 times on each level. 100K triangles. However, all changes do affectgeemetryof the

; ; . : hes only. So far we did not considepologicalmodifications
During the interactive mesh smoothing we do not compute the M&>, g :
full V-cy%le algorithm of Sect. 3.3. In ggact, we omit thg pre- of triangle meshes. In the future, when modifying a given mesh,

smoothing and always start from the coarsest level. When a ver- ‘é\ﬁe‘?’&gg lt'gg nmelﬁt\wl farrtwlgezrtwotrk\)g L)r:iee;tehgr\:\éh%[/(; t\z&rﬂ deﬁEelsvlgr(t:iiltlays
tex is inserted during a mesh refinement step we place it initially ' '

at its neighbor’s center of gravity unless the vertex is a handle ver- to be removed when strong global modification causes local self-

tex. Handle vertices are placed at the location prescribed by theInterseCtlon of the reconstructed detail.
designer’s interactiorh@ndle interpolation constraiit Hence the

mesh is computed from scratch in every iteration instead of just up- References
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Figure 11: The mesh model of a bust (62K triangles, left, courtesy Stefan Karbacher) is modified by multi-resolution edits. The modified area
M. is the bust’s face while the handle polygon lies around the nose. From left to right, we apply rotation, scaling and translation.
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Figure 12: Some more modifications on the bust model. The support of the modification and the handle geometry adapt to the intended design
operation. The detail is preserved while the global modification is controlled by discrete fairing.
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