Progressive Forest Split Compression

Gabriel Taubin!

André Guéziec!

WilliamHorn! FrancisLazarus?

IBM T. J. Watson Research Center

ABSTRACT

In this paper we introduce the Progressive Forest Split (PFS) repre-
sentation, a new adaptive refinement scheme for storing and trans-
mitting manifold triangular meshesin progressive and highly com-
pressedform. AsintheProgressiveMesh (PM) method of Hoppe, a
triangular mesh is represented as a low resolution polygonal model
followed by a sequence of refinement operations, each one spec-
ifying how to add triangles and vertices to the previous level of
detail to obtain a new level. The PFS format shares with PM
and other refinement schemes the ability to smoothly interpolate
between consecutive levels of detail. However, it achieves much
higher compressionratios than PM by using amore complex refine-
ment operation which can, at the expense of reduced granularity,
be encoded more efficiently. A forest split operation doubling the
number n of triangles of a mesh requires a maximum of approxi-
mately 3.5n bits to represent the connectivity changes, as opposed
to approximately (5 + log,(n)) n bitsin PM.

We describe algorithms to efficiently encode and decode the
PFS format. We also show how any surface simplification algo-
rithm based on edge collapses can be modified to convert single
resolution triangular meshesto the PFS format. The modifications
are simple and only require two additional topological tests on each
candidate edge collapse. We show results obtained by applying
these modifications to the Variable Tolerance method of Guéziec.

CR Categoriesand Subject Descriptors:
1.3.5[Computer Graphics]: Computational Geometry and Object
Modeling - surface, solid, and object representations.

General Terms: Geometric Compression, Algorithms, Graphics.

1 INTRODUCTION

Although modeling systems in Mechanical Computer Aided De-
sign and in animation are expanding their geometric domainto free
form surfaces, polygonal models remain the primary 3D represen-
tation used in the manufacturing, architectural, and entertainment
industries. Polygonal modelsare particularly effectivefor hardware
assisted rendering, which is important for video-games, virtual re-
ality, fly-through, and digital prototyping.

A polygonal model is defined by the position of its vertices
(geometry); by the association between each face and its sustaining
vertices (connectivity); and optional colors, normals and texture
coordinates (properties). In this paper we concentrate on manifold
polygonal modelsdescribed by triangular mesheswithout attached
properties. However, we addressissues of non-triangular polygons,
properties, and non-manifolds in Section 7. A method to triangu-
late arbitrary polygonal faces is described by Ronfard and Rossi-
gnac [16]. A method to convert non-manifold polygonal modelsto
manifold polygonal modelsis described by Guéziec et al. [7].

*IBM T.JWatson Research Center, PO.Box 704, Yorktown Heights, NY 10598,
{t aubi n, guezi ec, hor nwp}@wat son. i bm com

?|RCOM-SIC (UMR CNRS 6615), SP2MI, Bvd. 3, Teleport 2, B.P. 179, 86960
Futuroscope Cedex, France, | azar us@i c. uni v-poitiers. fr

N2,
iiim N

C

Figure 1: The forest split operation. A: A triangular mesh with a forest
of edges marked in red. B: Resulting mesh after cutting through the forest
edges and splitting verticesin the resulting tree boundary loops. C: Simple
polygonsto be stitched to the boundary loops. The correspondencebetween
polygon boundaries and tree boundary loops is implicit. D: The refined
mesh. Normally, to produce a smooth transition, the vertices are displaced
only after the boundary loops are triangulated. In the figure they have
been displaced immediately after the cutting to illustrate the connectivity
refinement process.

Polygonal models are typically stored in file servers and ex-
changed over computer networks. It is frequently desirable to
compress models to reduce storage and transmission time require-
ments. Effective single-resolution-compressionschemeshavebeen
recently introduced by Deering [3] and Taubin and Rossignac [20].

While single resolution schemes can be used to reduce trans-
mission bandwidth, it is frequently desirableto send the model in a
progressive fashion. For example a progressive scheme may start
by sending a compressed version of the lowest resolution level of
alevel-of-detail (LOD) hierarchy. After the lowest level has been
sent, a sequence of additional refinement operations may be sent
in parallel to the rendering operation. In this manner, successively
finer levels of detail may be displayed while even more detailed
levels are still arriving.

To prevent visual artifacts, sometimesreferred to as“ popping”,
it is also desirable to be able to transition smoothly, or geomorph,
from onelevel of the LOD hierarchy to the next by interpolating the
positions of corresponding vertices in consecutive levels of detail
as afunction of time.

The Progressive Forest Split (PFS) schemeisintroduced in this

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

paper and featuresanew adaptive refinement schemefor storing and
transmitting triangle meshesin progressive and highly compressed
form. In this scheme a manifold triangular mesh is represented
as a low resolution polygonal model followed by a sequence of
refinement operations. The scheme permits the smooth transition
between successivelevels of refinement. High compression ratios
areachieved by using anew refinement operation which can produce
more changes per bit than existing schemes. The scheme requires
only O(n) bitsto double the size of amesh with n vertices.

The forest split operation, the refinement operation of the PFS
scheme, is illustrated in Figure 1. It is specified by a forest in
the graph of vertices and edges of the mesh, a sequence of simple
polygons (triangulated with no internal vertices), and a sequence
of vertex displacements. The mesh is refined by cutting the mesh
through the forest, splitting the resulting boundaries apart, filling
each of the resulting tree boundary loops with one of the simple
polygons, and finally displacing the new vertices.

In Section 3 we describe the algorithms for efficiently encoding
and decoding PFS meshes. We show how any surfacesimplification
algorithm based on edge collapsescan be modified to convert single
resolution triangular meshes to PFS format. The modifications
require performing two simple additional topological tests on each
candidate edge collapse.

In Section 6 we show results obtained by applying these modi-
ficationsto the Variable Tolerance surface simplification method of
Guéziec [6]. Using this method we guarantee simplification error
bounds on all levels of details as a measure of the approximation
quality. We finish the paper with a short discussion on extensions
and future work.

2 PREVIOUSWORK

Single-resolution mesh compression schemes Deer-
ing’s method [3] is designed to compress the data for transmission
from the CPU to the graphics adapter. The method uses a stack-
buffer to store 16 of the previously used vertices instead of having
random access to al the vertices of the model. The triangles of
the mesh are partitioned into generalized triangle meshes, and the
connectivity of the triangular mesh is lost. The vertex positions
are quantized and the differences between consecutive values are
entropy encoded.

The Topological Surgery (TS) method of Taubin and Rossignac
[20] was designed for fast network transmission and compact stor-
age. Inthis method the connectivity of a manifold triangular mesh
isencoded without loss of information, with storage rates approach-
ing one bit per triangle for large models. In this schemethevertices
are organized as a spanning tree, and the triangles asa simple poly-
gon. The vertex positions and properties are quantized, predicted
as a linear combination of ancestors along the vertex tree, and the
correctionsare entropy encoded. A more detailed descriptionispre-
sented in Section 3.1. The method has been extended to handle all
the polygonal modelswhich can be representedin the Virtual Real-
ity Modeling Language (VRML) [19], including all properties and
property bindings permitted by the language. Compression ratios
of upto 50:1 or more can be achieved for large VRML models.

Recursive subdivision and refinement Recursive sub-
division schemes [2, 4, 13] provide a truly progressive represen-
tation for a limited family of meshes. Most have the ability to
transition smoothly between consecutive levels of detail. In are-
cursive subdivision scheme a polygonal mesh is defined as a low
resolution base mesh followed by a sequence of subdivision steps.
Each subdivision step can be further decomposed into a connectiv-
ity refinement step, and a smoothing or geometry update step. In
the connectivity refinement step more vertices and faces are added
to the mesh. These additions usually do not change the topological

=

< AN
A B
1o o)
26 for}
3 00
12 o 6
11
[o) g 5 o g
9 7
10 8

Figure 2: The topological surgery method of Taubin and Rossignac [20].
A: Thevertex tree on the surface. Each run is painted with adifferent color.
B: The result of cutting through the edges of the vertex tree (the vertex
positions have been modified here to artificially enlarge the gap created by
the topological cut) is the simple polygon. C: The structure of the vertex
tree with the vertex tree traversal indices. D: The vertex tree becomes
the boundary loop after cutting through its edges. E: The simple polygon
(artificially flattened) has no internal vertices. Simple polygon vertices are
labeled here with their corresponding vertex tree traversal indices. F: The
dual graph of the simple polygon isthe triangle tree. One marching bit per
regular node is also required to describe the triangulation of its runs. The
order for the vertex indices is derived from the vertex tree traversal order.
Simple polygon vertices are labeled here with their boundary loop indices.
The correspondence between boundary loop indices and vertex tree indices
is stored in alookup table constructed by traversing the vertex tree.

type and new vertices are positioned such that the overall geometry
does not change. In the smoothing step, depending on whether the
method is approximating or interpolating, someor all of thevertices
of the mesh with refined connectivity are displaced. Usually the
goal isto show that after aninfinite number of subdivisionsteps, the
sequence of polygonal meshes converges to a smooth continuous
surface, but in practice only afew subdivision steps are applied.
Uniform subdivision schemes can be regarded as the optimal
compression schemes. Both the connectivity refinement and the
smoothing steps are defined globally by afew parameters per sub-
division step [18] and the schemes are optimal in the sense that
the number of parameters is independent of the number of ver-
tices and faces created at each subdivision step. However, these
high compression ratios are obtained only for meshes with recur-

sive subdivision connectivity. Eck et al. [5] describe a method to
approximate atriangular mesh by a new mesh with recursive subdi-
vision connectivity and approximately the same geometry, but very
often the option of changing the connectivity of the mesh in this
way is not possible.

Adaptive subdivision schemes [9, 21] must specify how and
where the mesh connectivity is to be refined. This may require
as little as only one bit per vertex, edge, or face to specify each
connectivity refinement step. These schemes may also require
vertex displacementsfor the newly created vertices, instead of, or
in addition to, the global parameters defining the smoothing step.

As noted above, the main problem with existing uniform and
adaptive subdivision schemesisthat ageneral triangular mesh usu-
ally does not satisfy subdivision requirements and cannot be com-
pressed with these methods. The Progressive Mesh (PM) scheme
introduced by Hoppe[11] solvesthis problem. The schemeis not a
subdivision scheme but an adaptive refinement scheme where new
faces are not created by subdividing existing faces, but by insert-
ing them in between existing faces. Every triangular mesh can be
represented as a base mesh followed by a sequence of refinements
referred to as vertex splits. Each vertex split is specified for the
current level of detail by identifying two edgesand a shared vertex.
The meshisrefined by cutting it through the pair of edges, splitting
the common vertex into two vertices and creating a quadrilateral
hole, which is filled with two triangles sharing the edge connecting
the two new vertices. The PM schemeis not an efficient compres-
sion scheme. Since the refinement operations perform very small
and localized changes the scheme requires O(nlog,(n)) bits to
doublethe size of amesh with n vertices.

The refinement operation of the PFS scheme introduced in this
paper, the forest split, can be seen as a grouping of several con-
secutive edge split operations into a set, instead of a sequence. In
the PFS schemethere is a tradeoff between compression ratios and
granularity. The highest compression ratios are achieved by mini-
mizing the number of levels of detail. Most often the high number
of levels of detail produced by the PM scheme are not required.
Hoppetypically definesthe levels of the LOD hierarchy of his PM
representation using exponential steps.

3 THE PFSREPRESENTATION

A multi-resolution mesh represented in the PFSformat is composed
of an initial low resolution level of detail followed by a sequence
of forest split operations. Although any method could be used
to represent the lowest resolution level of detail, we use the TS
method becausethe PFS representation is anatural extension of the
representation used in this scheme. For both the lowest resolution
base mesh and the forest split operations we make a distinction
between the representation and the encoding of the representation.

3.1 Topological Surgery

In this section we give a brief description of the TS representation
for a simple mesh, that is, a triangle mesh with sphere topology.
With a few minor additions, manifolds of arbitrary genus, with
or without boundaries, and orientable or non-orientable can also
be represented. Since these additional concepts are not needed
to describe the PFS format, we refer the interested reader to the
original reference for the details.

Representation Figure 2 illustrates the main concepts of the
TS representation. In this method the vertices of a triangular mesh
are organized as a rooted spanning tree in the graph of the mesh,
called thevertextree (Figure 2-A). Asshownin Figure 2-B,E, when
asimple meshis cut through the vertex tree edges, the connectivity

of the resulting mesh is a simple polygon. The edges of the simple
polygon form a boundary loop.

The order of traversal of the vertex tree (Figure 2-C) defines
a one-to-two correspondence between the edges of the vertex tree
and the edges of the boundary loop (Figure 2-D). This correspon-
dencedefineswhich pairs of boundary loop edgesshould be stitched
together to reconstruct the connectivity of the original mesh.

Encoding The encoding of this representation in the com-
pressed data stream is composed of, in order: the encoding of
the vertex tree, the compressed coordinate information, and the
encoding of the simple polygon.

The vertex tree is run-length encoded. The tree is decomposed
into runs(shownindifferent colorsin Figure 2-A,C). A run connects
aleaf or branching node to another leaf or branching node through
a path of zero or more regular nodes. The order of traversal of the
tree defines an order of traversals of the runs, and a first and last
node for each run. Each run is encoded as a record composed of
three fields (is-last-run,length-of-run,ends-in-leaf). Theis-last-run
field is a bit that determines if the runs shares the first node with
the next run or not. It determines the pushing of branching node
indices onto atraversal stack. Thelength-of-run field is avariable
length integer (same number of bitsfor al the runsin the tree) with
avalue equal to the number of edgesin the run. The ends-in-leaf
field is a bit which determinesif the run endsin aleaf or branching
node, and the popping of branching node indicesfrom the traversal
stack.

The coordinate information is placed in the compressed stream
in the order of traversal of the vertex tree. The coordinate datais
compressed by storing errors instead of absolute coordinates. The
errors are calculated with respect to a predictor. The predictor is
computed as a linear combination of several ancestorsin the tree
and is quantized to a certain number of bits per coordinate with
respect to a bounding box. The errors are then Huffman-encoded.
Once the coordinate information is received, the geometry of the
mesh can be reconstructed as an array of vertex coordinates.

Thedual graph of the simple polygonis also atree (Figure 2-F).
The structure of thistriangle treeis run-length encodedin the same
way as the vertex tree, except that the is-last-run field is not neces-
sary, becausethe triangle tree is a binary tree. The structure of the
triangle tree does not completely describe the triangulation of the
polygon. To completethe description, an extrabit per triangle asso-
ciated with each regular node of the triangle tree must be included.
These marching bits determine how to triangulate the runs of the
tree by advancing either on theleft or on theright on the boundary of
the polygon. This encoding scheme produces very good results for
polygons with very few and long runs. Another encoding scheme
for simple polygonsis described in the next section.

3.2 Theforest split operation

Representation A forest split operation, illustrated in Figure
1, is represented by: aforest in the graph of vertices and edges of
amesh; a sequence of simple polygons; and a sequence of vertex
displacements. The meshis refined by cutting the mesh through the
forest, splitting the resulting boundaries apart, filling each of the
resulting tree boundary loops with one of the simple polygons, and
finally, displacing the new vertices.

Applying aforest split operation involves: 1) cutting the mesh
through the forest edges; 2) triangulating each tree loop according
to the corresponding simple polygon; and 3) displacing the new
verticesto their new positions. Aswill beexplainedin the next sec-
tion, some of the information required to perform these steps, such
as the correspondence between trees of the forest and simple poly-
gons, and between tree boundary |oop edges and polygon boundary
loop edges of each corresponding tree-polygon pair, is not given

Et Trt
//
Vit
A
7 6
4 3
2
0 1 5
(3
\V
Bt \
Trt
Wt
E F

Figure 3: When ameshis cut through atree of edges (red and green edges
in A), atree boundary loop (red and green edgesin B) is created with each
edge of the tree corresponding to two edges of the boundary loop. Some
vertex indices are assigned before cutting (C) to new tree boundary loop
vertices, othersare assigned subsequentindices (D). The hole created by the
cutting operation isfilled by triangulating the boundary loop using asimple
polygon (E) resulting in arefined mesh (F) with the same topological type
astheinitial mesh.

explicitly, but is based on an implicit convention for enumerating
mesh elements.

Enumeration of mesh elements Givenatriangular mesh
with V' vertices and T' triangles, we assume that the vertices have
consecutive vertex indices in the range 0, . . ., V — 1, and the tri-
angles have consecutivetriangle indicesin the range0, . .., 7' —1.
The edgesof the mesh, which are represented by pairs of vertex in-
dices (s,) with 7 < j, are ordered lexicographically and assigned
consecutiveedgeindicesin therangeO, . .., E—1. Thetreesin the
forest are ordered according to the minimum vertex index of each
tree. The root vertex vyt of each tree in the forest is the leaf of the
tree with the minimum index. Starting at the root, the boundary
loop created by cutting along the tree can be traversed in cyclic
fashion in one of the two directions. Theroot edgeeyt of thetreeis
the only edge of the tree which has the root vertex as an endpoint.
Of the two triangles incident to the root edge of the tree, the root
triangle ¢4 of the tree is the one with the minimum triangle index.
Theroot triangle of the tree determines the direction of traversal of
the tree boundary loop. Of the two edges of the tree boundary loop

Cc D

Figure 4: Construction and triangulation of tree boundary loops. A,B: No
tree verticesin the mesh boundary. C,D: A tree vertex isolated in the mesh
boundary requires an extra tree loop edge. E,F: A tree edge on the mesh
boundary edges does not require an extra tree loop edge, but some of the
new vertex indices may only be used by new triangles. Note that the tree
may have several contactswith the mesh boundary.

corresponding to the root edge of the tree, the root edge e(of the
tree boundary loop is the one incident to the root triangle. Figures
3-A B illustrate these concepts.

Each simple polygon has a boundary edge identified as the root
edge ert, with one of the two endpoints labeled as the root vertex
vyt, and the other endpoint |abeled as the second vertex v». Figure
3-E illustrates these concepts. The cyclical direction of traversal
of the polygon boundary loop is determined by visiting the root
vertex first, followed by the second vertex. The correspondence
between vertices and edgesin atree boundary loop and the polygon
boundary loop is defined by their directionsof cyclical traversal and
by the matching of their root vertices.

Cutting through forest edges Cutting through a forest of
edges can be performed sequentially, cutting through one tree at
time. Each cut is typically a local operation, affecting only the
triangles incident to vertices and edges of the tree. However, asin
the TS method, a single cut could involve al the triangles of the
mesh. Cutting requires duplicating some tree vertices, assigning
additional indicesto the new vertices and fixing the specification of
the affected triangles.

As illustrated in Figure 4-A,B, if no tree vertex is a bound-

ary vertex of the mesh, then the tree is completely surrounded by
triangles. Starting at the root triangle, al the corners of affected
triangles can be visited in the order of traversal of the tree bound-
ary loop, by jumping from triangle to neighboring triangle, while
always keeping contact with the tree. This process producesa list
of triangle corners, called the corner loop, whose values need to be
updated with the new vertex indices. While traversing this list, we
encounter runs of corners corresponding to the same vertex index
before the cut. A new vertex index must be assigned to each one
of theseruns. To prevent gapsin the list of vertex indices we first
need to reuse the vertex indices of the tree vertices, which other-
wise would not be corner values of any triangles. Thefirst visited
run corresponding to one of these vertices is assigned that vertex
index. Thenext visited run corresponding to the same vertex index
isassigned thefirst vertex index not yet assigned above the number
of vertices of the mesh before the cut. This procedure performs
the topological cut. For example, in Figure 3-C, the vertex index
values of the corners in the corner loop list are:

[1233333244444421111] .

The list can be decomposed into 6 runs[11111], [2], [33333], [2],
[444444], and [2]. As shown in Figure 3-D, the vertex indices
assignedto theserunsare1, 2, 3, 8, 4, 9.

A tree with m edges containing no mesh boundary vertices
creates atree boundary loop of 2m edges. This may not bethe case
when one or more tree vertices are also part of the mesh boundary.
Asillustrated in Figures 4-C,D,E,F, several special cases, must be
considered. Thesespecial casestreat collapsed edgesincident to or
on the mesh boundary produced by the PFS generation algorithms
as described in Section 5.

Triangulating tree boundary loops By replacing each
run of corners in the corner loop with the assigned vertex index,
we construct a new list representing the tree boundary loop, If
the tree boundary loop has m vertices, so does the corresponding
polygon boundary loop. Each triangle t = {1, 7, &} of the simple
polygon definesa new triangle of the refined mesh by replacing the
polygon boundary loop indices<, 7, k with their corresponding tree
boundary loop indices. Thisis done using the list representing the
tree boundary loop as alookup table. The triangles of the simple
polygon are visited in the order of a depth first traversal of its
dual tree. Thetraversal starts with the triangle opposite to the root
triangle and alwaystraversesthe left branch of abranchingtriangle
first.

Displacingvertices To satisfy thesmooth transition property,
vertex coordinates corresponding to new vertices are first assigned
the same coordinates as the corresponding tree vertices before the
cut. To prevent the appearanceof holes, these vertices aredisplaced
after the boundary loops are triangulated. Optionally, all affected
vertices may be repositioned.

4 COMPRESSION AND ENCODING

In this sectionwe describehow amodel representedin PFSformat is
encoded/compressed for efficient transmission and storage. Com-
pression and encoding of thefirst (lowest) resolution level of detail
was discussed in Section 3.1. This block of data is followed by
the compressed/encoded forest split operationsin the order they are
applied. Theencoding of eachforest split operation is composed of,
in order: 1) the encoding of the forest of edges, 2) the encoding of
the sequenceof simple polygons, and 3) the compression/encoding
of the vertex displacements.

[12122331001210]
A B

Figure 5: Constant-length encoding of a simple polygon. A: Triangles
labelsaccording to their order of traversal. B: Triangles|abels accordingto
their two bit code. The encoding of the polygon is the sequence between
the brackets.

Encodingtheforest A simpleencodingof theforest requires
onebit per edge, for exampleavalue1 for the edgeswhich belongto
theforest and 0 for therest. Thesebitsare placedin the compressed
data stream in the edge index order defined above. However, since
any subset of edges of a forest form a forest, the edges with bit
value 1 read up to a certain point may determine that certain edges
with higher edge index should have bit value 0, otherwise they
would create loops in the forest defined so far by the bits with bit
valuel. Theseedgescan be skippedin the compressed datastream.
When very few edges belong to the forest, run-length encoding this
bit-stream may result in fewer bits. In the experiments that we
have performed so far, where the number of triangles increase by
50-70% with each forest split operation, the skipping of predictable
bits described abovetrims the length of the forest bit-stream by only
about 1-8% and the simple encoding of the resulting bit-stream is
usually shorter that the run-length encoded stream.

Encoding a ssimple polygon The variable length encoding
scheme described in section 3.1 uses one record per triangle tree
run and one marching bit per regular node of the triangle tree to
encodea simple polygon. This encoding is not very efficient when
the simple polygon is composed of a few triangles or short runs.
A constant length encoding scheme, requiring exactly 2 bits per
triangle, has been proposed by Frank Bossen as an alternative for
the MPEG4 standard [1]. This scheme produces better results for
polygonswith few triangles or short runs.

In the current implementation we compute both encodings for
all simple polygonsand put the shortest onein the compressed data
stream, preceded by one bit to indicate which encoding is used.
That is, the simple polygons are either all constant length encoded
or al run-length encoded.

The constant-length encoding scheme, illustrated in Figure 5,
is performed by traversing the triangle tree. Thetraversal starts by
entering thefirst triangle through the root edge, with the root vertex
assigned to left vertex vz, and the second vertex assigned to right
vertexvr. Thethird vertex of thetriangleis assignedto the opposite
vertex vo, the edge ez, = (vr,vo) is the left edge, and the edge
er = (vr, vo) istherightedge. Onebit isusedto indicatewhether
each edge (left and right) is a boundary edge or an internal edge of
thepolygon. If only theleft edgeisinternal, wesetvg = vo andwe
continuewith theother triangleincidenttoey,. If only theright edge
isinternal, we set vz, = vo and we continuewith the other triangle
incident to e. If both edges are internal, we push vo and vz onto
atraversal stack, we set vr = vo and we continue with the other
triangleincidentto ez, . If both edgesare boundary and the traversal
stack is not empty, we pop vr and vz, from the traversal stack, and
we continue with the other triangle incident to the edge (vz, vr).
If both edges are boundary, and the traversal stack is empty, we

have finished visiting al the triangles of the simple polygon. For
example, in Figure 5-A, the triangles are labeled with their order
of traversal, and in Figure 5-B, with their corresponding two-bit
code, as a number in therange 0, .. ., 3. Here, for each digit the
first bit equals 0 if the left edge is boundary, 1 if the left edge is
interior. The second bit representsthe right side and usesthe same
convention. The encoding of this polygon is [12122331001210].
Note that there is a very simple transformation from the constant-
length encoding to the variable-length encoding. The 3sand 0sin
the constant-length encoded sequence mark the end of the triangle
runs. In this example, the triangle-runs are defined by the sub
sequences [121223], [3], [10], [0], and [1210], which are in the
same order defined by the variable-length scheme. The length-of-
run field value is the number of two-bit codesin the corresponding
sub sequence(6,1,2,1, and 4 in this case). Theends-in-leaf bit value
is determined by the last codein the sub sequence(3 — 0,0 — 1),
and the marching bits by the other codesin the sequence, skipping
the3sand0s((1 — 0,2 — 1). Inthisexamplethemarching pattern
is the following sequenceof bits[010110010]. The transformation
from the variable-length encoding to the constant-length encoding
is also straightforward.

Decoding a simple polygon As described in Section 3.2,
applying the forest split operation requires the triangles of each
simplepolygon to berepresented by tripletst = {z, 7, k} of polygon
boundary loop indices. These indices are subsequently replaced
with the vertex indices assigned to the corresponding tree boundary
loop indices.

Since the order in which the polygon vertices are visited during
tree traversal is usually not the sequential order of the boundary
loop, the following recursive procedure is used to reconstruct the
triangles of each simple polygon. As described above the traversal
of asimple polygon starts by entering the first triangle crossing the
root edge, with the left boundary loop index zz, = 0 corresponding
to the root vertex, and the right boundary loop index ir = 1
corresponding to the second vertex. In general, when we enter a
triangle, we know the values of ¢z, and ¢r, and only the opposite
boundary loop index zo must be determined.

If the two-bit code is 1 (leaf node with next triangle on the
left), we set io = ir + 1 (addition and subtraction is modulo the
length of the polygon boundary loop) and reconstruct the triangle
{ir,%0,1r}, We Set ir = 1o, and continue. If the two-bit code is
2 (leaf node with next triangle on the right), we setio = ir — 1,
reconstruct thetriangle {iz, 70, tr}, wesetiz = i, and continue.
To determine the value of 1o for a branching triangle, if we know
the distance d along the boundary loop from the left vertex to
the right vertex for the run attached to the left edge, we set 1o =
1z, +d, reconstruct thetriangle{:z, 10, 1= }, pushir andio ontothe
traversal stack, settr = 70, and continue. Asexplained by Taubin
and Rossignac [20], these lengths can be recursively computed for
all the runs from the encoding of the polygon based on the formula
d = 1—1+dz +dr, theredisthedistanceof onerun, I isthelength
of the run. If therun endsin abranching node, d;, isthe distance of
the run attached to the left edge of the last triangle of the run, and
dr is the distance of the run attached to the right edge of the last
triangle of the run. If the run endsin aleaf node, d, = dr = 1.
If the two-bit code of the triangle has the value 0 (leaf node of the
triangletree), wesetio = iz — 1 Orip = ig + 1, and reconstruct
the triangle {ir,70,tr}. If the stack is empty we have finished
reconstructing the polygons. Otherwise we pop ¢z and iz values
from the stack, and continue.

Encoding the sequence of simplepolygons Weencode
a sequence of constant-length encoded simple polygons by spec-
ifying the total number of triangles in the complete sequence of
simple polygons followed by a concatentation of the two-bit en-
coding sequences. It is not necessary to include special markers

in the compressed data stream to indicate the beginning and end of
each polygon. Thefollowing procedure, which usesasingleinteger
variable called depth, determines the limits of the polygons. The
depth variable is initialized to 1 before starting traversing a poly-
gon. Eachtime atwo-bit codewith the value 3 is found (branching
triangle), depth is incremented by one. Each time a two-bit code
with the value 0 is found (leaf triangle), depth is decremented by
one. Thevariabledepthisawayspositivewhileinsidethe polygon.
The end of the polygon is reached after the depth becomesequal to
zero. If the polygons are run-length encoded, instead of the total
number of runs, the (length-of-run,ends-in-leaf) recordsare put into
the data stream in the order of traversal of the trees, preceded by
thetotal number of runsin the sequence, and the number of bits per
length-of-run. The same procedure described above (using a depth
variable) can be used to determine the limits of the simple polygon.

Encoding the vertex displacements Rather than encod-
ing the new absolutepositions of the marked vertices, their positions
after and before the forest split operation arefirst quantizedto acer-
tain number of bits per coordinate with respect to aglobal bounding
box enclosing all thelevelsof detail. Thedifferences between these
values are then Huffman encoded. The Huffman encoding table,
the specification of the bounding box, and the number of bits per
coordinate error, are included at the beginning of the compressed
stream. The same bounding box and number of bits per coordinate
is used by the TS scheme, described in Section 3.1, to encode the
coordinates of the lowest resolution level of detail, but becausethe
errors are computed in adifferent way, different Huffman tablesare
used. Also, since the errors keep growing smaller as more forest
split operations are applied, we use a different Huffman table for
each forest split operation.

Pre and post smoothing The differences between vertex
positions before and after each forest split operation can be made
smaller by representing these errors asthe sum of aglobal predictor
plus a correction. We use the smoothing method of Taubin [18] as
aglobal predictor. The method requires only three global parame-
ters which are included in the compressed data stream. After the
connectivity refinement step of a forest split operation is applied,
the new vertices are positioned where their corresponding vertices
in the previous level of detail were positioned and the mesh has
many edges of zero length (all the new triangles have zero surface
area). The smoothing method of Taubin, which tends to equalize
the size of neighboring triangles, brings the endpoints of most such
edges apart, most often reducing the distance to the desired ver-
tex positions. The corrections, the differences between the vertex
positions after the split operation and the result of smoothing the
positions before the split operation, are then quantized according
to the global quantization grid and entropy encoded. To make sure
that the resulting vertex positions have values on the quantization
grid, the smoothed coordinatesmust be quantized before computing
the corrections. In our experiments, this procedure reducesthetotal
length of the entropy encoded corrections by up to 20-25%.

If the polygonal model approximates a smooth shape, a post-
smoothing step can be applied to reduced the visual artifacts pro-
duced by the quantization process. In many cases, even fewer bits
per coordinate can be used in the quantization process without a
significant perceptual difference, also reducing the total length of
the encoded vertex displacements. Figure 6 illustrates the effect of
post-smoothing.

Compression ratios The simple encoding of the forest with
one bit per edge and the constant-length encoding of the simple
polygons provide an upper bound to the number of bits required to
encode a forest split operation. Since the number of edgesin the
mesh isindependent of the number of trianglesadded, the minimum

-

S
S
ey g -

e

I \ﬁ \ \ B
Figure 6: Effect of post-smoothing. A: Coordinatesquantized to 6 bits per
coordinate. B: Result of applying the smoothing algorithm of Taubin [18]

with parametersn = 16 A = 0.60 & = —0.64. Comparewith the original
in Figure 8-D.

number of bits per triangle are obtained when the most triangles are
added with one forest split operation.

The most triangles we can add with one forest split operation
is approximately equal to the current number of triangles. Asthe
number of edges in the forest increases, so does the number of
triangles added. The forest with the largest number of edges for a
triangle mesh with V' vertices has V' — 1 edges and corresponds to
a forest composed of a single spanning tree. Ignoring the case of
mesheswith boundaries, this singletree createsatree boundary loop
with 2V — 2 edges, and a simple polygon with that many boundary
edgesis composed of 2V —4 triangles. Since typical meshes have
about twice as many triangles as vertices, the number of triangles
in this simple polygon is approximately equal to T', the number of
triangles in the mesh. If we also assume that the mesh has low
Euler number (V—E+T = 0), then E ~ 1.5T. If AT = oT
is the number of triangles added by the forest split operation (0 <
a < 1), the total number of bits required to encode the connectivity
information of this forest split operation is approximately equal to
(1.5/« + 2)AT. Thisis 3.5 bits per triangle for « = 1, 4 bits per
triangle for « = 0.75, and 5 bits per triangle for o« = 0.5.

Inthe PM schemeeach vertex split operation requiresan average
of 5 + log,(n) bits to specify the refinement in the connectivity of
the mesh (log,(n) bits to specify the index of the common vertex,
and an average of 5 bhits to specify the two incident edges), to a
total storage of about n(5 + log,(n)) bits to double the number
of vertices of the mesh. For example, let us consider arelatively
small mesh with 1,000 triangles, and a forest split operation which
increases the number of triangles by 75%. The PFS scheme needs
about 4 bits per new triangles to represent the connectivity changes
while the PM schemeneedsabout 5 + 10 = 15 bits per triangle or
almost four times the number of bits required by the PFS scheme.
For larger meshes the differences become more pronounced.

If no pre or post smoothing is used, the number of bits used to
encode each vertex displacement is about the same as in PM. As
discussed above, pre and post smoothing can be used to decrease
thetotal size of the encoded vertex displacementsby up to 20-25%.
Because of the small granularity, it is not practical to apply pre
smoothing before each vertex split operation in PM.

Complexity of encoding and decoding Since the two
triangles incident to an edge defined by a pair of vertex indices can
beaccessedin constanttime, theforest split operationislinear in the
number of triangles added. We represent the edges as quadruplets,
with two vertex indices and two face indices, and keep them in a
hash table or array of linked lists. For typical surfacesthis provides
constant or almost constant accesstime.

5 CONVERSION TO PFSFORMAT

In this section we discuss simplification algorithms to convert a
single-resolution triangular mesh to PFSformat. We show that most
edge-collapse based simplification algorithms can be modified to
represent a simplification LOD hierarchy as a sequence of forest
collapse operations.

Clustered multi-resolution models Several existing meth-
odsto generate multi-resolution polygona modelsarebased on ver-
tex clustering algorithms [17]. In the multi-resolution polygonal
model produced by these algorithms, the vertices of each level of
detail are partitioned into disjoint subsetsof verticescalled clusters.
All the verticesin each cluster are collapsed into a single vertex of
the next (lower resolution) level of detail. Other examples of clus-
tering algorithms for automatic surface simplification are based on
triangle collapsing [10], and edge collapsing [12, 15, 6, 11].

For a clustering algorithm producing an LOD hierarchy with L
levels, the vertices of consecutive levels are related by clustering
functionse; : {1,...,Vi} — {1, ..., Viy1} which map vertex in-
dicesof level [onto vertex indicesof level I4+-1. Here, V; denotesthe
number of verticesof thel-th. level. Trianglesat eachlevel of detail
are completely specified by the triangles of the first (highest reso-
lution) level of detail and the clustering functions. If ¢, = {1, 7, k}
isatriangle of thei-th. level, thentiy1 = {ci(2), ci(4), ci(k)} isa
triangle of the next level if it is composed of three different indices;
otherwise we say that ¢; was collapsed at the next level.

Clustered multi-resolution polygona models have the smooth
transition property. Vertex : of thel-th. level islinearly interpolated
with vertex ¢;(7) of the level asa function of time. A closely re-
lated, but more compact datastructure, optimized for fast switching
between levels of detail was recently introduced by Guéziec et al.
[8] to represent clustered multi-resolution polygonal models.

Theforest collapseoperation The set of triangles of each
level of detail that collapsesin the next level can be partitioned into
connected components, where two triangles are considered con-
nected if they share an edge. A clustering function defines aforest
collapse operation if the following two conditions are satisfied: 1)
each connected component is a simple polygon (triangulated with
no internal vertices); and 2) no vertex is shared by two or more
connected components. |If these two conditions are satisfied, the
boundary edges of each connected component form a disconnected
tree in the next level of detail. If the edges formed a graph with
loopsinstead of atree then the connected component would not be
simply connected. Also, connected components with no common
vertices always produce disconnected trees.

To test whether or not a clustering function defines a forest
collapse operation, itissufficientto: 1) check that the Euler numbers
of the connected components are all equal to one (V — E —T=1),
where the edges which separate the triangles of each component
from other triangles are consdiered boundary edges; and 2) count
the number of times that each vertex of the mesh belongs to the
boundary of a connected component and then check that all these
numbers are equal to 0 or 1.

Permutations of vertex and triangleindices If al the
clustering functions of a clustered multi-resolution model define
forest collapse operations, the transition from the lowest to the
highest resolution level of detail can be represented as a sequence
of forest split operations. The order of vertices and trianglesin the
highest resolution level of detail and thoseinduced by the clustering
functions in the lower resolution levels will, in general, not be the
same as those produced by decompressing the low resolution mesh
and applying the forest split operations. Special care must be taken
to determine the permutations which put the vertices and faces of

Figure 7: Collapsibility tests. A: Acceptable edge of multiplicity 1. B:
Rejected edge of multiplicity 1. C: Rejected edge of multiplicity > 1.

different levelsin the order that the decoder expectsas describedin
Section 3.2.

Edge-collapsesimplification algorithms Inseveral sim-
plification algorithms based on edge collapsing, the edges of the
mesh are ordered in a priority queue according to certain crite-
ria, usually based on the geometry of a neighborhood, and on the
changes that the edge would produce if collapsed. The first edge
is removed from the queue and certain connectivity and geometry
tests are applied to it. If it passesthe tests it is classified as col-
lapsible, and the edgeis collapsed. Otherwise, it is discarded. The
collapsing of an edge may require changing the order of some of
the neighboring edgesin the queue. The process continues remov-
ing edges from the queue until the queue is exhausted, or until a
termination condition, such as maximum number of collapsed tri-
angles, isreached. To prevent visual artifacts the collapsibility test
should take into account the values of properties bound to vertices,
triangles, or corners, and thediscontinuity curvesthat such property
fields define, asin the PM simplification algorithm [11].

Theinitial mesh, before the simplification algorithm starts col-
lapsing edges, defines one level of detail, and the resulting mesh,
after the collapsing stops, defines the next level of detail. An
extended collapsibility test must be performed to ensure that the
clustering function defined by a proposed edge collapse also de-
fines a valid forest collapse operation. This extended test requires
two additional, simple teststo be performed on each candidate edge
collapse. Figure 7 illustrates these tests. Both tests are straightfor-
ward.

The first test determines whether or not the connected compo-
nents of the set of collapsed triangles are simple polygons after the
edgeis collapsed. The test can be implemented using an auxiliary
data structure to maintain a forest in the dual graph of the mesh,
with each tree of this forest corresponding to one connected com-
ponent (simple polygon) constructed so far. When an edge collapse
is accepted by the simplification algorithm, it not only identifies
the two endpoints of the edge, but also the two remaining edges of
each of the two (one for the case involving mesh boundary) col-
lapsed triangles. This defines a multiplicity for each edge of the
simplified mesh. Initially all edgesin the current level of detail are
assigned a multiplicity of one. When two edges are identified as
the result of an edge collapse, they are removed from the priority
gueue, and anew edgewith the sum of the two multiplicitiesisrein-
serted in the queue. Of the four (two for the case involving mesh
boundary) boundary edges of the quadrilateral defined by the two
(one) collapsed triangles, between 0 and 4 (2) edges are boundary
edges of neighboring connected components. The test is passed
if al of these neighboring connected components are different, in
which case, adding the collapsed edge and the edges shared with
the connected componentsto the dual forest would not destroy the
forest structure. Otherwise, one or more loops would be created.
Two triangles incident to an edge with multiplicity higher than one
correspond to two mesh triangles which each share an edge with a
boundary edge of the same connected component but are not neigh-

Figure 8: Highest resolution models used to converted to PFS format in
Section 6. A: bunny. B: horse. C: crocodile. D: skull. All the models are
flat-shaded. Properties are ignored.

bors in the original mesh. Either one or two of the edges of each
one of these triangles in the original mesh are boundary edges of
the neighboring connected component, otherwise the previous test
would have been violated. The test is passed if only one edge is
shared with the neighboring connected component.

The second test is applied only if the edge passesthe first test.
This test prevents vertices from being shared by two or more con-
nected componentsand can beimplemented using an auxiliary data
structure to keep track of the vertices of the mesh which are bound-
ary vertices of simple polygons constructed so far. An array of
boolean variables, initialized to false, is sufficient for this purpose.
We call avertex of the quadrilateral defined by the collapse of an
edge with multiplicity 1 isolated, if neither one of the two bound-
ary edges of the quadrilateral shared by the vertex are shared by
neighboring connected components. The samenameis givento the
two vertices of the two trianglesincident to an edge with multiplic-
ity higher than 1, which are not endpoints of the collapsed edge.
The second test is passed if neither one of the isolated vertices are
boundary vertices of any connected component. If an edge passes
both teststhen the edgeis collapsed, the priority queueand the data
structures needed to perform the two new tests are updated, and the
process repeats until the queue is exhausted.

Asexplained in Section 4, themost trianglesaforest split opera-
tion can add to a mesh with 7T triangles is approximately T". There-
fore, when the simplification algorithm (with the two additional
tests) stops because the queue has been exhausted, the resulting
mesh cannot have less than half the triangles of the original mesh.
In our experiments, a forest split operation adds between 45-90%
T to amesh of T triangles.

6 IMPLEMENTATION AND RESULTS

Our prototype implementation is composed of three programs: 1) a
simplification program, 2) an encoding program, and 3) adecoding
program. The current implementation handles manifold triangular
mesheswithout properties.

P
o= A

Z

AN
N

Figure 9: LOD hierarchy generated automatically from the horse of figure
8-B (Level 4). Red triangles collapsein the next level

For the simplification progam we implemented the variable tol-
erance simplification method of Guéziec [6] with the modifications
described in Section 5. The combined procedure takes a single-
resolution triangular mesh as input, and producesas output afilein
clustered multi-resolution format. Thisis an ASCI| file containing
the connectivity of the original mesh, the vertices coordinates of
all the levels produced, and the clustering functions represented as
arraysof vertex indices. The encoder program takesthis file format
as input, checks whether the datais PFS compressible or not, and
if so, produces a compressed data stream as described in Section
4. The decoder program takes this compressed data stream as input
and produces afile in clustered multi-resolution format.

We report results for four models, each displayed in full reso-
lution in figures 8-A,B,C,D. The models all have roughly the same
number of vertices and triangles (except the bunny) and represent
different topological types. The bunny hasthe topology of a sphere
with four holes (in the bottom). The horse is composed of three
connected components each with the topology of a sphere with-
out boundary (body and eyes). The crocodile is composed of 65
connected components each with the topology of a sphere (body,
mandibles, eyes and teeth) and with large variations in the number
of verticesand trianglesin each component. Theskull is connected,
has no boundary and a very high genus.

The simplification program produced four levels of detail for
the bunny, and five levels of detail for each one of the other models.
Figure9 showsthe LOD hierarchy generated from the horse. Figure
10 showsthe LOD hierarchy generated from the skull. The number
of vertices and triangles for each level, as well as the number of
bytes needed to encode the base meshes and forest split operations
are shown in the Figure 11. Overall, the single resolution scheme
used to encode and compress the lowest resolution level of detail
has better compression rates (bits per triangle) than the forest split
operations. However, the forest split operation compression rates
approach the single resolution compression rates as the size of the
forests grow and the vertex displacements decreasein magnitude.

Level 2 Level 3

Figure 10: LOD hierarchy generated automatically from the skull of figure
8-D (Level 4). Red triangles collapse in the next level

7 EXTENSIONS

To simplify the description of the representation, algorithms and
data structures, and to reflect the limitations of the current imple-
mentation, we have limited the scope of this paper to manifold
triangular mesheswithout properties. Some of these extensionsare
straightforward, others will require further work.

Polygonal faces Just asthe TSmethod wasextendedto handle
thesimply connected polygonal facesfoundin VRML models[19],
the PFS method can be extended to handle manifold polygonal
modelswith simply connected polygonal faces. The representation
and encoding of theforest of edgesdo not require any modification.
Tree boundary loopswould be polygonized instead of triangulated.
Tree boundary loops can be polygonized by sending one extra bit
per marching edge to indicate which of the internal edges of the
triangulated simple polygon are actually face edges.

Properties The current implementation supportstopology and
vector coordinates. The TS method has been extended to handle
properties (colors, normals and texture coordinates) and property
bindings for faces and corners [19]. The same techniques can be
used to extend the PFS method to handle additional properties and
property bindings. Normals can be quantized in a specia way,
taking into account the unit length nature of normals vectors [19].
When properties are bound to corners, they define discontinuity
curves [11, 19]. Encoding these discontinuity curves by simply
requiring an extra bit per edge may be too expensive. A scheme
to progressively update the discontinuity curves may be necessary.
We intend to work on this issuein the near future.

Non-manifolds and topology changing refinement
The topological type of the lowest resolution level of detail stays
constant during the refinement process for bothe the PFS and PM
methods. The Progressive Simplicial Complexes (PSC) scheme
was introduced by Popovic and Hoppe [14], to allow changesin
topological type (genus) to occur during the refinement process.

Tolerance method of Guéziec. Finally, we discussed how to extend
the schemeto handle polygonal facesand variousproperty bindings.

CROCODILE (1.89)
Ceve 0 1 2 3]
T 3,506 | 5,128 | 7,680 | 12,408 | 21,628
AT 3506 | 1,622 | 2552 | 4,728 | 9,220
AT (%) o | 46| 50 62 74
CIAT 342 | 529 | 504 | 445 402
(CTG)AT || 1329 | 26.71 | 2420 | 2082 | 17.27
HORSE (2.76)
T 2,894 | 4,306 | 6,774 | 11,754 | 22,258
AT 2,894 | 1412 | 2,468 | 4,980 | 10,504
AT (%) o | 49| 57 74 90
CIAT 344 | 512 | 464 | 405| 368
(CTG)AT || 1374 | 25.04 | 2504 | 19.16 | 1701
SKULL (1.48)
T 4764 | 6,612 | 9,966 | 14,89 | 22,104
AT 4464 | 2,148 | 3,354 | 4,930 | 7,208
AT (%) o | 48| 51 50 8
CIAT 451 515 | 497 | 504 510
(CTG)/AT || 1486 | 29.85 | 2815 | 26.71 | 2458
BUNNY a73)
T 2,008 | 3,160 | 5,072 | 7,698

AT 2,008 | 1,161 | 1,903 | 2,626

AT (%) o 58| 60 P

CIAT 327 | 469 456 | 495

(CTG)AT || 1437 | 2797 | 2568 | 26.38

Figure 11: Numerical results. T: number of triangles. AT: incre-
ment with respect to previous level. C/AT: bits per triangle for
connectivity. (C+G)/AT: total number of bits per triangle. The
number in parenthesesis the relative cost of progressivevs. single
resolution transmission of connectivity (ratio of connectivity bits
per triangle in Progressive Forest Split / Topological Surgery).

The PSC representation retains most of the advantages of the PM
representation, including smooth transitions between consecutive
levels of detail and progressive transmission. However, the in-
creased generality of the method requires a higher number of bits
to specify each refinement operation.

We believe that a recursive subdivision approach related to
the one taken in this paper, but with a more complex refinement
operation, can solve the problem of dealing with non-manifolds
and changesof topological type. We intend to work on thisissuein
the near future as well.

8 CONCLUSIONS

In this paper weintroduced the PFSrepresentation asanew adaptive
refinement schemefor storing and transmitting triangular meshesin
aprogressive and highly compressed form. We started the paper by
putting this new method and the PM method of Hoppein the general
context of recursive subdivision/refinement schemes. We showed
that PFS allows the user to tradeoff granularity in refinement levels
for complexity in the data stream. For a fine granularity (PM)
O(nlog,(n)) bits are required to double the connectivity size of
amesh with O(n) levels of detail. For acoarse granularity (PFS)
O(n) bitsarerequired to perform the samedoubling for O(1) levels
of detail.

We have described algorithms for efficiently encoding to and
decoding from a data stream containing the PFS format. We also
showed how to reduce the number of bits required to encode the
geometry the mesh by using pre and post global smoothing steps.

We showed how, with the addition of two simpletests, to modify
any simplification algorithm based on edge collapses to convert
single resolution triangular meshes to PFS format. We presented
results obtained by applying these modifications to the Variable

Acknowledgments

Our thanksto Rhythm & Hues Studios, Inc. and Greg Turk for the
Horse model. Thanksto Marc Levoy for the Bunny model.

REFERENCES

(1
(2

(3l
(4
(5]

(6]

(7

8

]

[9

—

[10]
[11]

[12]

[13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

MPEG4/SNHC verification model 5.0, July 1997. ISO/IEC JTC1/-
SC29/WG11 Document N1820, Caspar Horne (ed.).

E. Catmull and J. Clark. Recursively generated B-spline surfaces on
arbitrary topological meshes. Computer Aided Design, 10:350-355,
1978.

M. Deering. Geometric compression. In Siggraph’95 Conference
Proceedings, pages 13—-20, August 1995.

D. Doo and M. Sabin. Behaviour of recursive division surfaces near
extraordinary points. Computer Aided Design, 10:356-360, 1978.

M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and
W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Sg-
graph’ 95 Conference Proceedings, pages 173-182, August 1995.

A. Guéziec. Surface simplification with variable tolerance. In Second
Annual International Symposiumon Medical Roboticsand Computer
Assisted Surgery, pages 132-139, Baltimore, MD, November 1995.

A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Cutting and Stitch-
ing: Efficient Conversion of a Non-Manifold Polygonal Surface to a
Manifold. Technical Report RC-20935, IBM Research, July 1997.

A. Guéziec, G. Taubin, F. Lazarus, and W. Horn. Simplicial maps for
progressive transmission of polygonal surfaces. In VRML 98. ACM,
February 1998.

M. Hall and J. Warren. Adaptivepolygonalizationof implicitly defined
surfaces. |EEE Computer Graphics and Applications, pages 33-42,
November 1990.

B. Hamann. A datareduction schemefor triangulated surfaces. Com-
puter Aided Geometric Design, 11(2):197-214,1994.

H. Hoppe. Progressive meshes. In Siggraph’ 96 Conference Proceed-
ings, pages 99-108, August 1996.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle.
Mesh optimization. In Siggraph’ 93 Conference Proceedings, pages
19-25, July 1993.

C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, Dept. of Mathematics, University of Utah, August 1987.

J. Popovi¢ and H. Hoppe. Progressive simplicial complexes. In Sig-
graph’ 97 Conference Proceedings, pages217-224, August 1997.

R. Ronfard and J. Rossignac. Simplifying a triangular mesh with
multiple planar constraints. Technical report, IBM Research, 1994.

R. Ronfard and J. Rossignac. Triangulating multiply-connected poly-
gons: A simple, yet efficient algorithm. Computer Graphics Forum,
13(3):C281-C292,1994. Proc. Eurographics 94, Oslo, Norway.

J. Rossignac and P. Borrel. Geometric Modeling in Computer Graph-
ics, chapter Multi-resolution 3D approximations for rendering com-
plex scenes, pages 455-465. Springer Verlag, 1993.

G. Taubin. A signal processing approach to fair surface design. In
Sggraph’ 95 Conference Proceedings, pages 351-358, August 1995.

G. Taubin, W.P. Horn, F. Lazarus, and J. Rossignac. Geometric Coding
and VRML. Proceedings of the IEEE, July 1998. (to appear) Also
IBM Research TR RC-20925, July 1997.

G. Taubin and J. Rossignac. Geometry Compression through Topo-
logical Surgery. ACM Transactions on Graphics, April 1998. (to
appear).

D. Zorin, P. Schroder, and W. Sweldens. Interactive multiresolution
mesh editing. In Siggraph’97 Conference Proceedings, pages 259—
268, August 1997.

