
1

Automatic Image Placement to Provide
A Guaranteed Frame Rate

Daniel G. Aliaga Anselmo Lastra

Lucent Technologies Bell Laboratories University of North Carolina at Chapel Hill

Abstract
We present a preprocessing algorithm and run-time system for
rendering 3D geometric models at a guaranteed frame rate. Our
approach trades off space for frame rate by using images to replace
distant geometry. The preprocessing algorithm automatically
chooses a subset of the model to display as an image so as to
render no more than a specified number of geometric primitives.
We also summarize an optimized layered-depth-image warper to
display images surrounded by geometry at run time. Furthermore,
we show the results of applying our method to accelerate the
interactive walkthrough of several complex models.

1. INTRODUCTION
Large and complex three-dimensional (3D) models are required
for applications such as computer-aided design (CAD),
architectural visualizations, flight simulation, and virtual
environments. These models currently contain hundreds of
thousands to millions of primitives; more than high-end computer
graphics systems can render at interactive rates. Often, the
bottleneck for these applications is the geometric transformations
required each frame. Thus, rendering acceleration methods
endeavor to reduce the number of primitives sent to the graphics
pipeline. For our work, we assume that by providing a bound on
geometric complexity we can achieve a desired frame rate.

The demand for interactive rendering has brought about many
algorithms for model simplification. For example, techniques have
been presented for levels of detail [DeH91, Tur92, Coh96, Gar97,
Hop97, Lue97], visibility culling [Air90, Tel91, Coo97, Zha97],
and replacing objects with images [Mac95, Sha96, Scf96].

In this paper, we present an algorithm for limiting the maximum
number of geometric primitives to render from all viewpoints and
view directions by dynamically replacing selected geometry with
images (Figure 1). We demonstrate our algorithm in a
walkthrough system that allows for translation and yaw-rotation of
a 60-degree or greater view frustum through several large models.
Using images is desirable because we can render them in time
proportional to the number of pixels. In addition, increasingly
simplified geometric levels of detail, viewed from the same
distance, eventually lose shape and color information. A fixed
resolution image, on the other hand, maintains an approximately
constant display cost and, given sufficient resolution, maintains
the apparent visual detail.

Email: aliaga@research.bell-labs.com, lastra@cs.unc.edu

Our results show that we are able to visualize geometric models
ranging from 850K to 2M triangles using as little as one-tenth of
the geometry and no more than 3.8GB of image data. Based on
our empirical results and an analysis of our algorithm, we also
predict the expected best case and a near worst-case performance
for additional models.

We believe that ultimately a rendering system should combine
algorithms such as ours with geometric simplification and other
rendering acceleration methods [Ali99]. The system should
automatically choose the most appropriate method(s) to use.

1.1 Overview
Our approach consists of a preprocessing component to determine
the subsets of a model to replace with images and a run-time
component for displaying images and conventional geometry.

The preprocessing takes as input a 3D model, stored in a
hierarchical spatial partitioning data structure (e.g. octree) [Cla76]
and creates a non-uniform grid of points adapted to the local
model complexity. At each grid point, an image-placement process
selects the smallest and farthest subsets of the model to remove
from rendering to meet a fixed geometry budget from that
location. Images are then created to represent each selected subset.

At run-time, we select an image from a grid point near the current
viewpoint. The geometry behind the projection plane of the image
is culled while the remaining geometry is rendered normally. Our
grid-point selection algorithm guarantees that we always meet our
bound on the amount of geometry to render. We could display the

Figure 1. Geometry+Image Example. These three snapshots illustrate
an example rendering of a power plant model. The top snapshot is
what the viewer actually sees. In the bottom left snapshot, we render
the portion represented as geometry. In the bottom right snapshot, we
render the portion represented as a warped image.

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

2

image using texture mapping, but this approach would only yield
the correct perspective from the viewpoint where the image was
created. Instead, we adopted the strategy of McMillan and Bishop
[McM95] to warp images, enhanced with depth, to get proper
perspective. Furthermore, to reduce the number of disocclusions
that occur because of this technique, we warp layered depth
images (LDIs) [Max95, Sha98]. We have observed that, on
average, most of the pixel samples of our LDIs are in the first two
to four layers [Pop98]. Thus, if we can afford the approximately
constant time it takes to warp an image, we can render any size 3D
model at a guaranteed frame rate.

2. RELATED WORK
A large body of literature has been written on how to reduce the
geometric complexity of 3D models. For the purposes of this
paper, we can classify related work into three main approaches:

• frame-rate control,

• view-dependent simplification, and

• image caching.

Funkhouser and Sèquin [Fun93] presented a system that, at run-
time, selects levels-of-detail (LODs) and shading algorithms, in
order to meet a target frame rate. The system maintains a hierarchy
of the objects in the environment. It computes cost and benefit
metrics for all of the alternative representations of objects and uses
a knapsack-style algorithm to find the best set for each frame. If
too much geometry is present, detail elision is used.

Maciel and Shirley [Mac95] expanded upon this and increased the
representations available for the objects. A set of impostors, which
include LODs, texture-based representations and colored cubes,
can be used to meet the target frame rate.

Flight simulators use several techniques to achieve high frame
rates [Sch83, Mue95]. For example, during each frame the system
evaluates scene complexity in order to determine the LODs and
terrain texture resolutions. When the current selection takes too
much time to render, the LOD switching distance and texture
resolution are reduced.

View-dependent simplification algorithms support maintaining
constant geometric complexity every frame [Hop97, Lue97].
Alternately, they can maintain a bounded screen-space error
during simplification. Unfortunately, depending on the amount of
simplification needed and on the scene complexity, objects will be
merged and details will eventually be lost.

Various systems have been presented that use image-based
representations (typically texture-mapped quadrilaterals) to
replace subsets of the model. The source images are either pre-
computed [Mac95, Ali96, Ebb98] or computed on the fly [Sha96,
Scf96]. Metrics are used to roughly control image quality but not
the amount of geometry to render. Aliaga and Lastra [Ali97] and
Rafferty et al. [Raf98] used images to accelerate rendering in
architectural models. Doorways (i.e. portals) are replaced with
images and only the geometry of the current room is rendered.
Both Darsa et al. [Dar97] and Sillion et al. [Sil97] constructed a
simplified mesh to represent the far scene. In the worst case, the
complexity of the mesh is proportional to the screen resolution.
However, neither system provided control of the number of
primitives required to draw the mesh or any nearby geometry.

Regan and Pose [Reg94] created a hardware system that employed
large textures as a backdrop. The foreground objects were given a

higher priority and rendered at faster update rates. Image
composition was used to combine the renderings. Their approach
helped to reduce the apparent rendering latency but did not control
the number of primitives rendered.

3. AUTOMATIC IMAGE PLACEMENT
The goal of our preprocessing is to automatically compute what
geometry to replace with images so as to limit the number of
primitives to render for an arbitrary 3D model. An image and the
subset of the model it culls define a solution for a given viewpoint
and view direction. We refer to the position of a quadrilateral,
corresponding to both the projection and near plane for rendering
a model subset, as the location of the associated image. Clearly it
is impractical to compute a solution for all viewpoints and view
directions. Instead, we exploit a property of overlapping view
frusta to limit the number of positions and take advantage of
hierarchical spatial data structures, used for view-frustum culling,
to conservatively sample the view directions. We assume that
during preprocessing and run time the same field-of-view (FOV)
is used. In this section, we present a recursive method to create a
grid of solution points, and a process to place the images
associated with each of these grid points. Figure 2 provides a
summary of the preprocessing pipeline.

1. Enqueue all grid points of a uniform grid
2. Repeat
3. Dequeue grid point
4. Create view-directions set
5. While (view direction with most number of
 primitives > geometry budget)
6. Compute smallest and farthest octree cell
 subset to remove from rendering to meet
 the target geometry budget
7. If (the resulting image is outside the
 star-shape for the given grid point)
 Discard solution
 Subdivide local grid
 Enqueue new grid points
8. Else
 Compute a layered-depth image to
 represent the octree-cell subset
 Endif
 Endwhile
9. Until (no more unprocessed grid points)

Figure 2. Preprocessing Algorithm Summary.

3.1 Enclosed View Frusta
Our algorithm exploits the fact that a semi-infinite frustum (A in
Figure 3) completely enclosed by another (B in Figure 3), with the
same FOV, contains no more geometry than that included in the
enclosing frustum. For any viewpoint, such as A, we select the
closest grid point contained within the reverse projection of the
view frustum (shown in dashed lines). If we have a solution that
bounds the total amount of geometry for B, we also have a
sufficient solution for a viewpoint such as A (an enclosed frustum
with the same FOV and view direction). Since we are considering
the total amount of geometry in the view frustum, occlusions are
not an issue. Thus, a finite grid of solutions is sufficient to limit
the complexity for all viewpoints within the grid. Our
preprocessing task reduces to

• finding a good set of the aforementioned grid solution-points
to sample the model space (Section 3.2), and

• finding a solution (e.g. the appropriate subsets of the scene to
represent as image) for the infinite number of view
directions, at each grid point (Section 3.3).

3

3.2 Solution Grid
The preprocessing begins by creating a sparse, uniform grid of
points that spans the model space. The problem we encounter with
this sparse grid is that the image placement may not be valid.
Recall that, for a particular point, we choose a solution whose grid
point is behind us. It is possible, as shown in Figure 4, that the
projection plane used to create the image was placed nearer to its
grid point than our current viewpoint (this occurs in areas of the
model with complex geometry). We need to ensure that the grid is
dense enough to guarantee that the projection plane of selected
images will always be in front of any eye location.

3.2.1 Star-Shapes
The first step is to determine the locus of eye locations for which a
given grid point might be selected (because it’s the closest grid
point in the reverse projection of the eye’s frustum). The left half
of Figure 5 depicts a grid of points. This grid has a uniform
distribution of points and is defined to be a level 0 grid -- thus an
even-level grid. If we allow rotations only about the vertical axis
(i.e. y-axis) and translations only in the plane, the right half of
Figure 5 shows the locus of viewpoints (we refer to this as a star-
shape) that might have grid point a4 as the closest grid point in the
reverse projection of a square view frustum of FOV 2α. E is the
farthest eye location from which there is a view direction that still
contains a4 as its closest grid point in the reverse view frustum.
The distance s2k is equal to r2k/(2tanα) where r2k is the separation
between grid points. As long as the FOV is greater than or equal
to 54 degrees (i.e. 2α ≥ 54) s2k is less than or equal to r2k. Thus,
we can approximate the star-shape with a circle of diameter 4r2k.
Using symmetry, we can conservatively estimate the locus of eye
locations with a sphere of diameter 4r2k.

Hence, for a practical FOV of 60 degrees or greater, we can
prevent the problematic situation by ensuring that no grid point
has an image placed within its star-shape. If we superimpose the
star-shape on the problem case of Figure 4, we see that the image
is indeed inside the star-shape. Our algorithm will not work well
with narrower fields-of-view because the selected grid point might
be too far behind the eye and the star-shape excessively large.

Eye positions near the edge of the model might not contain a grid
point in the reverse frustum. We inflate the grid by two points in

all the six directions (i.e. positive and negative x-, y-, and z-axes)
so that such eye positions have a grid point behind them.

3.2.2 Recursive Subdivision
To ensure that all viewpoints in the model have a valid image
solution, we recursively reduce the size of star-shapes by locally
subdividing the grid. Our goal is to subdivide until the images
computed for all of the grid points are always in front of any
possible eye position. The recursion alternates between two sets of
rules: one for even levels (2k) and one for odd levels (2k+1). We
first introduce grid points at the midpoints of the existing points.
Then, we introduce the complementary points to return to a denser
original configuration. Figure 6 depicts a grid point subdivided
through two levels. At each new level, we verify that, for all
points, a valid image placement can be produced (Section 3.3).
We recursively subdivide points that fail until all have image
placements in front of any eye position that can use them. For the
odd-level grid, we use a slightly different star-shape that we can
approximate with a sphere of diameter 6r2k+1 (for more details, see
[Ali98]). Figure 7 shows a grid automatically computed for one of
our test models.

eye

Figure 4. Image Placed Behind the Eye. We show a top-down view
of an architectural model. A plane of points from a uniform grid is
shown. The projection plane of the image (yellow line) computed for
the closest grid point in the reverse view frustum (dashed lines) is
behind the eye. This problem occurs because scene complexity forces
the image to be very near its grid point. Geometry replaced by the
image is shaded in yellow.

Figure 5. Star-Shape. To the left, we show a uniform grid of 3x3x3
viewpoints. To the right, we show a top-down view of the horizontal
plane defined by grid points a0-a8. If we rotate about the vertical axis
and translate a square view frustum, the star-shape represents the
plane of locations that might use grid point a4. The distance s2k equals
r2k/(2tanα); thus, for a FOV 2α ≥ 54 degrees, s2k≤ r2k. We can
approximate the star-shape with a sphere of diameter 4r2k.

2αE
r2k s2k

4r2k

a2

a4 a7

a6

a8a5

a3a0

a1
a0

a1

a2

a3
a6

a7

a8
a5

a4

Figure 3. Enclosed View Frusta. Frustum B has the same FOV and
view direction as frustum A. Furthermore, frustum B is centered on the
closest grid point contained in the reverse projection of frustum A (as
indicated by the lightly dashed lines). Frustum A contains no more
geometry than that in frustum B. Hence, we can use an image computed
for B to limit rendered geometry from viewpoints such as A.

AB

4

To maintain valid star-shapes, we ensure that all neighboring
points have a difference of at most one recursion level. This is
similar to a problem that occurs when tessellating curved surfaces.
If two adjacent patches are tessellated to different resolutions, T-
junctions (and cracks) occur at the patch boundary. We must
perform an additional tessellation of the intermediate region.

3.3 Image Placement at a Grid Point
The goal of our image-placement process is to limit the number of
rendered primitives for all view directions centered on a given grid
point. The basic approach we have followed is to create a
conservative sampling of view directions. Then, for each sampled
direction, we ensure that the target primitive count is not
exceeded.

3.3.1 View-Directions Set
The first step of our image-placement process creates a view-
directions set for the view directions surrounding a given grid
point. The simplest set could be created using a constant sampling
of view directions and the same FOV as at run time. But, since
there might be a large variation in the amount of geometry
surrounding a particular grid point, it is not clear how many
samples to produce. Thus, we exploit the fact that the model is
stored in an octree (or another hierarchical spatial-partitioning
data structure) and create a sampling using the same FOV as at run
time but that adapts to the local model complexity.

In an octree, culling is applied on a cell by cell basis, not to the
individual geometric primitives. Consider only allowing yaw
rotation of a pyramidal view frustum centered on a grid point. The
visible set of octree cells remains constant until the left or right
edge of the view frustum encounters a vertex from an octree cell,
at which point view-frustum culling adds or removes the
corresponding octree cell from the set (Figure 8).

The above fact turns the infinite space of view directions into a
finite one, consisting of a set of angular ranges. Each angular
range is inversely proportional to the model complexity in the
view frustum: more complexity will generate more octree cells,
hence the visible set of cells will typically remain constant for a
smaller angular range. We compute the angular ranges for all grid
points by starting with a common initial direction (z=-1 axis).
Then, we rotate clockwise until the visible set of octree cells
changes. We represent the ranges by the view direction at which

this occurs, thus creating a sampling of view directions with more
samples in areas with more model complexity in the view frustum.

If the octree has a large number of leaf cells, we might sample a
large number of view directions per grid point, thus increasing the
overall number of views and the preprocessing time. Therefore,
we select an arbitrary tree depth to act as leaf cells (pseudo-leaf
cells) and to conservatively represent the views around a grid
point. This shallower octree will cause geometry to be more
aggressively culled and generate slightly larger and nearer images
than strictly necessary.

3.3.2 Image Placement
The second step of our image-placement process computes octree-
cell subsets to not render from a given grid point. Then, at run
time images are placed immediately in front of these subsets and
the subsets themselves are culled. We define

• a geometry budget P − this value represents the maximum
number of geometric primitives to render during a frame, and

• an optimization budget Popt − this value is slightly less than
the actual geometry budget. A larger difference between these
two budgets requires fewer images per grid point but
increases the overall number of grid points.

For each grid point, the image-placement process starts with the
view direction containing the most primitives. If the view exceeds

Figure 7. Torpedo Room Grid. This figure illustrates an
automatically computed solution grid for a torpedo room model. The
left snapshot shows an exterior view of the model rendered in
wireframe. The right plot shows a grid of 1557 points from where
2333 LDIs are computed to limit the number of primitives per frame
to at most 150,000 triangles. Note the cluster of geometry in the
middle of the left snapshot and the corresponding cluster in the grid.

-1

-0.5
0

0.5
1

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

2k+12k

2k+1 2k+2

even to odd

odd to even

Figure 6. Even- and Odd-Level Grid Subdivision. We show even-to-
odd and odd-to-even grid point subdivisions. In the upper half, we
subdivide a level 2k point, in the middle of a grid, to produce 15 level
2k+1 points. In the lower half, we subdivide a level 2k+1 point to
produce 13 level 2k+2 points -- thus returning to an even-level grid.

Figure 8. View-Directions Set. This example depicts a 2D slice of an
octree (i.e. quadtree) and two view frusta. If we rotate counter-
clockwise about the viewpoint from view frustum A to view frustum B,
the group of octree leaf cells in view remains the same. Only if we
rotate beyond B, will cell D be marked visible, thus changing the
group of visible octree cells.

viewpoint

D

A

B

5

our geometry budget, we perform a binary search through the
space of contiguous, visible octree-cell subsets and employ a cost-
benefit function to try to select the best subset to remove from
rendering in order to meet the optimization budget. We compute
one contiguous subset per view because it will require at most one
image per frame—this simplifies the run-time system. If, after
removing the subset, there is another view that violates the
geometry budget, we compute a different subset for that view. The
process is repeated until the geometry budget is met for all views.

In the following three sections, we provide more details on our
cost-benefit function, our representation scheme for octree cell
subsets, and our inner image-placement loop.

3.3.2.1 Cost-Benefit Function
In order to determine which subset of the model to omit from
rendering, we define a cost-benefit function CB. The function is
composed of a weighted sum of the cost and benefit of selecting a
given subset. It returns a value in the range [0,1].

The cost is defined as the ratio of the number of primitives gc to
render after removing the current subset, to the total number of
primitives Gc in the view frustum.

Cost = gc/Gc

The benefit is computed from the width Iw and height Ih of the
screen-space bounding box of the current model subset and the
distance d from the grid point to the nearest vertex of the subset.

Benefit = B1*(1-max(Iw,Ih)/max(Sw,Sh)) + B2*d/A

The final cost-benefit function CB will tend to maximize the
benefit component and minimize the cost. A function value near 0
implies a very large-area subset placed directly in front of the eye
that contains almost no geometry; 1 implies a subset with small
screen area placed far from the grid point that contains all the
visible geometry.

 CB = C*(1-Cost(gc, Gc)) + B*Benefit(Iw,Ih,d)

 The constants of the above equation are

• C, B: weights of the cost and benefit components

• B1, B2: weights of the image size and depth components,

• A: length of the largest axis of the model space, and

• Sw, Sh: screen width and height.

3.3.2.2 Representing Octree-Cell Subsets
The image-placement process will search through the space of all
contiguous, visible subsets of octree cells associated with the
current view. This process does not need to create all subsets but
does need to enumerate them in order to perform the binary
search. Thus, we need a fast and efficient method to represent and
enumerate contiguous subsets. Furthermore, the cost-benefit
function needs to compute the screen-space bounding box and
primitive count of octree-cell subsets.

Our approach is to position a screen-space bounding box to
exactly surround the projection of a contiguous group of octree
cells. Since a larger number of octree leaf cells are rendered in
high complexity areas, we snap between cells to finely change the
bounding box in areas of high complexity and to coarsely change
the bounding box in areas of low complexity.

We represent an arbitrary, contiguous octree-cell subset with a 6-
tuple of numbers. Each number is an index into one of 6 sorted

lists representing the leftmost, rightmost, bottommost, topmost,
nearest, and farthest borders of a subset (Figure 9). All octree cells
whose indices lie within the ranges defined by a 6-tuple are
members of the subset. We can change one of the bounding planes
of the subset to its next significant value by simply changing an
index in the 6-tuple. Furthermore, it is straightforward to
incrementally update the screen-space bounding box of the subset
as well as the count of geometry.

For example, consider a view with 100 octree cells (each cell is
labeled from 0 to 99). The 6-tuple [0,99,0,99,0,99] represents the
entire set. To obtain a subset whose screen-space projection is
slimmer in the x-axis, we increment the “left border” index, e.g.
[1,99,0,99,0,99], or decrement the “right border” index, e.g.
[0,98,0,99,0,99]. If two or more octree cells share a screen space
edge, we consider them as one entry.

3.3.2.3 Inner Image-Placement Loop
Our inner loop uses the cost-benefit function and the 6-tuple
subset representation to select the octree-cell subset to remove
from rendering in order to meet the optimization budget. The loop
starts with the set of all octree (leaf) cells in the view frustum, e.g.
[0,99,0,99,0,99]. At each iteration, by moving the border along the
x-, y-, and z-axes, we produce five new subsets. Specifically, the

• near border is moved halfway back (e.g. [0,99,0,99,50,99]),

• top border is moved halfway down (e.g. [0,99,0,50,0,99]),

• bottom border is moved halfway up (e.g. [0,99,50,99,0,99]),

• right border is moved halfway left (e.g. [0,50,0,99,0,99]), and

• left border is moved halfway right (e.g. [50,99,0,99,0,99]).

(note: since an image is meant to replace geometry behind the
image’s projection and near plane, we don’t change the far border,
the sixth-tuple value, because it will not affect image placement)

To decide which of these subsets to use next, we recurse ahead a
few iterations with each of the five subsets. We then choose the
subset that returned the largest cost-benefit value. In case of a tie,
preference is given to the subsets in the order listed. Iterations stop
when the subset no longer culls enough geometry.

We then define the projection plane for the image to be a
quadrilateral perpendicular to the current view direction and

viewpoint

1
0

32

4

5 projection
plane

x

z

viewpoint 53 4
10

projection
plane

x

z

2
6

7
8

9

10
, 1

1,
 12

6

7
8

9
10, 11

12

Figure 9. Octree-Cell Subset Representation. These diagrams show
two (of the six) sorted lists of a 2D slice of the octree cells in a view
frustum (i.e. quadtree). The left diagram shows the bottom-to-top
ordering of the topmost coordinates of the visible octree cells. The
right diagram shows the top-to-bottom ordering of the bottommost
coordinates. A subset of the visible octree cells can be represented by
a minimal index m from the left diagram and a maximal index M from
the right diagram. All cells that have a minimal index ≥ m and a
maximal index < M are part of the 2-tuple [m,M]. By using this same
notation in the XY plane and YZ plane, we can represent an arbitrary
contiguous subset in 3D using a 6-tuple of such indices.

6

exactly covering the screen-space bounding box of the computed
subset. The four corners of the quadrilateral, together with the
current grid point, determine a view frustum for creating the image
to replace the subset. Section 4 explains in more detail how we
create the images and display them at run time. For now, we
simply associate the computed subset with this view direction and
grid point.

Next, we temporarily cull the subset from the model and move on
to the next most expensive view from the current grid point. If the
total number of primitives in the view frustum is within the
geometry budget, we are done with this grid point. Otherwise, we
restore the subset to the model and compute another solution for
the new view. By using the full model during each pass, we
enforce solutions that contain exactly one subset, thus enabling us
to warp no more than one image per frame.

4. IMAGE WARPING
The preprocessing component has determined the subsets of the
model to replace with images—we must now create and display
these images. At each grid point, we have the necessary (camera)
parameters to create a reference image that accurately depicts the
geometry from that position. But each image must potentially
represent the selected geometry for any viewpoint within the
associated star-shape.

One alternative is to use per-pixel depth values to dynamically
warp images to the current viewpoint [McM95]. Unfortunately,
warping a single depth image has the limitation that surfaces not
visible in the original reference image appear as gaps in the
rendered image (Figure 10, left).

Layered Depth Images (or LDIs) [Max95][Sha98] are the best
solution to date for the visibility errors to which image warping is
prone. They are a generalization of images with depth since, like
regular images, they have only one set of view parameters but,
unlike regular images, they can store more than one sample per
pixel. The additional samples at a pixel belong to surfaces, which
are not visible from the original center-of-projection (COP) of the
image, along the same ray from the viewpoint. Whenever the LDI
is warped to a view that reveals the (initially) hidden surfaces, the
samples from deeper layers will not be overwritten and they will
naturally fill in the gaps that otherwise appear (Figure 10, right).

LDIs store each visible surface sample once, thus eliminating
redundant work (and storage) as compared to warping multiple
reference images. An additional benefit is that LDIs can be warped
in McMillan's occlusion-compatible order [McM95]. This order
guarantees correct visibility resolution in the warped image.

4.1 Optimizing LDIs for the Solution Grid
We create the reference images for constructing an LDI from
viewpoints within the star-shape surrounding each grid point.
Thus, we can do a good job of sampling all potentially visible
surfaces. Consider a solution image, A. All outward-looking
viewpoints from which a view frustum can contain the image
quadrilateral are represented approximately by an hemi-ellipsoid
centered in front of the grid point. Figure 11 depicts a 2D slice of
this configuration. For a more distant image B, the region is more
elongated (e.g. the dashed hemi-ellipsoid). To construct the LDI,
we select reference image COPs that populate this space.

We choose a total of eight construction images and one central
image to create a LDI and to eliminate most visibility artifacts.
The central LDI image is created using the grid point itself as the

Figure 10. Single- and Multi-Reference-Image LDI. (Left) In this snapshot, we see geometry (foreground) and a 512x384-pixel LDI (background)
created from a single reference image. The viewpoint is as far as possible from the center-of-projection before switching to another image. Notice the
presence of disocclusions that appear as black gaps. (Right) In this snapshot, we are at the same viewpoint, but we use 9 reference images to construct
the LDI. In both cases, we apply a 3x3 convolution-kernel to smooth the warped image.

Figure 11. Construction Images for a LDI. Image A is placed
immediately outside a star-shape. Given a fixed FOV, the locus of
outward-looking viewpoints within the star-shape from where there
exists a view direction that contains the image quadrilateral is
depicted by the shaded hemi-ellipsoid. The central COP is placed at
grid point a0; the 8 construction-images a1-a8 are placed as indicated.
Similarly, b0 and b1-b8 are the COPs for a farther away image B.

a1

Central
COP

(a0 and b0) a2

b1
b2

Image A

Image B

a34

b34

a78

a5

a6

b78

b6b5

7

COP (a0 and b0 in Figure 11). Four construction images are
created from COPs at the middle of the vectors joining the grid
point and the midpoints of each of the four edges of the image
quadrilateral (a1-4 and b1-4 in Figure 11). An additional set of four
construction images is defined in a similar way but extending
behind the grid point (a5-8 and b5-8 in Figure 11). We warp the
pixels of the nearest construction image first. This prioritizes the
higher quality samples of the nearer images.

Most of the visibility information is obtained from the central
image and the first four construction images. They sample most of
the potentially visible surfaces. The images behind the grid point
help to sample visibility of objects in the periphery of the FOV. In
practice, this heuristic method does a good job.

5. IMPLEMENTATION
We implemented our program in C++, on a Silicon Graphics
(SGI) Onyx2, 4 R10000’s @ 195 MHz and Infinite Reality
graphics. The program takes as input the

• octree of the 3D model,

• geometry and optimization budget,

• FOV to use for both preprocessing and run time,

• resolution of the initial viewpoint grid (minimum 3x3x3, i.e.
the size of an even-level star-shape),

• tree depth to use for the octree (pseudo) leaf cells, and

• cost-benefit constants (C = 0.4, B = 0.6, B1 = 0.1, B2 = 0.9).

The preprocessing program uses a single processor to create and
subdivide the grid; afterwards, multiple processors are used to
simultaneously compute the image placements. We use spheres to
approximate the star-shapes. If for any view direction, the amount
of geometry inside the FOV and within the sphere exceeds the
geometry budget, the grid point is subdivided. Once the grid has
been created, the grid points are divided among three (of the four)
processors. Each processor performs the inner image-placement
loop to compute subsets to replace with images.

We empirically determined the constants for the cost-benefit
function. In general, we found that LDIs work better the more
distant they are (as expected); thus, we bias the function to prefer
distant images. Furthermore, the C and B constants are set so that
we slightly prefer higher-benefit solutions (i.e. the more distant
ones) to ones that cull a little more geometry.

We employ octree pseudo-leaf cells to limit the number of cells
for preprocessing. For our test models, we determined that an
octree depth of 5 yields a reasonable balance between granularity
and performance (thus, a maximum of 32,768 leaf cells per view).

At run time, we find the closest grid point in the reverse view
frustum, select the view direction sample for the angular range that
contains the current view direction, and check for an image
placement. If one was computed, we warp the associated LDI. Our
software-based warper distributes the work among three
processors and is able to warp near NTSC-resolution LDIs
(512x384) at about 8 Hz. We have also pipelined the culling and
rendering phases of the system, therefore introducing one frame of
latency. Furthermore, we use a 3x3 convolution-kernel to smooth
the warped image. Figure 12 summarizes the run-time algorithm.

We create a least-recently-used cache to store image data and to
allow us to precompute or dynamically-compute images for an
interactive session. All images within a pre-specified radius of the

current viewpoint are loaded from disk in near to far order. We
either load the additional image data during idle time or use a
separate processor to load image data.

1. For each frame
2. Compute the reverse view frustum for the
 current view position and direction
3. Find the closest grid point contained
 within the reverse frustum
4. Find the sampled view for the angular range
 that contains the current view direction
5. If (image was computed)
 Cull octree-cell subset from model
 Cull remaining geometry to view frustum
 Render geometry and warp image to current
 viewpoint
6. Else
 Cull geometry to view frustum
 Render geometry
 Endif
 Endfor

Figure 12. Run-time Algorithm Summary.

6. PERFORMANCE
We report the performance of our algorithm on four test models:

• a 2M triangle model of a coal-fired power plant (this is the
largest model we can fit in memory that leaves space for the
image cache and does not require us to page geometry),

• a 850K triangle model of the torpedo room of a notional
nuclear submarine,

• a 1.7M triangle architectural model of a house, and

• a 1M triangle model of an array of pipes (procedurally
generated by replication and instancing of pipes).

Figure 13 shows the amount of storage required for several
maximum primitive counts. In order to display the results in a
single graph, we chose to normalize the values to a common pair
of axes. We use the horizontal axis to represent the geometry
budget as a percentage of model size and the vertical axis to
represent the total number of images divided by the total number
of model primitives. The non-monotonic behavior of the power
plant curve is because our algorithm found a local minimum
farther away from the global minimum than the neighboring
solutions. The solution at a geometry budget of 23% converged to
a cluster of geometry that was large enough to meet the target
primitive count but not necessarily the smallest and farthest
subset. This occurrence is common with optimization algorithms.

Figure 13. Storage Performance. The upper gray line represents the
performance of the worst-case scenario. The lower black line
represents the best-case scenario. The four test models fall in between
these two bounds and in fact tend towards the best-case scenario.

0

0.001

0.002

0.003

0.004

0 10 20 30 40 50

Maximum Rendered Triangles (% of Model)

Im
ag

es
 P

er
 M

od
el

 T
ri

an
gl

e

Power Plant
Torpedo Room
House
Pipes
Best Case
Worst Case

8

An improvement could be achieved by using a technique such as
simulated annealing to move the solution to a “better” minimum.

For comparison with our empirical results, we also show in Figure
13 a curve that corresponds to the theoretical best-case
performance of our algorithm. This occurs in models with a
uniform distribution of geometry. Figure 13 also shows a curve
that corresponds to a theoretical near worst-case performance, as
is the case in models with large variations of geometric density. In
practice, models fall somewhere in between these two extremes.
For more details, we refer you to [Ali98].

Figure 14 shows the number of primitives rendered per frame for a
path through the power plant using the solution set for a geometry
budget of P = 250,000 primitives (and an optimization budget of
Popt = 200,000 primitives). We have observed that for our test
models, a difference between the geometry budget and
optimization budget of 5 to 10% of the model primitives yields 1
to 4 images per grid point, on average.

Figure 15 shows a histogram of the number of grid points with the
number of images varying from 1 to 5 images. Grid points near the
edge usually have fewer images and are generally facing inwards
towards the model center. Although images of neighboring grid

points are similar, we do not share them. The similarity could be
exploited for image compression purposes.

Figure 16 illustrates how close the solutions computed by the
image-placement process (Section 3.3) are to the desired
optimization budget. For a given grid-point view, we compute
image placements that are conservative and typically fall within
2% of the optimization budget.

Figure 17 compares higher-resolution LDIs to an all-geometry
rendering. Both the geometry and NTSC-resolution (640x512)
LDI are rendered using 2x2 multi-sampling. This LDI resolution is
beyond what we can do interactively today on our SGI
workstation, nevertheless we show in our video an animation with
these LDIs. To achieve the visual quality of Figure 17, at a frame
rate of 30Hz, we would require a graphics performance of at most
7.5M triangles per second plus the ability to warp a multi-sampled
NTSC-resolution LDI at 30Hz. The all-geometry approach would
require at most 60M triangles per second processing power.

Table 1 summarizes the image-placement results. For each test
model, we show the number of images computed and the
preprocessing time for grid adaptation and image placement. In
addition, we show the estimated space requirement. To determine
this, we use an empirically determined average image size. We
compress images using gzip and use a separate processor to
uncompress them at run time—from this information we
extrapolate space requirements (at present, we can uncompress an
image in under one second).

The preprocessing time of a LDI is dependent on the number of
construction images and the model complexity per construction
image. First, we render eight construction images and one central
image using only view-frustum culling. Second, we create a LDI
in time proportional to the number of construction images. For our
test models, our (unoptimized) LDI creation process takes 7 to 23
seconds. The total rendering and construction time of 3100
512x384-pixel power plant LDIs is approximately ten hours.

7. LIMITATIONS AND FUTURE WORK
Our current implementation only guarantees a rendering
performance for translation and yaw rotation. The view-directions
set can be easily expanded to include pitch, but it is unclear
whether is it worth the extra effort and storage. We have observed
that with interactive walkthroughs, gaze is kept nearly horizontal.

0

100000

200000

300000

400000

500000

600000

700000

0 50 100 150 200 250 300

Frame Number

P
ri

m
it

iv
es

 R
en

de
re

d
View-Frustum Culling

Image Culling + View-Frustum Culling

Figure 14. Path through Power Plant Model. This graph shows the
number of primitives rendered for a sample path through the power
plant using a geometry budget of 250,000. We show the results using
only view-frustum culling and using image culling plus view-frustum
culling. Notice that the primitive count never exceeds our geometry
budget; in fact, for this path, it almost never exceeds Popt=200,000.

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5

Images Per Viewpoint

T
ot

al
 N

o.
 o

f
V

ie
w

po
in

ts

Pipes
Brooks House
Torpedo Room
Power Plant

Figure 15. Histogram of Images Per Grid Point. Most grid points have
between 1 and 3 images; specifically: 14,012 grid points with M=1,
4311 grid points with M=2, 862 with M=3, 40 grid points with M=4.

Figure 16. Primitive Counts for Solutions at Grid Points. The image-
placement process computes image locations that typically produce
primitive counts within 2% of the desired value Popt = 200,000.

195000

196000

197000

198000

199000

200000

Grid Points

R
em

ai
ni

ng
 P

ri
m

it
iv

es

Primitive Count

9

We have seen a wide range of preprocessing times (from one to 28
hours). Furthermore, we have empirically determined the set of
constants and weights required during preprocessing. They have
worked well for our test models, but further parallelization (e.g. of
the grid creation) and more automatic methods for determining
these constants would improve the preprocessing.

Our cost function ignores fill rate. To more accurately achieve a
constant frame rate, in particular on midrange systems, we need to
take rasterization costs into account. In addition, we could
measure the depth complexity (or the total pixel count) of the
LDIs to more precisely trade off images for geometry.

Currently, we cannot perform view-dependent shading with the
images at reasonable frame rates; thus, we use precomputed
diffuse illumination. Our interactive software warper uses near
NTSC resolution images. Higher resolution LDIs (for multi-
sample anti-aliasing) are feasible but require proportionally more
compute power or processors. Hence, because of our limited
warping speed today, we cannot reduce geometric complexity to
an arbitrary amount and achieve a high quality rendering.

In general, image warping demands good memory bandwidth.
Every frame, we must perform pixel operations on the entire LDI,
copy the warped image to the graphics engine and fetch future
LDIs. We can transfer a 512x384-pixel image to the frame buffer
in less than 3ms. Furthermore, since a single LDI is typically
reused for several frames, we expect pixel operations to be
performed from cache. The paging of image data from disk and
from main memory is the slowest part.

We need to do further investigation of prefetching algorithms for
the image data as well as the model geometry. In our current
system, we assume the entire model fits in main memory.
Moreover, our walking speed is limited by the rate at which we
can page data from disk. In addition, we expect to be able to
reduce the storage requirement by more sophisticated image
representations and by image compression methods.

Figure 17. LDI+Geometry vs. All-Geometry Comparison. (Left) Snapshot using the same viewpoint as in Figure 10, but with a NTSC-resolution 2x2
multi-sampled LDI. The geometry is rendered using the graphics hardware’s single-pass 2x2 multi-sample mode. (Right) For comparison purposes,
we show a snapshot of an all-geometry rendering. The LDI does not perfectly reconstruct all surfaces, as can be observed by the pair of insets.

Model

(triangles)

Max.
No. Tris

No. of
LDIs

Preprocess
(hours)

Estimated
Space
(MB)

Power Plant 250,000 5815 21.7 3802

(2M) 300,000 3224 12.4 2108

350,000 1485 6.1 971

400,000 706 6.5 462

450,000 1169 5.9 764

500,000 239 1.2 156

Torpedo Rm. 150,000 2333 11.8 933

(850k) 200,000 1160 6.0 464

250,000 462 2.8 185

300,000 243 1.6 97

350,000 212 1.3 85

400,000 181 1.1 72

House 150,000 2492 28.4 1725

(1.7M) 200,000 994 22.0 688

250,000 714 10.6 494

300,000 662 10.5 458

350,000 629 11.2 435

400,000 593 12.5 410

450,000 561 11.4 388

Pipes 150,000 893 4.6 554

(1M) 200,000 331 2.8 205

250,000 282 2.4 175

Table 1. Preprocessing Summary for Test Models

Figure 18. Example View of Pipes Model. Foreground pipes are
geometry. Most of the background pipes are a 512x384-pixel LDI.

10

8. CONCLUSIONS
We introduced a preprocessing algorithm and run-time system for
reducing and bounding the geometric complexity of 3D models by
dynamically replacing subsets of the geometry with (depth)
images. Therefore, if we can afford the approximately constant
cost of displaying images and the number of primitives to render
dominates our application’s rendering performance, we can
achieve a guaranteed (minimum) frame rate. We also
demonstrated an optimized layered-depth-image approach that
yields good visual results and applied our algorithms to several
complex 3D models (Figure 18).

The automatic image-placement algorithm we have presented
allows us to trade off space for frame rate. In our case, space is
proportional to the total number of images needed to replace
geometry and the image size. Higher frame rate is equivalent to
reducing the maximum number of primitives to render. Our
results, both empirical and theoretical, indicate we can reduce
geometric complexity by approximately an order of magnitude
using a practical amount of storage (by today’s standards).

9. ACKNOWLEDGMENTS
We would like to acknowledge the anonymous reviewers for their
generous comments and suggestions. We also greatly appreciate
the help received from Voicu Popescu, Matthew Rafferty, Bill
Mark and the UNC Walkthrough and PixelFlow group.

The power plant model is courtesy of James Close and
Combustion Engineering. The Brooks’ House model is courtesy of
many generations of UNC graduate students. The torpedo room
model is courtesy of Electric Boat Division of General Dynamics.
The pipes model was created from code written by Lee Westover.

This research was supported in part by grants from the NIH
National Center for Research Resources (RR02170), DARPA
(E278), NSF (MIP-9612643) and a UNC Dissertation Fellowship.
In addition, we thank Intel for their generous equipment support.

References
[Air90] Airey J., “Towards Image Realism with Interactive Update Rates
in Complex Virtual Building Environments”, Symposium on Interactive
3D Graphics, 41-50 (1990).

[Ali96] Aliaga D., “Visualization of Complex Models Using Dynamic
Texture-Based Simplification”, IEEE Visualization, 101-106 (1996).

[Ali97] Aliaga D. and Lastra A., “Architectural Walkthroughs Using
Portal Textures”, IEEE Visualization, 355-362 (1997).

[Ali98] Aliaga D., “Automatically Reducing and Bounding Geometric
Complexity by Using Images”, Ph.D. Dissertation, University of North
Carolina at Chapel Hill, Computer Science Dept., October (1998).

[Ali99] Aliaga D., Cohen J., Wilson A., Baker E., Zhang H., Erikson C.,
Hoff K., Hudson T., Stuerzlinger W., Bastos R., Whitton M., Brooks F.,
Manocha D., "MMR: An Interactive Massive Model Rendering System
Using Geometric and Image-based Acceleration", Symposium on
Interactive 3D Graphics, 199-206 (1999).

[Cla76] Clark J., “Hierarchical Geometric Models for Visible Surface
Algorithms”, CACM, Vol. 19(10), 547-554 (1976).

[Coh96] Cohen J., Varshney A., Manocha D., Turk G., Weber H.,
Agarwal P., Brooks F. and Wright W., “Simplification Envelopes”,
Computer Graphics (SIGGRAPH ‘96), 119-128 (1996).

[Coo97] Coorg S. and Teller S., “Real-Time Occlusion Culling for
Models with Large Occluders”, Symposium on Interactive 3D Graphics,
83-90 (1997).

[Dar97] Darsa L., Costa Silva B., and Varshney A., “Navigating Static
Environments Using Image-Space Simplification and Morphing”,
Symposium on Interactive 3D Graphics, 25-34 (1997).

[DeH91] DeHaemer M. and Zyda M., “Simplification of Objects
Rendered by Polygonal Approximations”, Computer Graphics, Vol.
15(2), 175-184 (1991).

[Ebb98] Ebbesmeyer P., “Textured Virtual Walls - Achieving Interactive
Frame Rates During Walkthroughs of Complex Indoor Environments”,
VRAIS ‘98, 220-227 (1998).

[Fun93] Funkhouser T., Sequin C., “Adaptive Display Algorithm for
Interactive Frame Rates During Visualization of Complex Virtual
Environments”, Computer Graphics (SIGGRAPH ‘93), 247-254 (1993).

[Gar97] Garland M., Heckbert P., “Surface Simplification using Quadric
Error Bounds”, Computer Graphics (SIGGRAPH ‘97), 209-216 (1997).

[Hop97] Hoppe H., “View-Dependent Refinement of Progressive
Meshes”, Computer Graphics (SIGGRAPH ‘97), 189-198 (1997).

[Lue97] Luebke D. and Erikson C., “View-Dependent Simplification of
Arbitrary Polygonal Environments”, Computer Graphics (SIGGRAPH
‘97), 199-208 (1997).

[Mac95] Maciel P. and Shirley P., “Visual Navigation of Large
Environments Using Textured Clusters”, Symposium on Interactive 3D
Graphics, 95-102 (1995).

[Max95] Max N., Ohsaki K., “Rendering Trees from Precomputed Z-
Buffer Views”, Rendering Techniques ’95: Proceedings of the 6th
Eurographics Workshop on Rendering, 45-54 (1995).

[McM95] McMillan L. and Bishop G., “Plenoptic Modeling: An Image-
Based Rendering System”, Computer Graphics (SIGGRAPH ’95), 39-46
(1995).

[Mue95] Mueller C., “Architectures of Image Generators for Flight
Simulators”, Computer Science Technical Report TR95-015, University
of North Carolina at Chapel Hill (1995).

[Pop98] Popescu V., Lastra A., Aliaga D., and Oliveira Neto M.,
“Efficient Warping for Architectural Walkthroughs using Layered Depth
Images”, IEEE Visualization, (1998).

[Raf98] Rafferty M., Aliaga D. and Lastra A., “3D Image Warping in
Architectural Walkthroughs”, IEEE VRAIS, 228-233 (1998).

[Reg94] Regan M., Pose R., “Priority Rendering with a Virtual Reality
Address Recalculation Pipeline”, Computer Graphics (SIGGRAPH ‘94),
155-162 (1994).

[Sch83] Bruce Schachter (ed.), Computer Image Generation, John Wiley
and Sons, 1983.

[Scf96] Schaufler G. and Stuerzlinger W., “Three Dimensional Image
Cache for Virtual Reality”, Computer Graphics Forum (Eurographics
‘96), Vol. 15(3), 227-235 (1996).

[Sha96] Shade J., Lischinski D., Salesin D., DeRose T., Snyder J.,
“Hierarchical Image Caching for Accelerated Walkthroughs of Complex
Environments”, Computer Graphics (SIGGRAPH ‘96), 75-82 (1996).

[Sha98] Shade J., Gortler S., He L., and Szeliski R., Layered Depth
Images, Computer Graphics (SIGGRAPH ’98), 231-242 (1998).

[Sil97] Sillion F., Drettakis G. and Bodelet B., “Efficient Impostor
Manipulation for Real-Time Visualization of Urban Scenery”, Computer
Graphics Forum Vol. 16 No. 3 (Eurographics), 207-218 (1997).

[Tel91] Teller S., Séquin C., “Visibility Preprocessing For Interactive
Walkthroughs”, Computer Graphics (SIGGRAPH ’91), 61-69 (1991).

[Tur92] Turk G., “Re-Tiling Polygonal Surfaces”, Computer Graphics
(SIGGRAPH ‘92), 55-64, (1992).

[Zha97] Zhang H., Manocha D., Hudson T. and Hoff K., “Visibility
Culling Using Hierarchical Occlusion Maps”, Computer Graphics
(SIGGRAPH ‘97), 77-88 (1997).

