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Abstract

This paper presents a streaming technique for synthetic texture in-
tensive 3D animation sequences. There is a short latency time while
downloading the animation, until an initial fraction of the com-
pressed data is read by the client. As the animation is played, the
remainder of the data is streamed online seamlessly to the client.
The technique exploits frame-to-frame coherence for transmitting
geometric and texture streams. Instead of using the original tex-
tures of the model, the texture stream consists of view-dependent
textures which are generated by rendering offline nearby views.
These textures have a strong temporal coherency and can thus be
well compressed. As a consequence, the bandwidth of the stream
of the view-dependent textures is narrow enough to be transmitted
together with the geometry stream over a low bandwidth network.
These two streams maintain a small online cache of geometry and
view-dependent textures from which the client renders the walk-
through sequence in real-time. The overall data transmitted over
the network is an order of magnitude smaller than an MPEG post-
rendered sequence with an equivalent image quality.

Keywords: compression, MPEG, streaming, virtual environment,
image-based rendering

1 Introduction

With the increasing popularity of network-based applications, com-
pression of synthetic animation image sequences for efficient trans-
mission is more important than ever. For long sequences even if the
overall compression ratio is high, the latency time of downloading
the compressed file might be prohibitive. A better network-based
compression scheme is to partition the compressed sequence into
two parts. The first part, or header, is small enough to be down-
loaded within an acceptable initialization time, while the second
part is transmitted as astream. The compressed data is broken up
into a stream of data which is processed along the network pipeline,
that is, the compressed data is transmitted from one end, and re-
ceived, decoded and displayed at the other end. Streaming necessar-
ily requires that all the pipeline stages operate in real-time. Clearly,
the network bandwidth is the most constrained resource along the
pipeline and thus the main challenge is to reduce the stream band-
width enough to accommodate the network bandwidth constraint.

Standard video compression techniques that take advantage of
frame-to-frame coherency, are insufficient for streaming. Given a
moderate frame resolution of256 � 256, an average MPEG frame
is typically about 2-6K bytes. Assuming a network with a sustained
transfer rate of 2K bytes per second, a reasonable quality of a few
frames per second cannot be achieved. A significant improvement
in compression ratio is still necessary for streaming video in real-
time.

Synthetic animations have higher potential to be compressed
than general video since more information is readily available for
the compression algorithms [2, 12, 22]. Assuming, for example,
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that the geometric model and the animation script are relatively
small, one can consider them as the compressed sequence, trans-
mit them and decode them by simply rendering the animation se-
quence. By simultaneously transmitting the geometry and the script
streams on demand, one can display very long animations over the
network (see [19]). However, if the model consists of a large num-
ber of geometric primitives and textures, simple streaming is not
enough. The texture stream is especially problematic since the tex-
ture data can be significantly larger than the geometric data. For
some applications, replicated (tiled) textures can be used to avoid
the burden of large textures. However, realistic textures typically re-
quire a large space. Moreover, detailed and complex environments
can effectively be represented by a relatively small number of tex-
tured polygons [3, 13, 17, 20, 6, 21, 11]. For suchtexture intensive
models the geometry and the animation script streams are relatively
small, while the texture stream is prohibitively expensive. Indeed,
the performance of current VRML browsers is quite limited when
handling texture intensive environments [8].

In this paper we show that instead of streaming the textures, it is
possible to streamview-dependent textureswhich are created by
rendering nearby views. These textures have a strong temporal
coherency and can thus be well compressed. As a consequence,
the bandwidth of the stream of the view-dependent textures is nar-
row enough to be transmitted together with the geometry and the
script streams over a low bandwidth network. Our results show
that a walkthrough in a virtual environment consisting of tens of
megabytes of textures can be streamed from a server to a client over
a network with a sustained transfer rate of 2K bytes per second. In
terms of compression ratios, our technique is an order of magnitude
better than an MPEG sequence with an equivalent image quality.

2 Background

Standard video compression techniques are based on image-based
motion estimation [9]. An MPEG video sequence consists of in-
tra frames (I), predictive frames (P) and interpolated frames (B).
The I frames are coded independently of any other frames in the
sequence. The P and B frames are coded using motion estimation
and interpolations, and thus, they are substantially smaller than the I
frames. The compression ratio is directly dependent on the success
of the motion estimation for coding the P frames. Using image-
based techniques the optical flow field between successive frames
can be approximated. It defines the motion vectors, or the corre-
spondence between the pixels of successive frames. To reduce the
overhead of encoding the motion information, common techniques
compute a motion vector for a block of pixels rather than for indi-
vidual pixels. For a synthetic scene the available model can assist in
computing the optical flow faster or more accurately [2, 22]. These
model-based motion estimation techniques improve the compres-
sion ratio, but the overhead of the block-based motion approxima-
tion is still too high for streaming acceptable image quality.

A different approach was introduced by Levoy [12]. Instead of
compressing post-rendered images, it is possible to render the ani-
mation on-the-fly at both ends of the communication. The render-
ing task is partitioned between the server (sender) and client (re-
ceiver). Assuming the server is a high-end graphics workstation, it
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can render high and low quality images, compute the residual error
between them, and transmit the residual image compressed. The
client needs to render only the low quality images and to add the
transmitted residual images to restore the full quality images. It
was shown that the overall compression ratio is better than conven-
tional techniques.

If this technique is to be adapted for streaming of the residual im-
ages, it would require pre-computing the residual images and down-
loading the entire model and animation sequence before streaming
can take place. It would be possible to transmit only key-frame im-
ages and blend (or extrapolate) the in-between frames [4, 14, 15].
However, it is not clear how to treat texture intensive animations,
since downloading the textures is still necessary to keep the resid-
ual images small enough for streaming. Other related techniques
useimposters[17, 20] andsprites[18, 11] as image-based primi-
tives to render nearby views. When the quality of a primitive drops
below some threshold, it is recomputed without exploiting its tem-
poral coherence.

3 View-dependent Texture Streaming

Assume an environment consisting of a polygonal geometric
model, textures, and a number of light sources. Furthermore, as-
sume that the environment is texture-intensive, that is, the size
of the environment database is dominated by the textures, while
the geometry-space is significantly smaller than the texture-space.
Nevertheless, the size of the environment is too large to be down-
loaded from the server to the client in an acceptable time.

Streaming the environment requires the server to transmit the an-
imation script and, according to the camera viewing parameters, to
transmit the visible parts of the model. However, the size of the
textures necessary for a single view is too large to be streamed in
real-time. Instead of using these original textures, we show that it
is better to use nearby views as textures. These views can be re-
garded as view-dependent textures which are effectively valid only
for texturing the geometry viewed from nearby viewing directions.

Given the current camera position, the client generates a new
frame based on the data streamed so far, which includes at least the
visible polygons from the current camera position and a number of
nearby views. The new frame is a perspective view generated by
rendering the geometry where the nearby perspective views serve
as texture maps. Since the correspondence between two perspec-
tive views is a projective map, the model is rendered by applying
a projective mapping rather than a perspective mapping. This pro-
jective map can be expressed by a linear transformation in homo-
geneous space, and can be implemented by rational linear interpo-
lation which requires divisions at each pixel [10, 16].

Nearby views are advantageous as textures because (i) they have
an “almost” one-to-one correspondence with the current view and
therefore, a bi-linear filter, is sufficient to produce quality images,
and (ii) they are post-rendered and may include various global il-
lumination effects. Figure 1 shows a simple example of a textured
cube. In these views there are three visible polygonal faces. The left
image was rendered with a standard perspective texture mapping,
while the right image was rendered by applying a backward projec-
tive texture mapping from the left image. The projection of each of
the cube faces on the left image serves as a view-dependent texture
for its correspondence projection on the right image. The size and
shape of the source texture is close to its target. This reduces many
aliasing problems and hence simplifies the filtering. In this exam-
ple, for expository reasons, the two views are not “nearby”, oth-
erwise they would appear almost indistinguishable. Later we will
quantify the meaning of “nearby”. Since the view-dependent tex-
tures are generated off-line, they can be involved and can account
for many global illumination effects, including shadows cast from
remote objects. This simplifies the generation of a new frame, since

(a) source view (b) mapped view

Figure 1: (a) A source image of a textured cube. (b) A view of the
same cube obtained by backmapping into the source image. Note
that the texture on the leftmost face is severely blurred, while the
other two faces do not exhibit significant artifacts.

the rendering is independent of the complexity of the illumination
model.

View-dependent textures, like view-independent textures are dis-
crete, therefore, when resampled, artifacts are introduced. If the
target area is larger than the corresponding source area the result
appears blurry, as can be seen on the leftmost face of the cube in
Figure 1b. On the other hand, if the target area is smaller than
the source area (the rightmost face), by appropriately filtering the
source samples, the target image has no noticeable artifacts. Thus,
an appropriate view-dependent texture should be (i) created as close
as possible to the new view and (ii) created from a direction in
which the area is expanded relative to the target. In Section 4
we elaborate on the factor which controls the quality of the view-
dependent textures.

One should also consider the visibility, namely that at least part
of a polygon can be hidden at the nearby view, while being visible
at the current view. This is a well-known problem in image-based
rendering [4, 5]. However, in a streaming application where the
compressed sequence is precomputed, visibility gaps are known a
priori and for each gap there is at least one nearby view that can
close that gap. It should be emphasized that the nearby views are
not restricted to be from the “past”, but can be located near a “fu-
ture” location of the camera.

As the animation proceeds, the quality and validity of the view-
dependent textures decrease as the camera viewing parameters
deviate. Thus, new closer view-dependent textures need to be
streamed to guarantee that each polygon can be mapped to an
appropriate texture. The stream of new view-dependent textures
is temporally coherent and thus instead of transmitting the com-
pressed textures, it is possible to exploit this texture-to-texture co-
herence to get a better compression. The old texture is warped to-
wards the new view and the residual error between the new view
and the warped image is computed. The residual image can then be
better compressed than the raw texture.

A view-dependent texture is not necessarily a full size nearby
view, but may include only the view of part of the environment.
Based on a per-polygon amortization factor (see Section 4), a sub-
set of the view-dependent textures, defined by the polygon mesh, is
updated. This further reduces the size of texture stream to be opti-
mal with respect to the amortization factor. Thus, a key point is to
use a good texture quality estimate.



4 The Texture Quality Factor

Given a view and a set of view-dependent textures, it is necessary
to select the best quality texture for each visible polygon. As can
be seen in Figure 1 for some faces of the cube (in (b)) the view-
dependent texture (in (a)) is more appropriate than others. The
quality of the source texture is related to the area covered by the
projection of each polygon, or cube face in Figure 1, in the two
views. Thus, a per polygon localscaling factoris required to es-
timate the areas in the source texture that locally shrink or expand
when mapped onto the target image. When the scaling factor is
� 1 we can consider the source image appropriate for generating
the target image. As the factor increases above 1, more and more
blur appears in the target image, and we should consider the source
texture less and less appropriate. This per polygon texture quality
factor is used to select the best source texture out of the available
set of view-dependent textures. If the best source is above some
predetermined threshold, a new texture is required. However, a suc-
cessful streaming of the textures guarantees that there is always one
available texture whose quality factor is satisfactory.

Figure 2 illustrates the per-polygon source selection process.
Two examples of nearby views are shown in (a) and (b). The scale
factor for the in-between images (f) is visualized using the gray
level images (c) and (d), where white is used for low scale factor
and black is used for high scale factor. The (c) and (d) columns
visualize the scale factor when mapping the textures from (a) and
(b) to (f). For each polygon, we select the texture from the image
that has the lowest scale factor, this is visualized in (e), where the
red levels are the scale factors from (a) and the blue levels are the
scale factor from (b).

We are now left with the problem of estimating the maximal
value of the scaling factor in a particular polygon in the source im-
age, for a given target image (see also [11]). Note that the factor is
defined independently of the visibility of the polygon. We first dis-
cuss the case where the polygon is mapped from the source to the
target by a linear transformation, and then discuss the more general
non-linear case.

Let A be a square matrix corresponding to some linear transfor-
mation. The scaling factor of a linear transformation is the 2-norm
of the matrixA, i.e. the maximum 2-norm ofAv over all unit vec-
torsv.

max
jjvjj2=1

kAvk2

It can be shown [7] that the 2-norm ofA equals the square root
of �max, the largest eigenvalue ofATA. In the case of two-
dimensional linear transformations, whereA is a 2 by 2 matrix, we
can write down a closed-form expression for�max. Let aij denote
the elements ofA andeij the elements ofATA:

A =

�
a11 a12
a21 a22

�
ATA =

�
e11 e12
e21 e22

�
(1)

The eigenvalues of the matrixATA are the roots of the polyno-
mial det(ATA � �I), whereI is the identity matrix. In the two-
dimensional case,�max is the largest root of the quadratic equation

(e11 � �)(e22 � �)� e12e21 = 0: (2)

Thus,

�max =
e11 + e22 +

p
(e11 + e22)2 � 4(e11e22 � e12e21)

2
:

(3)
Expressing the elementseij in terms of the elementsaij yields

ATA =

�
a211 + a221 a11a12 + a21a22

a11a12 + a21a22 a212 + a222

�
; (4)

and finally, definingS = 1

2
(a211 + a212 + a221 + a222), we get

�max = S +
p

S2 � (a11a22 � a12a21)2 (5)

Dealing with non-linear transformations, such as projective
transformations, requires measuring the scaling factor locally at a
specific point in the image by using the partial derivatives of the
transformation at the given point. The partial derivatives are used
as the coefficients of a linear transformation.

Let us denote byx0; y0, andx1; y1 the source and target im-
age coordinates of a point, respectively, and byx; y; z the three-
dimensional location of that point in target camera coordinates. We
have:

(x; y; z)T =

 
a b c
d e f
g h i

!
(x0; y0; 1)

T (6)

(x1; y1)
T =

1

z
(x; y)T (7)

or explicitly,

x1 =
ax0 + by0 + c

gx0 + hy0 + i
y1 =

dx0 + ey0 + f

gx0 + hy0 + i
(8)

The partial derivatives of the above mapping at(x1; y1) define
its gradient, which is a linear transformation:

A =

�
@x1=@x0 @x1=@y0
@y1=@x0 @y1=@y0

�
=

1

z2

�
za� x1g zb� x1h
zd� y1g ze� y1h

�
(9)

In cases where the field of view is small, and there is only a
little rotation of the plane relative to the source and target views,
the following approximation can be used. The transformation of
the plane points from source to target image can be approximated
by:

x1 = a+ bx0 + cy0 + gx20 + hx0y0 (10)

y1 = d+ ex0 + fy0 + gx0y0 + hy20

This is called a pseudo 2D projective transformation and is further
explained in [1]. In this case we get:

A =

�
b+ 2gx0 + hy0 c+ hx0

e+ gy0 f + gx0 + 2hy0

�
(11)

To estimate the maximal scaling factor, the gradient can be com-
puted at the three vertices of a triangle. In cases where the triangle
is small enough, even one sample (at the center of the triangle) can
yield a good approximation. Our experiments have shown that a
scale factor in the range of[1:3; 1:4], yields high quality images
while maintaining high compression ratio.

5 Geometry Streaming

We have discussed the strategy for selecting the best view-
dependent texture from those available. The system guarantees that
at least one appropriate view-dependent texture has already been
streamed to the client. If for some reason an appropriate texture is
not available on time, some blur is likely to be noticed. However,
the error is not critical. On the other hand, a missing polygon might
cause a hole in the scene and the visual effect would be unaccept-
able. Thus, the geometry stream gets a higher priority so as to avoid
any geometric miss.

Detecting and streaming the visible polygons from a given
neighborhood is not an easy problem. Many architectural models



are inherently partitioned into cells and portals by which the cell-
to-cell visibility can be precomputed. However, since the geometry
stream is computed offline, the visible polygons can be detected by
rendering the entire sequence. The set of polygons visible in each
frame can be detected by rendering each polygon with ID index
color and then scanning the frame buffer collecting all the ID’s of
the visible polygons. The definition of a polygon that is first visible
is transmitted together with its ID. During the online rendering the
client maintains a list of all the polygons which have been visible
so far, and a cache of the “hot” ID’s, i.e., the polygons which are
either visible in the current frame or in a nearby frame. The tem-
poral sequence of the hot ID’s is precomputed and is a part of the
geometric stream. The cache of hot polygons serves as a visibil-
ity culling mechanism, since the client needs to render only a small
conservative superset of the visible polygons, which is substantially
smaller than the entire model.

Table 1: A comparison of the streaming technique (VDS) with an
MPEG encoding. The frame resolution is240� 180.

animation size RMS
(# frames) (header) (0-255) bits/pix bits/sec
Arts (435)
VDS 80K (23K) 18.6 0.034 29511
MPEG 1600K 19.2 1.61 619168
MPEG 200K 31 0.085 73766
Gallery (1226)
VDS 111K (30K) 19.15 0.0168 14563
MPEG 1830K 20.03 0.277 239436
MPEG 333K 27.41 0.05 43523
Office (1101)
VDS 177K (72K) 22.47 0.03 25722
MPEG 2000K 22.60 0.336 290644
MPEG 337K 34.71 0.056 48937

6 Results and Conclusions

In our implementation the precomputed sequence of view-
dependent textures is streamed to the client asynchronously. The
stream updates the set of view-dependent textures from which the
client renders the animation. The texture update frequency is de-
fined to guarantee some reasonable quality. The choice of fre-
quency directly effects the compression ratio. Reasonable quality
is a subjective jusgement, however we will analyze it quantitatively.
We use theroot mean square(RMS) as an objective measurement to
compare MPEG compression and our compression technique (de-
noted in the following by VDS (View Dependent texture Stream))
with the uncompressed images.

Figure 3 shows five samples of the comparison taken from three
sequences that were encoded both in MPEG and VDS. The first
two examples, “Arts” and “Gallery”, are from two virtual museum
walkthroughs, and the third example “Office” is of an animation.
The quantitative results are shown in Table 1. Each animation was
compressed by MPEG and VDS; we see that when they have about
the same RMS, the size of the MPEG is about 10-20 times larger
than the VDS. When MPEG is forced to compress the sequence
down to a smaller size, it is still 2-3 times larger than the VDS, and
its quality is significantly worse. This is evident from the corre-
sponding RMS values in the table and visually noticeable in Figure
3. The VDS is not free of artifacts; some are apparent in the images
in Figure 3. Most of them are due to imperfect implementation
of the rendering algorithm, rather than being intrinsic to the algo-
rithm. Note that there are slight popping effects when a texture

update changes the resolution, which could have been avoided by
using a blending technique.

The texture intensive models were generated with 3D Studio
Max. The virtual museum “Arts”, consists of 3471 polygons and
19.6 Megabytes of texture, and the “Office” animation consists of
5309 polygons and 16.9M Megabytes of 3D Studio Max’s textures,
that were not optimized for size. Part of the compressed data is
the header, which includes the initial data necessary to start the lo-
cal rendering, that is, the geometry, the animation script, and the
first nearby view in JPEG format. Thus, the cost effectiveness of
streaming is higher for longer animations. The size of the header
appears in parenthesis near the size values in Table 1.

We implemented both the client and the server on a Pentium ma-
chine, which was integrated in a browser with ActiveX. The client
and the server were connected by a dial-up connection of 14400 bits
per second. The download time of the initial setup data, namely the
header, is equivalent to the download time of a JPEG image. This
means a few seconds on a network with a sustained transfer rate
of less than 2K bytes per second. We attached hot-spots (hyper-
links) to the 3D objects visible in the animation, by which the user
chooses either high resolution images or precomputed sequences
which are streamed online according to his selection.

The offline process that generates the VDS sequence takes a few
minutes for animations of several hundred frames as in the above
examples. Currently, the client’s local rendering is the slowest part
of the real-time loop. It should be emphasized that the client uses
no graphics hardware to accelerate the rendering which requires a
perspective texture mapping. We believe that optimizing the client
rendering mechanism will permit streaming sequences of higher
resolutions. We are planning to extend our system by allowing
some degree of freedom in the navigation, for example, by sup-
porting branching from one movie sequence to others. Currently,
we are working on applying computer-vision techniques to recon-
struct the geometry of real-world movies and compress them using
our geometry-based compression. We believe that the importance
of geometry-based compression is likely to play an increasing role
in 3D network-based applications.
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(c2) (d2) (e2) (f2)

(c3) (d3) (e3) (f3)

Figure 2: The scale factor. (a) and (b) are the two nearby views, (c) and (d) the per polygon scale factor in gray level from (a) and (b),
respectively, (e) the red level and blue level polygons are mapped from (a) and (b), respectively, (f) three inbetween images.
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Figure 3: A comparison between VDS and MPEG. The images in the left column are MPEG frames and in the right column are VDS frames.
The size of MPEG sequence is about three times larger than the VDS sequence.


