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Abstract
We generalize basic signal processing tools such as downsampling,
upsampling, and filters to irregular connectivity triangle meshes.
This is accomplished through the design of a non-uniform relax-
ation procedure whose weights depend on the geometry and we
show its superiority over existing schemes whose weights depend
only on connectivity. This is combined with known mesh simpli-
fication methods to build subdivision and pyramid algorithms. We
demonstrate the power of these algorithms through a number of ap-
plication examples including smoothing, enhancement, editing, and
texture mapping.

CR Categories and Subject Descriptors:I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling -hierarchy and geometric transformations, ob-
ject hierarchies; I.4.3 [Image Processing and Computer Vision]: Enhancement -
filtering, geometric correction, sharpening and deblurring, smoothing; G.1.2 [Numer-
ical Analysis]: Approximation -approximation of surfaces and contours, wavelets and
fractals

Additional Keywords: Meshes, subdivision, irregular connectivity, surface parame-
terization, multiresolution, wavelets, Laplacian Pyramid.

1 Introduction
3D range sensing is capable of producing detailed and densely sam-
pled triangular meshes of high quality. Increasing deployment of
this technology in the automotive and entertainment industries, as
well as many other areas, has fueled the need for algorithms to pro-
cess such datasets. Examples include editing, simplification, de-
noising, compression, and finite element simulation.

In the case of regularly sampled data, for example images, basic
signal processing tools such as filtering, subsampling, and upsam-
pling exist. These can be used to build subdivision and pyramid
algorithms, which are useful in many applications. Our goal is the
construction of signal processing style analyses and algorithms for
triangle meshes.

Building the elements of a signal processing toolbox for meshes
is not immediately straightforward since there are essential differ-
ences between images, for example, and meshes. Images are func-
tions defined on Euclidean (“flat”) geometry and are almost always
sampled on a regular grid. Consequently, algorithms such as sub-
sampling and upsampling are straightforward to define, and uni-
form filtering methods are appropriate. This makes Fourier analy-
sis an elegant and efficient tool for the construction and analysis of
signal processing algorithms.

In contrast, triangle meshes of arbitrary connectivity form an in-
herently irregular sampling setting. Additionally we are dealing
with general 2-manifolds as opposed to a Euclidean space. Conse-
quently new algorithms need to be developed which incorporate the
fundamental differences between images and meshes.

A crucial first observation concerns the difference between ge-
ometric and parametric smoothness.Geometricsmoothness mea-
sures how much triangle normals vary over the mesh. Geometric
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Terminology
In order to describe our contribution and its relationship to
existing work we need to set some terminology. Among tri-
angulations we distinguish three types
• Regular: every vertex has degree six;

• Irregular: vertices can have any degree;

• Semi-regular: formed by starting with a coarse irregular
triangulation and performing repeated quadrisection on
all triangles. Coarse vertices have arbitrary degree while
all other vertices have degree six.

In all cases we assume that any triangulation is a proper 2-
manifold with boundary. On the boundary regular vertices
have degree four. Each of these triangulations call for differ-
ent filtering and subdivision algorithms:
• Uniform: fixed coefficient stencils everywhere; typically

used only on regular triangulations;

• Non-uniform: filter coefficients depend on the connec-
tivity andgeometry of the triangulation;

• Semi-uniform: coefficients of filters depend only on the
(local) connectivity of the triangulation; typically used on
semi-regular triangulations.

Using our terminology, for example, traditional subdivi-
sion [22] uses semi-uniform filters on semi-regular meshes.

smoothness implies that there existssomesmooth (differentiable)
parameterization of the mesh. However, any particular parameter-
ization may well be non-smooth. The smoothness of the parame-
terizations is important in most numerical algorithms, which work
only with the coordinate functions the user provides. The algo-
rithms’ behavior, such as convergence rates or the quality of the
results, generally depends strongly on the smoothness of the coor-
dinate functions.

In the regular setting of an image, or the knots of a uniform ten-
sor product spline, we may simply use a uniform parameterization
and will get parametric smoothness wherever there is geometric
smoothness. In the irregular triangle mesh setting there is a priori
no such “obvious” parameterization. In this case using a unifor-
mity assumption leads to parametric non-smoothness with undesir-
able consequences for further processing. One approach to remedy
this situation is the use of remeshing [8, 19], which maintains the
original geometric smoothness, but improves the sampling to vary
smoothly. This enables subsequent treatment with a uniform pa-
rameter assumption without detrimental effects. Here we wish to
build tools which work on the original meshes directly.

To understand the role of the parameterization further, consider
traditional subdivision [22], such as Loop or Catmull-Clark. In the
signal processing context, subdivision can be seen as upsampling
followed by filtering. One starts with an arbitrary connectivity mesh
and uses regular upsampling techniques such as triangle quadrisec-
tion to obtain a semi-regular triangulation. The subdivision weights
depend only on connectivity, not geometry. Such stencils can be de-
signed with existing Fourier or spectral techniques. These schemes
result in geometrically smooth limit surfaces with smooth semi-
uniform parameterizations. Because traditional subdivision is only
concerned withrefinementone has the freedom to choose regular
upsampling, and semi-uniform schemes suffice.

The picture changes entirely if we wish to compute a mesh pyra-
mid, i.e., we want to be able tocoarsifya given fine irregular mesh
and laterrefine it again. We then need to filter, downsample, up-
sample and filter again. The downsampling typically involves a
standard mesh simplification hierarchy. When subdividing back,
we want to build a mesh with thesameconnectivity as the original
mesh and a smooth geometry. This time the upsampling procedure
is determined by reversing the previously computed simplification

hierarchy. We no longer have a choice as in the classical subdivision
setting. Consequently the filters used before downsampling and af-
ter upsampling should use non-uniform weights, which depend on
the local parameterization. The challenge is to ensure that these lo-
cal parameterizations are smooth so that subsequent algorithms act
on the geometry and not some potentially bad parameterization.

1.1 Contributions
In this paper we present a series of non-uniform signal process-
ing algorithms designed for irregular triangulations and show their
usefulness in several application areas. Specifically, we make the
following contributions:

• We show how the non-uniform subdivision algorithm of
Guskov [12] can be used for geometric smoothing of triangle
meshes. Our scheme is fast, local, and straightforward to imple-
ment.

• We use the smoothing algorithm combined with existing hier-
archy methods to build subdivision, pyramid, and wavelet algo-
rithms for irregular connectivity meshes.

• We show how these signal processing algorithms can be used in
applications such as smoothing, enhancement, editing, anima-
tion, and texture mapping.

1.2 Related Work
In our approach we draw on observations made by researchers in
several different areas. These include classical subdivision [22],
which we generalize to the irregular setting with the help of mesh
simplification [13] and careful attention to the role of smooth pa-
rameterizations. Parameterizations were examined in the context of
remeshing [19, 8, 9], texture mapping (e.g., [20]), and variational
modeling [16, 28, 21]. One area which employs these elements is
hierarchical editing for semi-regular [29] and irregular meshes [18].

Signal processing as an approach to surface fairing in the irreg-
ular setting was first considered by Taubin [26, 27]. He defines
frequencies as the eigenvectors of a discrete Laplacian general-
ized to irregular triangulations. The resulting smoothing schemes
were used to denoise meshes, apply smooth deformations, and build
semi-uniform subdivision over irregular meshes. Our approach is
related to Taubin’s and can be seen as a generalization to the non-
uniform setting. In particular we build a smoothing method by min-
imizing multivariate finite differences. Together with progressive
mesh simplification [14] we use these to define a non-uniform sub-
division scheme and pyramid algorithm on top of an irregular mesh
hierarchy.

Progressive meshes and a semi-uniform discrete Laplacian were
used by Kobbelt et al. [18] to perform multiresolution editing on
irregular meshes. Given some region of the mesh, discrete fairing
is used to compute a smoothed version with the same connectiv-
ity. This smoothed region is deformed and offsets to the original
mesh are added back in. Kobbelt discusses the issue of geomet-
ric vs. parametric smoothing. Smoothing of irregular meshes based
on uniform approximations of the Laplacian results in vertex mo-
tion “within” the surface, even in a perfectly planar triangulation.
It is geometrically smooth, yet the parameter functions appear non-
smooth due to a non-uniform parameterization. This has undesir-
able effects in a hierarchical setting in which fine levels are de-
fined as offsets (“details”) from a coarse level: using the difference
between topologically corresponding vertices in the original and
smoothed mesh can lead to large detail vectors [18, Figure 4]. To
minimize the size of detail vectors they employed a search proce-
dure to find the nearest vertex on the smoothed mesh to a given ver-
tex on the original mesh. This diminishes the advantage of having a
smoothed version with the exact same connectivity. In contrast, our
non-uniform smoothing scheme affects only geometric smoothness
and so does not need a search procedure. We will present two ways



in which our scheme can be used for editing: one is based on mul-
tiresolution and combines the work of Kobbelt et al. [18] with the
ideas of Zorin et al. [29]. The other method relies on defining vec-
tor displacement fields with controllable decay similar to the ideas
presented in the work of Singh and Fiume [23].

We construct our subdivision scheme by designing a non-
uniform relaxation operator which minimizes second differences.
This is motivated by the smoothness analysis of the 1D irregular
setting [2]. This analysis relies on the decay of divided differ-
ences, carefully designed to respect the underlying parameteriza-
tion. These ideas were extended to the multi-variate setting in [12]
and we employ them here. While the schemes we present have
many nice properties and work very well in practice, we note that
their analytic smoothness is currently unknown.

2 Signal Processing Algorithms
Before describing the actual numerical algorithms we begin with
some remarks regarding different settings and establish our notation
for triangulations and difference operators defined on them.

Coordinate Functions To describe our algorithms we must
distinguish between two settings: the functional and the surface
setting. Thefunctional settingdeals with a functiong(u, v) of
two independent variables in the plane. The dependent variable
g can be visualized as height above the(u, v) parameter plane. In
practice we only have discrete datagi = g(ui, vi). The sample
points (ui, vi) are triangulated in the plane and this connectivity
can be transferred to the corresponding points(ui, vi, gi) in R3.
The canonical example of this is a terrain model.

The surface settingdeals with a triangle mesh of arbitrary
topology and connectivity embedded inR3 with verticespi =
(xi, yi, zi). It is important to treat all three coordinatesx, y, andz
asdependentvariables with independent parametersu andv, giv-
ing us three functional settings. The independent parameters are
typically unknown and must be estimated. Algorithms to estimate
globalsmooth parameterizations are described in [19, 8, 9, 20]. We
require onlylocal parameterizations which are consistent over the
support of a small filter stencil.

Triangulations To talk about local neighborhoods of vertices
within the mesh it is convenient to describe the topological and
geometric aspects of a mesh separately. We use notation inspired
by [24]. A triangle mesh is denoted as a pair(P,K), whereP is a
set ofN point positionsP = {pi ∈ R3 | 1 ≤ i ≤ N} (eitherpi =
(ui, vi, fi) in a functional setting orpi = (xi, yi, zi) in the surface
setting), andK is anabstract simplicial complexwhich contains all
the topological, i.e., adjacency information. The complexK is a set
of subsets of{1, . . . , N}. These subsets are called simplices and
come in three types: verticesv = {i} ∈ V, edgese = {i, j} ∈ E ,

Figure 2:Left: 1-ring neighborhood. The vertices except the center
one formV1(i) and the bold edges formE1(i). Middle: 1-ring with
flaps. The vertices except the center one formV2(i) and the bold
edges formE2(i). Right: Edge neighborhood. The four vertices of
the incident triangles formω(e).

and facesf = {i, j, k} ∈ F , so thatK = V ∪ E ∪ F . Two ver-
ticesi andj areneighborsif {i, j} ∈ E . The 1-ring neighbors of
a vertexi form a setV1(i) = {j | {i, j} ∈ E} (see Figure 2, left).
Ki = #V1(i) is thedegreeof i. The edges fromi to its neighbors
form a setE1(i) = {{i, j} | j ∈ V1(i)}. A 1-ring neighborhood
with flaps is shown in Figure 2 (middle). Its vertices except the cen-
ter vertex form a setV2(i) and its interior edges form a setE2(i).
Finally, the neighborhoodω(e) of an edge (see Figure 2) is formed
by the 4 vertices of its incident triangles.

Thegeometric realizationϕ(s) of a simplexs is defined as the
strictly convex hull of the pointspi with i ∈ s. The polyhedron
ϕ(K) is defined as∪s∈Kϕ(s) and consists of points, segments, and
triangles inR3.

2.1 Divided Differences in the Functional Setting
Our relaxation algorithm relies on minimizing divided differences.
In the one dimensional setting divided differences are straightfor-
ward to define, but for multivariate settings many approaches are
possible (see for example [10, 4, 3]). An approach that was devel-
oped specifically with subdivision in mind is described in [12] and
we use it here for our purposes.

Consider a facef = {i, j, k} and the trianglet = ϕ(f) where
pi = (ui, vi, gi). Then the first order divided difference ofg at f
is simply the gradient of the piecewise linear spline interpolating
g denoted by∇fg = (∂g/∂u, ∂g/∂v). Note that the gradient
depends on the parameter locations(ui, vi) and converges in the
limit to the first partial derivatives. If we create a three vector by
adding a third component equal to 1, we obtain the normalnf =
(−∂g/∂u,−∂g/∂v,1) to the trianglet. Conversely, the gradient is
the projection of the normal in the parameter plane. Consequently
the gradient is zero only if the trianglet is horizontal (gi = gj =
gk).

Second order differences are defined as the difference between
two normals on neighboring triangles and can be associated with
the common edge (see Figure 3, left). Consider an edgee = {j, k}
with its two incident facesf1 = {j, k, l1} and f2 = {j, k, l2}
(see Figure 2, right). Compute the difference between the two nor-
malsme = nf2 − nf1 . Given that the two normals are orthogonal
to ϕ(e) so is their differenceme (see Figure 3, right). But the
third component ofme is zero, henceme itself lies in the parame-
ter plane, which also contains the segment between(uj , vj , 0) and
(uk, vk, 0). This implies thatme is orthogonal to the segment and
hence only its signed magnitude matters (see Figure 3).

difference of normals lies in parameter plane

in 3D

j

triangle normals

common segment

parameter plane

k

l2

l1

right

function

values

plane contains both normals

and their difference;

plane is orthogonal

to 3D segment

angle

Figure 3: In the functional setting triangles are erected over the
parameter plane. Their normals generate a plane orthogonal to
the edge in 3-space. Any vector in that plane which is also in the
parameter plane must be at right angles with the parameter plane
segment. HenceD2

e is orthogonal to(uj , vj)− (uk, vk).



This argument justifies defining the second order differenceD2
eg

as the component ofme orthogonal to the segment in the pa-
rameter plane.D2

eg depends on four function values at vertices
ω(e) = {j, k, l1, l2}. Since all operations to computeD2

eg are lin-
ear (gradient, difference, and projection) so is the entire expression

D2
eg =

∑
l∈ω(e)

ce,lgl.

The coefficients are given by

ce,l1 =
Le

A[l1,k,j]

, ce,l2 =
Le

A[l2,j,k]

,

ce,j = −
LeA[k,l2,l1]

A[l1,k,j] A[l2,j,k]
, ce,k = −

LeA[j,l1,l2]

A[l1,k,j]A[l2,j,k]
, (1)

whereA[k1,k2,k3] is the signed area of the triangle formed by
(uk1 , vk1), (uk2 , vk2), (uk3 , vk3); andLe is the length of the seg-
ment between(uj , vj) and(uk, vk) [12]. All the parameterization
information is captured in the edge length and signed triangle areas.
Given that we later only use squares ofD2

e the actual sign of the ar-
eas is not important as long as the orientations prescribed by (1) are
consistent. Also, note that the second order difference operator is
zero only if the two triangles lie in the same plane.

2.2 Relaxation in the Functional Setting
The central ingredient in our signal processing toolbox is a non-
uniform relaxation operator. It generalizes the usual notion of a
low pass filter. We begin by discussing the construction of such a
relaxation operator in the functional setting.

The purpose of the relaxation operation is the minimization of
second order differences. To this end we define a quadratic energy,
which is an instance of a discrete fairing functional [16]

E =
∑

e∈E(D
2
eg)2.

The relaxation is computed locally, i.e., for a given vertexiwe com-
pute a relaxed function valueRgi based on neighboring function
valuesgj . TreatingE as a function of a givengi the relaxed value
Rgi is defined as the minimizer ofE(gi). Given that the stencil for
D2
e consists of two triangles, all edges which affectE(gi) belong

to E2(i) (see Figure 2, middle)

Rgi = arg min E(gi) = arg min
∑

e∈E2(i)
(D2

eg)2. (2)

Since the functional is quadratic the relaxation operator is linear in
the function values. To find the expression, write each of theD2

eg
with e ∈ E2(i), i.e., all second differences depending ongi, as a
linear function ofgi

D2
eg = ce,igi + αe with αe =

∑
l∈ω(e) \ {i} ce,lgl.

Setting the partial derivative ofE with respect togi equal to zero
yields

Rgi = −
(∑

e∈E2(i)
ce,i αe

)
/

(∑
e∈E2(i)

c2e,i

)
, (3)

which can be rewritten as

Rgi =
∑

j∈V2(i)
wi,jgj, wi,j = −

∑
{e∈E2(i)|j∈ω(e)}

ce,ice,j∑
e∈E2(i)

c2
e,i

.

There are two ways to implementR which trade off speed versus
memory. One can either precompute and store thewi,j and use the
above expression or one can use (3) and computeR on the fly.

Note that if g is a linear function, i.e., all triangles lie in one
plane, the fairing functionalE is zero. Consequently linear func-
tions are invariant underR. In particularR preserves constants
from which we deduce that thewi,j sum to one.

To summarize, given an arbitrary but fixed triangulation in the
parameter plane and function valuesgi with the associated(ui, vi)
coordinates, simple linear expressions describe first and second dif-
ferences. The coefficients of these expressions depend on the pa-
rameterization. The relaxation operatorR acts on individual func-
tion values to minimize the discrete second difference energy over
theE2(i) neighborhood of a givenpi = (ui, vi, gi), leaving linears
invariant.

2.3 Relaxation in the Surface Setting
To apply the above relaxation in the surface setting we need to have
parameter values(u, v) associated with every point in our mesh.
Typically such parameter values are not available and we must com-
pute them. One possible solution is to compute a global parame-
terization to a coarse base domain using approaches such as those
described in [8, 19]. However, specifying parameter values for an
entire region is equivalent to flattening that region and thus invari-
ably introduces distortion. Therefore we wish to keep the parame-
ter regions as small as possible. Typically one computes parameter
values for a certain local neighborhood like a 1-ring. We propose
an even more local scheme in which parameter values are specified
separatelyfor each of theD2

e stencils. The two triangles of theD2
e

stencil get flattened with the so-calledhinge map: using the com-
mon edge as a hinge, rotate one triangle until it lies in the plane
defined by the other triangle and compute the needed edge lengths
and areas from (1). Note that the hinge map leaves the areas of
the trianglesϕ(f1) andϕ(f2) unchanged and only affects the faces
{j, k, l1} and{j, k, l2}. The surface relaxation operator is defined
as before, but acts on points inR3

Rpi =
∑

j∈V2(i)
wi,jpj.

Our minimization is similar to minimizing dihedral angles [21].
However, minimizing exact dihedral angles is difficult as the ex-
pressions depend non-linearly on the points. Instead one can think
of theD2

e as a linear expression which behaves like the dihedral
angle.

Features With our scheme it is particularly easy to deal with
features in the mesh. Examples include sharp edges across which
one does not wish to smooth. In that case theD2

e associated with
those edges are simply removed from the functional.

One may worry what happens with the equations in (1) in case
one of the triangles is degenerate, i.e., two of its points coincide and
its area is zero. Then theD2

e that use this triangle are not defined
and simply can be left out from the optimization. This is similar to
coinciding knots in the case of splines.

Comparison with Existing Schemes The approach fol-
lowed in [18] is to assume that the 1-ring neighborhood of a vertex
i is parameterized over a regularKi-gon. Using this approximation
a discrete Laplacian, dubbed umbrella, is computed as

Lpi = K−1
i

∑
j∈V1(i)

pj − pi.

This discrete Laplacian was used in a relaxation operatorR = I+L
which replaces a vertex with the average of its 1-ring neighbors.

In our setting, we can build a 1-ring relaxation scheme by only
taking the minimum in (2) overE1(i). The relaxation operator is
then computed as in (3) with summations overE1(i) rather than
E2(i). Our 1-ring scheme parameterized on aregularKi-gon leads
to the same relaxation operator as used by Kobbelt. Our scheme can
thus be seen as a natural non-uniform generalization of the umbrella



which is still linear. In general we use theE2(i) (1-ring with flaps)
scheme as it yields visually smoother surfaces.

Taubin [26] presents a two step relaxation operatorR = (I +
µL)(I + λL), with µ andλ tuned to minimize shrinkage of the
mesh.

Both of these schemes are semi-uniform filters since the weights
only depend onKi and not the geometry. Consequently they affect
both geometry and parameterization. Consider again an irregular
triangulation of a plane. Semi-uniform schemes try to make each 1-
ring look as much as possible like a regularK-gon. Thus the trian-
gulation may change globally while the plane remains the same. As
we will see, this will lead to unwanted effects in applications such
as editing and texture mapping. On the other hand our non-uniform
scheme is linearly invariant, leaves the triangles unchanged, and
does not suffer from the problems concerning movement “inside”
the surface observed in [18, Figure 4].

Figure 4 shows the effect on a non-planar triangulation like
the eye of the mannequin head. Our non-uniform scheme (right)
smoothes the geometry without affecting the triangle shapes much.
The semi-uniform scheme (middle) tries to make edge lengths as
uniform as possible which can only be done by effectively destroy-
ing the delicate mesh structure around the eye. This effect also
applies to any other attributes that vertices may carry such as detail
vectors for editing or texture map coordinates causing distortion
during smoothing (see Figure 8).

Taubin [26] also uses a non-uniform discrete Laplacian in which
the weights vary as the powers of the respective edge lengths. While
such an operator can greatly reduce the triangle distortions, it can
be shown that such a scheme can never be linearly invariant.

Figure 4:Smoothing of the eye (left) with our non-uniform (right)
and a semi-uniform scheme (middle). The semi-uniform scheme
tries to make edge lengths as uniform as possible and severely dis-
torts the geometry, while the non-uniform scheme only smoothes the
geometry and does not affect the triangle shapes much.

3 Multiresolution Signal Processing
Up to this point we have only considered operators which act on a
scale comparable to their small finite support. To build more pow-
erful signal processing tools we now consider a multiresolution set-
ting.

Multiresolution algorithms such as subdivision, pyramids, and
wavelets require decimation and upsampling procedures. For im-
ages decimation comes down to removing every other row or col-
umn. The situation for meshes is more complex, but a considerable
body of work is available [13].

We employ Hoppe’s Progressive Mesh (PM) approach [14]. In
the PM setting, an edge collapse provides the atomic decimation
step, while a vertex split becomes the atomic upsampling step. For
simplicity we only employ half-edge collapses in our implementa-
tion. As a priority criterion we use a combination of the Garland-
Heckbert quadric error metric [11] and edge length to favor removal
of long edges (see also [17]).

Each half edge collapse removes one vertex and we number them
in reverse so that the one with highest index gets removed first.
This gives a sequence ofN meshes(Pn,Kn), 1 ≤ n ≤ N , and
Pn = {pi | 1 ≤ i ≤ n}. Later we will consider mesh sequences

(Q(n),K(n)) where the points on coarser meshes do move from
their finest mesh position. These are denotedq

(n)
i , i ≤ n.

In traditional signal processing, downsampling creates a coarser
level through the removal of a constant fraction of samples. This
leads to a logarithmic number of levels. A PM does not have such
a notion of levels. However, one may think of each removed vertex
as living on its own level, and the number of levels being linear.

3.1 Subdivision
Subdivision starts from a coarse mesh and successively builds finer
and smoother versions [22]. In signal processing terms it consists of
upsampling followed by relaxation. So far the word subdivision has
been associated in the literature with either regular or semi-regular
meshes with corresponding uniform or semi-uniform operators. If
one only has an original, coarse mesh and cares about building a
smooth version, then semi-regular is the correct approach.

Our setting is different. The coarse mesh comes from a PM
started at the original, finest level. Hence the connectivity of the
finer levels is fixed and determined by the reverse PM. Our goal
is to use non-uniform subdivision to build ageometricallysmooth
mesh with thesameconnectivity as the original mesh and with as
little triangle shape distortion as possible. Such smoothed meshes
can subsequently be used to build pyramid algorithms.

Subdivision is computed one level at a time starting from level
n0 in the progressive meshQ(n0) = P(n0). Since the reverse PM
adds one vertex per level, our non-uniform subdivision is computed
one vertex at a time. We denote the vertex positions asQ(n) =

{q(n)
i | 1 ≤ i ≤ n} (n ≥ n0) and use meshes(Q(n),K(n)) with

the same connectivity as the PM meshes.
Going fromQ(n−1) toQ(n) involves three groups of vertices. (I)

the new vertexn, which is introduced together with a point position
q

(n)
n to be computed. (II) certain points from theQ(n−1) mesh

change position; these correspond toevenvertices. There is only a
small number of them. (III) the remainder of the points ofQ(n−1),
typically the majority, remains unchanged. Specifically:

• The new positionq(n)
n is computed after upsampling fromKn−1

toKn:
q(n)
n =

∑
j∈Vn

2
(j)
w

(n)
n,j q

(n−1)
j .

The position of the new vertex is computed to satisfy the relax-
ation operator using points fromQn−1 with weights using areas
and lengths of mesh(Pn,K(n)).

• The even points ofQn−1 form a 1-ring neighborhood ofn.
Their respectiveVn2 neighborhoods containn, which has just
received an updated positionq(n)

n

∀j ∈ Vn1 (n) : q
(n)
j =

∑
k∈Vn

2
(j) \{n} w

(n)
j,k q

(n−1)
k +w

(n)
j,n q

(n)
n .

The even vertices are relaxed using the point positions
from Q(n−1) (except forq(n)

n ), using weights coming from
(Pn,K(n)).

• Finally, the remainder of the positions do not change

∀j ∈ Vn−1\Vn1 (n) : q
(n)
j = q

(n−1)
j .

A central ingredient in our construction is the fact that the weights
w

(n)
i,j depend on parameter information from the meshP(n). No

globally or even locally consistent parameterization is required. For
eachD2

e stencil we use the hinge map as described above. In effect
the original mesh provides the parameterizations and in this way
enters into the subdivision procedure. The actualareasandlengths,
which make up the expressions forw(n)

i,j are assembled based on the

connectivityK(n) of leveln, and hence induce the level dependence



of the weights. As a result allw(n)
i,j may be precomputed during the

PM construction and can be stored if desired for later use during
repeated subdivision. It is easy to see that the storage is linear in
the total degree,

∑
i
Ki, of the mesh.

Figure 5:Starting with the irregular triangulation of a sphere (up-
per left) we compute a PM down to 16 triangles (upper right). We
then compute our non-uniform subdivision scheme back to the finest
level (lower left) and obtain a smooth mesh which approximates the
original. For comparison the lower right shows the limit surface of
a semi-uniform subdivision scheme.

To illustrate the behavior of uniform functional subdivision
schemes one considers the so calledscaling functionor fundamen-
tal solution obtained from starting with a Kronecker sequence on
the coarsest level. For surface subdivision, there is no equivalent to
this. To illustrate the behavior of the surface scheme we perform
the following experiment (see Figure 5). We start with an irregular
triangulation of a sphere with 12000 triangles (upper left) and com-
pute a PM down to 16 triangles (upper right). Next the non-uniform
surface subdivision scheme starting from the 16 triangles back to
the original mesh is computed (lower left). We clearly get a smooth
mesh. For comparison the lower right shows the limit function us-
ing a semi-uniform scheme. It is important to understand that the
non-uniform scheme has access to the parameterization information
of the original finest mesh whereas the semi-uniform scheme does
not use this additional information.

While for uniform and semi-uniform subdivision, extensive liter-
ature on regularity of limit functions exists, few results are known
for non-uniform subdivision [2, 12]. The goal of our strategy of
minimizingD2

e is to obtainC1 smoothness. However, there is cur-
rently no regularity result for our scheme in either the functional or
surface setting.

3.2 Burt-Adelson Pyramid
The pyramid proposed by Burt and Adelson [1] (BA) is another
important signal processing tool. We show how to generalize it to
a mesh pyramid. We start from the finest level pointsSN = P and
compute a sequence of meshes(Sn,Kn) (1 ≤ n ≤ N) as well as
oversampled differencesd(n)

i between levels.
To go fromSn to Sn−1, i.e., to remove vertexn, we follow the

diagram in Figure 6. The top wire represents the points ofSn−1

while the bottom wire represent the points ofSn. There are four

(n)s -
(n)

q

SubdivisionPresmooth

d
(n)

s F 
(n)

s
(n-1)

(n-1)

Figure 6:Burt-Adelson style pyramid scheme.

stages: presmoothing, downsampling, subdivision, and computa-
tion of details.
• Presmoothing:Presmoothing in the original BA pyramid is im-

portant to avoid aliasing. We have found that in a PM the pres-
moothing step can often be omitted because the downsampling
steps (edge collapses) are chosen carefully, depending heavily
on the data. In essence vertices are removed mostly in smooth
regions, where presmoothing does not make a big difference.
Thus, no presmoothing was used in our implementation.

• Downsampling: n is removed in a half-edge collapse.

• Subdivision: Using the points fromSn−1 we compute subdi-
vided pointsq(n)

j for the vertex just removed and the surround-
ing even vertices exactly as described in Section 3.1

• Detail Computation: Finally, detail values are computed for
all even vertices as well as the vertexn. These detail vectors are
expressed in a local frameF (n−1)

j which depends on the coarser
level:

∀j ∈ Vn1 (n) ∪ {n} : d
(n)
j = F

(n−1)
j (s

(n)
j − q(n)

j ).

We refer to the entire group ofd(n)
j as an arrayd(n). In the

implementation this array is stored withn.
One of the features of the BA pyramid is that the above procedure
can always be inverted independent of which presmoothing opera-
tor or subdivision scheme is used. For reconstruction, we start with
the points ofSn−1, subdivide valuesq(n)

j for both the new and even

vertices and add in the details to recover the original valuess
(n)
j .

To see the potential of a mesh pyramid in applications it is im-
portant to understand that the detailsd(n) can be seen as an approx-
imate frequency spectrum of the mesh. The detailsd(n) with large
n come from edge collapses on the finer levels and thus correspond
to small scales and high frequencies, while the detailsd(n) with
smalln come from edge collapses on the coarser levels and thus
correspond to large scales and low frequencies.

Oversampling factor A standard image pyramid has an over-
sampling factor of 4/3, while we have an expected oversampling
factor of 7. The advantage of oversampling is that the details are
quite small and lead to natural editing behavior [29]. If needed, a
technique exists to reduce the oversampling factor. The idea is to
use levels with more than one vertex. Say, we divide theN vertices
of V intoM levels withM � N :

V = V0 ∪
⋃

1≤m≤MWm and Vm = Vm−1 ∪Wm.

This can be done, for example, so that the sizes of theVm grow
with a constant factor [7]. The BA pyramid then goes fromVm
to Vm−1. First presmooth all even vertices inVm, then compute
subdivided values for all vertices inWm and their 1-ring neighbors
in Vm. For the subdivided points, which need not be all vertices
of Vm, compute the details as differences with the original values
from Vm. One can see that the above algorithm with oversampling
factor 7 is a special case whenWm = {m}. The other extreme
is the case with only one level containing all vertices. In that case



there is no multiresolution as all details live on the same level. The
oversampling factor is 1. By choosing the levels appropriately one
can obtain any oversampling between 1 and 7. It is theoretically
possible to build a wavelet-like, i.e, critically sampled multiresolu-
tion transform based on the Lifting scheme [25]. However, at this
point it is not clear how to design filters that make the transform
stable.

Caveat Often in this paper we use signal processing terminology
such as frequency, low pass filter, aliasing, to describe operations on
2-manifolds. One has to be extremely careful with this and keep in
mind that unlike in the Euclidean setting, there is no formal def-
inition of these terms in the manifold setting. For example in a
mesh the notion of a DC component strictly does not exist. Also in
connection with the pyramid we often talk about frequency bands.
Again one has to be careful as even in the Euclidean setting the co-
efficients in a a pyramid do not represent exact frequencies due to
the Heisenberg uncertainty principle.

4 Applications
The algorithms we described above provide a powerful signal pro-
cessing toolbox. In this section we demonstrate this claim by con-
sidering a variety of applications that use them. These include
smoothing and filtering, enhancement, texture coordinate genera-
tion, vector displacement field editing, and multiresolution editing.

4.1 Smoothing and Filtering
One way to smooth a mesh is through repeated application of the
relaxation operatorR. Numerically this behaves similarly to tradi-
tional Jacobi iterations for an elliptic PDE solver. The relaxation
rapidly attenuates the highest frequencies in the mesh, but has little
impact on low frequencies. Even though each iteration of the oper-
ator is linear in the number of vertices, the number of iterations to
attenuate a fixed frequency band grows linearly with the mesh size.
This results in quadratically increasing run times as the sample den-
sity increases relative to a fixed geometric scale. One way to combat
this behavior is through the use of appropriate preconditioners, as
was done in [18], or through the use of implicit solvers [6].

Using a mesh pyramid we can build much more direct and flexi-
ble filtering operations. Recall that the details in a pyramid measure
the local deviation from smoothness at different scales. In that sense
they capture the local frequency content of the mesh. This spectrum
can be shaped arbitrarily by scaling particular details. Multiresolu-
tion filtering operators are built by setting certain ranges of detail
coefficients in the pyramid to zero. A low pass filter sets all detail
arraysd(n) with n > nl to zero, while a high pass filter annihilates
d(n) for n < nh. However, for meshes it makes little sense to put
the coarsest details to zero as this would collapse the mesh. More
natural for meshes are stopband filters which zero out detail arrays
d(n) in some intermediate range,nl < n < nh.

Figure 7 shows these procedures applied to the venus head
(N = 50000). On the upper left the original mesh. The upper right
shows the result of applying the non-uniform relaxation operator
20 times at the finest level. High frequency ripples quickly diffuse,
but no attenuation is noticeable at larger length scales. The bottom
left shows the result of a low pass filter which sets all details above
nl = 1000 to zero. Finally the bottom right shows the result of a
stopband filter, annihilating all details1000 < n < 15000. Note
how the last mesh keeps its fine level details, while intermediate
frequencies were attenuated. If desired all these filtering operations
can be performed in a spatially varying manner due to the space-
frequency localization of the mesh pyramid. Figure 8 shows the
difference between non-uniform (left) and semi-uniform smoothing
(right) on the actual vertex positions. By keeping the original finest
level texture coordinates for the vertices of both meshes we can

Figure 7: Smoothing and filtering of the venus head. Original on
the top left; 20 finest level relaxation steps on the top right; low
pass filter on the bottom left; stopband filter on the bottom right.

visualize the effect of movement “within” the surface after smooth-
ing. This hints at another application: if one has a scanned mesh
with color (r,g,b) attributes per vertex then non-uniformgeometry
smoothing will not distort those colors.

4.2 Enhancement
Enhancement provides the opposite operation to smoothing in that
it emphasizes certain frequency ranges. As before this can be done
in a single resolution manner as well as in the more flexible mul-
tiresolution setup.

The single resolution scheme is easy to compute and typically
works best for fairly small meshes, such as those used as control
polyhedra for splines or semi-regular subdivision surfaces. The
main idea is to extrapolate the difference between the original mesh
and a single resolution relaxed mesh. The enhanced points are given
by

Epi = pi + ξ(Rkpi − pi),

whereξ > 1. Figure 9 illustrates the procedure. On the left the
original mannequin head, in the middle the result after 20 relax-
ation steps, and on the right the enhanced version withξ = 2. The
first and last models of Figure 1 show the Loop subdivided meshes
of the original and enhanced head. By using combinations of the
different algorithms peculiar effects can be obtained. The second



Figure 8: Movement “within” the surface due to smoothing visu-
alized by letting the vertices keep their original finest level texture
coordinates. Left non-uniform smoothing and right semi-uniform
smoothing.

Figure 9:Enhancement of control mesh. On the left the original, in
the middle the smoothed mesh, and on the right the enhanced mesh
(see also Figure 1 for the resulting subdivision surfaces).

model in Figure 1 is obtained by extrapolating from a base model
built by 5 semi-uniform relaxation steps followed by 5 non-uniform
relaxation steps (needed to recover the parameterization and “pull”
features back in place). The third model in Figure 1 is extrapolated
from a base built by first simplifying to level 100, then applying 1
relaxation step (which made the chin collapse and ears shrink), and
reconstructing.

The single level scheme is simple and easy to compute, but lim-
ited in its use. For example, it does not compute offsets with respect
to local frames. If the mesh contains fine level detail self intersec-
tions quickly appear. As in image enhancement one must be careful
not to amplify high frequency noise. For these reasons we need the
more flexible setup of multiresolution enhancement. The approach
is simple, we compute a mesh pyramid, scale the desired details and
then reconstruct. As in the filtering application, the user has control
over the different frequency bands. Additionally, the local frames
across the many levels of the mesh pyramid tend to stabilize the
procedure and lead to a more natural behavior. As a result the mul-
tiresolution enhancement scheme deals better with large scanned
meshes which usually contain high frequency noise.

Figure 10 shows Loop subdivided versions of the original cow
head and an enhanced version obtained by multiplying the details
d(n) with 257 < n ≤ 2904 = N by two (see also Figure 15,
right column for an edit of the enhanced model). Finally, Figure 11
shows enhancement on the Stanford bunny (N = 34835). Here
details with indices1000 < n < 7000 were multiplied by 2, and
details with indices7000 < n < 13000 were multiplied by 1.5.

Figure 10:Enhancement of cow head (original on the left).

Figure 11:Enhancement on the bunny. The original is on the left
and the frequency enhanced version on the right.

4.3 Subdivision of Scalar Functions on Manifolds
We can use subdivision to quickly build smooth scalar functions
definedon a manifold. Simply start with scalar values on a coarse
level and use non-uniform subdivision to build a smooth function
defined on the finest level.

We present two applications. The first creates smoothly varying
texture coordinate assignments for the finest level mesh from some
user supplied texture coordinate assignments at a coarse level. The
second creates a smoothly varying function over a limited region of
an irregular mesh and then uses this function to generate a smooth
vector displacement field for shape editing purposes.

Texture Coordinate Generation DeRose et al. [5] discuss
this problem in the context of classical, semi-uniform subdivision.
Their goal was the construction of smooth texture coordinates for
Catmull-Clark surfaces. Beginning with user supplied texture co-
ordinates at some coarse level they subdivide these parameter as-
signments to the finest subdivision level using the same subdivision
operator for texture coordinates as for the vertices.

Figure 12 shows the application of this idea to our setting. Ini-
tial texture coordinate assignments were made using a cylindrical
projection of all vertices inP1000. The left image shows a test tex-
ture on the coarse polygonal mesh. We then reconstruct the original
finest level mesh and concurrently subdivide the texture coordinates
to the finest level. The resulting mapping is shown on the right.
Even though the geometry has much geometric detail and uneven
triangle sizes the final texture coordinates vary smoothly over the
entire surface.

Displacement Vector Field Editing Singh and Fiume [23]
present an algorithm for deformation edits based on vector displace-
ment fields. These fields are defined through a smooth falloff func-
tion around a “wire” which drags the surface along. The region of
influence is a function of distance inR3. Controlling this behavior
in regions of high curvature or in the vicinity of multiple close ob-
jects can be tricky. In our setting we have the opportunity to define
the falloff functiononly on the surface itself. A similar idea was
used in [15] for feature editing.



Figure 12: A test texture is mapped to a coarse level of the mesh
pyramid under user control. The resulting texture coordinates are
then subdivided to the finest level and the result shown on the right.

We illustrate this idea with an example. Consider the horse to
“giraffe” edit in Figure 13. The user first outlines three regions
by drawing closed curves on the mesh. A region that remains un-
changed (A); a region that will be gradually stretched (B); and a
region that will undergo a translation (C). In our example, region
(A) is the back body and the four legs; (B) are the neck and torso;
and (C) is the head. The boundary between (A) and (B) consists
of three closed curves. Next we define a scalar parameterθ, which
is 0 on the boundary between (A) and (B), and 1 on the boundary
between (B) and (C). The algorithm computes values forθ that vary
smoothly between 0 and 1 in region (B).

This is accomplished by running a PM on the interior of region
(B) to a maximally coarse level. Then the initial valueθ = 1/2
is assigned to all interior vertices of the coarse region (B). Next
we apply relaxation toθ on the coarsest level within (B). This con-
verges quickly because there are few triangles; three steps suffice.
Theseθ values are then used as the starting values for subdivision
from the coarsest level back to the original region (B) while keeping
the θ values on the boundary fixed. The resultingθ values on the
finest region (B) vary smoothly between 0 and 1. The only prob-
lem is that at the boundary they meet in aC0 and not aC1 fashion.
This is because we only imposed Dirichlet like conditions and no
Neumann condition. We address this with the following smoothing
transformation,θ := 1/2− 1/2 cos(πθ).

On the left of Figure 13 the red lines are specified by the user
and the black lines show theθ isolines, visualizing howθ varies
smoothly. The edit is now done by letting the user drag the head.
Every vertex in region B is subjected toθ times the displacement
vector of the head. This requires very little computation. The right
side of Figure 13 shows the result.

4.4 Multiresolution Editing
The displacement vector editing is simple and fast, but has limited
use. We next discuss full fledged multiresolution editing for irreg-
ular meshes. Our algorithm combines ideas of Zorin et al. [29] and
Kobbelt et al. [18]. The former used multiresolution details and
semi-regular meshes, while the latter used single resolution details
and irregular meshes. We combine the best of both approaches by
using multiresolution details with the irregular mesh setting.

The algorithm is straightforward. The user can manipulate a
group of pointss(n)

i in the mesh pyramid and the system adds
the finer level details back in. This is exactly the same use of the
pyramid as Zorin et al. only now for irregular meshes. Kobbelt et
al. used amultiresolution/multigridapproach to define a smoothed
mesh over a user selected region, but then computesingle resolution
details between the original and smoothed mesh.

Figure 13:Horse to giraffe edit using a surface based smooth dis-
placement vector field.

Figure 14:Cow leg editing sequence: original, coarsest scale, edit,
reconstruction with multiresolution details, reconstruction with sin-
gle resolution details.

The use of multiresolution details is important when the user
wishes to make large scale edits in regions with complicated fine
scale geometry. Because the multiresolution details are all de-
scribed in local frames, they have more flexibility to adjust them-
selves to a coarse scale edit.

We illustrate this with an edit on the leg of the cow (Figure 14).
The sequence shows the original leg, the coarse leg, a coarse edit,
and two reconstructions. The first used multiresolution details
while the second used single resolution details.

Finally, Figure 15 shows some additional edits. The horse was
edited at a level containing only 34 vertices (compare to the origi-
nal shape shown in Figure 13). The cow edit on the right column
involves both manipulation at coarse levels (snout, horns, leg, tail)
and overall enhancement.

Dataset Venus Horse Bunny Cow Mann.

Size (fine) 50000 48485 34835 2904 689
Size (coarse) 4 34 19 57 5

Timings (s)

Simpl. & Anal. 79 75 55 3.6 0.8

Reconstruction 9 8 5.8 .37 0.1

Analysis 9 8 5.8 .37 0.1

Table 1:Timings for mesh pyramid computation assuming storage
rather then recomputation of all areas and length needed in stencil
weight computations. The size field counts the total vertices (N).
Face counts are generally twice as large. All times are given in
seconds on an SGI R10k O2 @175Mhz.



Figure 15:Multiresolution edits.

5 Conclusions and Future Work
We have shown how basic signal processing tools such as up and
down sampling and filtering can be extended to irregular meshes.
These tools can be built into powerful algorithms such as subdivi-
sion and mesh pyramids. We have demonstrated their use in textur-
ing, editing, smoothing and enhancement.

Further research can be pursued in several directions. On the al-
gorithms side there is incorporation of various boundary conditions,
construction of positive weight schemes, and extensions to tetrahe-
dralizations. On the applications side there is adaptive gridding for
time dependent PDE’s, computing globally smooth parameteriza-
tions, extracting texture maps from scanned textures, and space-
frequency morphing.

Compression Another potential future application is compres-
sion. However, one needs to be extremely careful: our subdivision
weights depend on the parameterization which in turn depends on
the geometry of the original mesh. Thus one cannot use the sub-
division scheme as a predictor in a compression framework unless
sender and receiver share parameter information, i.e., the needed
areas and lengths to compute the subdivision. Only a setting where
one repeatedly has to communicate functions or attributes defined
over a fixed triangulation would justify this overhead.

This touches upon a deeper issue. In some sense for a geomet-
rically smooth irregular mesh only one dimension can effectively
be predicted by a subdivision scheme. Even for a geometrically
smooth mesh, no subdivision scheme can compress the informa-
tion implicitly present in the parameterization. Ideally for smooth
surfaces one would like to use meshes with as little parametric in-
formation as possible.

A typical example are semi-uniform meshes. This argument
strongly makes the case for resampling onto semi-regular meshes
using smooth parameterizations [8, 19] before compression.
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