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Abstract

In this paper we present a technique for computing the direct light-
ing in a three-dimensional scene containing area light sources. Our
method correctly handles partial visibility between luminaires and
receivers, and is able to efficiently generate accurate soft shadows
in scenes modeled with general bidirectional reflectance distribu-
tion functions. In most current algorithms, the form factor between
a light source and receiver is computed using a stochastic ray cast-
ing approach which evaluates partial visibility. Such an approach
often leads to noisy artifacts or aliasing problems. Generating sig-
nificantly more rays is often the only solution to improving image
quality. Our approach first stores visibility information in the
image plane, using lazy evaluation of the visibility function. In a
second phase, illumination values for each pixel are generated,
using analytic or stochastic integration. Soft shadows and other
shading effects are generated with high accuracy in less time than
with existing shading algorithms. Coherence in specific blocker-
light source relationships across the image plane is exploited to
amortize the cost of analytic form factor calculations. By storing
information in the image plane, our method is currently designed
for generating a single image, and is thus view-dependent.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener-
ation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism - color, shading, shadowing.

Additional Keywords: Rendering, Illumination Effects, Monte
Carlo Techniques, Shadow Algorithms, Visibility Determination.

1  INTRODUCTION

In order to compute the direct illumination in a three-dimensional
scene, it is necessary to be able to determine the visibility between
any surface point and an area light source. Since changes in visibil-
ity between a surface point and an area light source are the cause
of penumbra and umbra regions on the receiver surface, an effi-
cient processing of the visibility function is often the key for ren-
dering fast and accurate soft shadows. Once the visibility has been
processed, the illumination can then be computed by integrating
the incoming radiance function due to the light source, taking into
*Program of Computer Graphics, 580 Rhodes Hall, Cornell University,
Ithaca NY 14850, USA. URL: http://www.graphics.cornell.edu/
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account the bidirectional reflectance distribution function at the
receiving surface, as expressed by the rendering equation [10].

In this paper we split the direct illumination computation into two
distinct phases. A first phase evaluates the visibility function; the
second phase computes the actual illumination by evaluating the
rendering equation.

As contrasted with some existing techniques for computing soft
shadows from direct illumination (e.g. [6]), we do not construct a
complete discontinuity mesh in object space. Constructing such a
mesh is computationally expensive, and many of the resulting
mesh elements do not affect the final image quality. Moreover,
implementing a robust algorithm that handles all possible cases
often leads to numerical difficulties.

Our visibility pass instead detects, for each pixel in the image, any
blocker-light source pairs which affect the illumination for the sur-
face point visible through that pixel. We find such pairs by casting
one or more shadow rays from the visible point towards the light
source. Once such a pair is found, we exploit coherence by exam-
ining adjacent pixels to determine whether the same blocker-light
source pair shows up for their respective visible points. The result-
ing image-space occluder- or blocker-map encodes the necessary
visibility events that will be used in the next phase of the algo-
rithm.

The second phase computes the illumination for each visible point.
For each point, the stored blockers are clipped against the light
source. The remaining light source area defines the integration
domain for the illumination integral. Analytic or stochastic inte-
gration can then be employed to compute the actual radiance val-
ues to be attributed to each pixel.

The algorithm, therefore, passes over all pixels in the image twice
and can be summarized as follows:

First pass. (Construction of the blocker-map):
• Compute the nearest point visible through each pixel usin

classic ray-casting technique. By casting shadow rays to e
light source, blockers are detected and relevant blocker-li
source pairs are stored with the pixel.

• Project each blocker onto the light source, to determi
whether the same blocker-light source pair appears in nei
boring pixels. Neighboring pixels are found by using a floo
fill algorithm.

Second pass. (Evaluation of the illumination):
• For each pixel, the stored blockers are projected and clip

onto their paired light sources using the visible surface po
through the pixel as the center of projection.

• Given the clipped area light sources, the illumination is co
puted to acquire a radiance value for each pixel. Integrat
can be done analytically, stochastically, or by any other su
able method.

The main advantage of our approach is that we do not need
elaborate examination of all possible visibility events. Blocke
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light source pairs are included in the blocker-map only if detected
by a shadow-ray. If detected, coherence is exploited by flood-fill-
ing the blocker-light source pair to neighboring pixels. This proce-
dure replaces the construction of a discontinuity mesh or a
visibility skeleton. We store no visibility information that will not
be needed during the illumination computations. 

2  PREVIOUS WORK

The generation of shadows from area light sources is a long stand-
ing problem in computer graphics. Several algorithms for generat-
ing sharp shadows due to point light sources have been published.
A good survey of such shadow algorithms can be found in Woo et
al. [24].

Stochastic ray tracing algorithms [5,15] compute the direct illumi-
nation shadow at any point by sampling the area of the light source
with shadow rays. Various optimization techniques based on
importance sampling [16] can be used, but the fact remains that the
shadow rays still have to evaluate both illumination and visibility.

Radiosity algorithms [4,17] intrinsically compute soft shadows as
part of the full global illumination solution. Discontinuity meshing
[11] provides an accurate way of computing soft shadows, but
requires substantial amounts of computation time. Moreover, dis-
continuity meshing is usually driven by an exhaustive algorithm,
as each possible discontinuity is considered as a potential candi-
date for subdividing the mesh. A constructed discontinuity mesh
can also be used in pixel-based ray tracing algorithms. Drettakis
and Fiume [6], constructed the complete discontinuity mesh, after
which the exact illumination for a surface point visible through a
pixel is computed analytically. Similar ideas for computing
shadow boundaries are presented by Stewart and Ghali [19].

The visibility skeleton [7] encodes all possible visibility events
that cause discontinuities in visibility or shading at considerable
computational cost. It can be used to compute accurate illumina-
tion due to area light sources for any surface point in the scene.

A space subdivision based on ray directions emanating from the
light sources was proposed by Tanaka and Takahashi [21], allow-
ing a fast detection of possible blockers for a surface point to be
shaded. Casting rays from surface points to detect blockers is also
proposed in other algorithms for computing soft shadows [20,23].

Soler and Sillion [18] presented a method for interactive soft shad-
ows based on convolution operators and using scan-conversion
hardware. Although their method is restricted in computing exact
soft shadows in a limited number of cases, the results are quite
convincing and can be applied in real-time.

3  DIRECT ILLUMINATION

3.1  Rendering Equation

In order to compute the direct illumination in a scene, we have to
integrate the incoming radiance at a surface point according to the
rendering equation [10]. The exitant radiance  leaving a
surface point  in a direction , due to direct illumination from
the light sources, is given by:

(1)

where  is the emitted radiance of the light source from a
surface point  to ,  is the area of all light sources,  is a
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differential surface area around ,  is the bidirectional
reflectance distribution function (BRDF) at ,  is the cosine
of the angle between  and the surface normal at ,  is the
direction vector connecting  and ,  is the distance between

 and , and  is the visibility function, having a value of 1
if  and  are mutually visible, 0 otherwise.

By summing over light sources explicitly, and by folding the visi-
bility function into the integration domain, equation (1) can also be
written as:

(2)

where  is the number of different light sources, and  is the
visible part of the light source as seen from point . The use of this
equation implies that we can determine , before carrying out the
actual integration.

3.2  Analytic Integration

We now describe a set of conditions for which equation (2) can be
worked out analytically:

• The luminaires are a (disjoint) set of polygons;
• The exitant radiance is a constant for a given light sou

( );

• The receiving surface is diffuse.

Using Stoke’s theorem, the continuous integral over the area
can be converted into an integral over the boundaries of the po
onal light source [12,3]:

(3)

where  is the number of boundaries for light source  and 
the normal vector at .  is a vector with magnitude equal to 
angle gamma, as illustrated in figure 1, whose direction is given
the cross-product of vectors  and . A more detailed de
vation of this formula can be found in [9].

Equation (3) is only valid for the visible part of the light sourc
. In the event where occlusion occurs between  and the li

source, and if we have a way to remove the occluded parts f
the light source so that only non-occluded parts remain, we 
successfully use the above closed form to compute the radia
exactly.

If the receiving surface is not diffuse, an analytic computation
the direct illumination is more difficult. Arvo [1] gave a derivatio

Figure 1: Geometry for analytically evaluating illumination.
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that makes it possible to integrate equation (2) if the BRDF is com-
posed of a linear combination of Phong-lobes [13]. This method
also transforms the area integral into a line integral. Again, this
method assumes the integration only takes place over the unoc-
cluded parts of the light source.

3.3  Monte Carlo Integration

Monte Carlo integration techniques can also be used to compute
the direct illumination [16], regardless of the type of BRDF. A
number of sample points are generated over the area of the light
sources, and the integrand has to be evaluated for each point. By
taking the weighted average of these evaluations, an unbiased esti-
mator for the direct illumination is obtained. Since the visibility
function is part of the integrand, a fraction of the generated sam-
ples will evaluate to zero causing significant noise in the image. A
reduction of the integration domain to the visible parts of the light
sources would decrease noise significantly, using the same number
of sampling points.

Moreover, the integration domain can be transformed from the
area of the light sources to the solid angle subtended by the light
sources on the hemisphere around . This reduces noise even fur-
ther since the inverse distance and one cosine factor are folded into
the integration variable.

The overall effect of using domain reduction and solid angle sam-
pling is that we can achieve the same image quality with a reduced
number of shadow rays, therefore speeding up the rendering algo-
rithm.

4  ALGORITHM

4.1  Construction of the blocker-map.

The purpose of the first pass, which constructs the blocker-map, is
to identify relevant blocker-light source pairs for each pixel. We
use a combination of shadow rays and a flood-fill algorithm in the
image plane to identify the necessary pairs for each pixel. A ray is
cast through the center of each pixel in order to find the nearest
visible point on a surface. The location of this visible point, along
with its surface normal, is stored with the pixel for future refer-
ence.

Once the visible point is found, a number of shadow rays starting
from this point are generated for each light source by using a uni-
form sampling function over the solid angle subtended by the light
source as seen from the visible point [2]. If one of these rays hits
an intervening object, this blocker-light source pair is stored in the
blocker-map for that pixel. A blocker will be found with a proba-
bility proportional to its subtended solid angle covering the sub-
tended solid angle of the light source. Figures 2a and 2b illustrate
the identification and storage of the blockers in the blocker-map.

Since for each shadow-ray, we find at most one blocker, we proba-
bly do not find all relevant blockers for a pixel. We assume that the
umbra-penumbra region of a single blocker extends over multiple
pixels in the image plane. Therefore, once a blocker-light source
pair is found, neighboring pixels are examined to check whether
the same blocker shows up, using an eight-connect recursive flood-
fill mechanism. For each pixel visited during the flood-fill, the
blocker is projected onto the light source, using the visible point in
that pixel as the center of projection. If a simple test indicates that
the two polygons (blocker and light source) overlap, the pair will
be added to the blocker-map for the visited pixel. The flood-fill
stops if there is no overlap for the current pixel, or if the blocker-

x

light source pair already has been stored for that pixel. Figures 2c,
2d and 2e illustrate this part of the algorithm. Pseudo-code for the
construction of the blocker-map is given in Figure 3.

Using the flood-fill algorithm makes it sufficient to detect the
blocker in any of the pixels covered by the umbra-penumbra
region, in order to take it into account for all those pixels during
the illumination pass. Note that the blocker-map accumulates all
possible blocker-light source pairs, and does not just store the last
one encountered.

The result of this first pass is that we have constructed a blocker-
map in the image plane. For each pixel, we have stored blocker-

Figure 2: a) A shadow-ray is sent to the area light source, but is not
blocked by any blocker. The orange arrow indicates the order in which
the pixels are visited. b) The shadow-ray generated for this pixel is
blocked by the blocker. The blocker-light pair is added to the blocker-
map. c) A 4-connect flood-fill tests whether the same pair shows up in
adjacent pixels. The blocker is projected on the light source plane, and
their relative position indicates whether the blocker is added to the
blocker-map for the tested pixel (pixels 1, 2 and 3) or the flood-fill is
stopped (pixel 4). d) The flood-fill continues recursively and stops if
the blocker-light source pair was already stored in the blocker-map for
that pixel, or if no overlap between projected blocker and light source
is detected. e) Once the flood-fill has stopped, regular testing is
resumed with the next eligible pixel.
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light source pairs which affect the illumination of the point visible
through that pixel. Figure 4 shows what a blocker-map looks like
for a simple example. The color values indicate how many
blocker-light source pairs are stored in each pixel, with white indi-
cating 15 pairs and black indicating 0. Red regions indicate
detected umbra regions (see Discussion). No visibility information
is stored in the black pixels, therefore, no clipping or visibility tests
are needed during the illumination phase for those areas. The
blocker-map can, therefore, also be considered as an indicator of
which pixels demand the most amount of work. This indicator
could be worthwhile information for parallelizing the algorithm
and achieving a good load-balancing amongst different processors.

4.2  Illumination Pass

After construction of the blocker-map, a second pass computes the
illumination in each pixel. Equation (2) has to be evaluated for the
visible point seen through the pixel. As described above, both ana-
lytic and Monte Carlo integration benefit from a more elaborate
handling of the visibility function, by eliminating the non-visible
parts of the light sources from the integration domain. For each
pixel, each blocker in the blocker-map is projected onto its paired
light source using the visible point as the center of projection. Each
light source is clipped accordingly, such that only the visible parts
remain.

Integrating the direct illumination can then be done using the
reduced integration domain. In general, when using arbitrary
BRDFs or non-diffuse luminaires, Monte Carlo integration is the
preferred method. A suitable probability density function that sam-
ples all visible parts of the light sources produces an unbiased esti-
mator. The variance on this estimator can always be reduced by
increasing the number of samples.

Analytic integration is limited to a few cases where the BRDF is
diffuse or is described as a linear combination of Phong-lobes.
Equation (3), or the methods described in [1], are applied to all vis-
ible parts of the light sources. If no blockers are missed in the
blocker-map, analytic integration gives the correct answer for the
direct illumination.

Figure 3: Pseudo-code for the flood-fill algorithm in the image plane.

floodFillBlocker(int x, y; light l; blocker b)

// if blocker already is stored in pixel, return
if (b,l) is in bMap(x,y) return;

// clip blocker behind light and visible point
cBlocker = clipBlocker(b, l, bMap(x,y).point);

// project the blocker on the light source
pBlocker =

projectBlocker(cBlocker, l, bMap(x,y).point);

// check if the blocker overlaps the light source

if triangleOverlap(pBlocker, l) then

// store the pair in the blocker-map 
bMap(x,y).store(b,l);

// flood-fill the surrounding pixels
if (x > 1)      floodFillBlocker(x-1,y,l,b);
if (x < width)  floodFillBlocker(x+1,y,l,b);
if (y > 1)      floodFillBlocker(x,y-1,l,b);
if (y < height) floodFillBlocker(x,y+1,l,b);

endif

return;
4.3  Polygon Clipping

The efficiency and generality of the polygon clipping algorithm
determines the overall efficiency of the integration pass. There is a
large number of approaches to polygon clipping found in the litera-
ture [22]. Many well-known polygon clippers have constraints
which make general clipping (e.g. with concave, self-intersecting,
or overlapping polygons) difficult or numerically unstable. Our
current algorithm constrains the scene to be composed of triangles
only, which is possible without loss of generality. The advantage is
that we can uniformly sample the projection of a triangle on a
hemisphere [2] to compute the illumination integral with Monte
Carlo integration.

4.4  Anti-Aliasing

Since the list of blockers constructed for each pixel is only valid
for a single surface point visible at the center of that pixel, aliasing
artifacts will occur if we compute the illumination only at this sin-
gle point (e.g. jagged edges when more than one object is visible in
a pixel). If more than one ray per pixel is generated for illumina-
tion computations as part of an anti-aliasing algorithm, the
blocker-light source list stored for this pixel might not be valid for
each surface point hit by these rays, since the surface points might
be located in very different positions in object space. Nevertheless,
we need a strategy that allows us to perform anti-aliasing.

The coherency of the penumbra regions over the image plane can
again be exploited. Due to the flood-fill, we know that a blocker is
at least valid for the center location of all covered pixels. Pixels
located in the middle of the flood-fill area are completely covered
with the penumbra region. Therefore, we can assume that the
blocker is valid for all surface points seen through such pixels. For
pixels located at the edge of the flood-fill area, the penumbra
might extend up to the center of the first pixel outside the flood-
filled region. Therefore, if we allow the flood-fill algorithm to

Figure 4: The top-left image shows a simple scene consisting of a
ground-plane and several polyhedra. Two light-sources are present,
casting soft shadows. The bottom images show the blocker-maps for
the two light sources separately, the top-right image shows the
combined blocker-map.
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include the boundary pixels for which the flood-fill test fails, we
can safely assume that we have stored all possible blockers in a
pixel that are needed for computing the illumination for any point
visible through the pixel. This is illustrated in figure 5.

This strategy allows us to generate multiple sample rays for illumi-
nation computations, without increasing the number of rays used
for constructing the blocker-map. Therefore, a suitable anti-alias-
ing algorithm can be employed. In the current implementation,
adaptive anti-aliasing is carried out in adjacent pixels whose visi-
ble points show different polygons with different surface normals
or whose illumination computations based on the first point show
sufficiently different spectral radiance values. This strategy will
capture most aliasing artefacts. Note however, that high-frequency
geometry, such as small objects, might be overlooked.

5  DISCUSSION

Missing blockers. During the construction of the blocker-map,
some blockers might be overlooked. Because of the flood-fill algo-
rithm, a blocker is only missed if it is not intersected by any of the
shadow rays starting from visible points covered by the penumbra
or umbra caused by that blocker. If a blocker is missing, some pix-
els will be too bright because invisible parts of the light sources are
taken into account. By increasing the number of shadow rays, the
probability of missing blockers decreases. This implies that the
analytic integration method is consistent: the possible error can be
made arbitrarily small by generating more shadow rays.

The probability of missing blockers or computing insufficient
shadows is further diminished by the fact that we locate the nearest
polygon intersected by each shadow ray. We are therefore assured
that the polygon causing the most significant shadow on a receiver
point is stored in the blocker-map. This is no less efficient than a
more traditional approach where any intersecting polygon found is
sufficient to conclude the receiver point lies in a shadow, since we
use a regular voxel-based spatial subdivision technique (with an
average of one polygon per voxel), and all polygons in the tra-
versed voxel are tested for intersection [8].

Receiver Surfaces. Because we do not use any form of texture-
map to display soft shadows, our method produces soft shadows
on any surface type that can be handled by a ray tracing algorithm.
The number of receiver surfaces or polygons is not a limiting fac-
tor for generating the correct direct illumination and soft shadows.

Small Blockers. Small objects or small polygons causing shadows
create small blockers in the blocker-map. Such blockers probably
only clip a very small piece of the light source and, therefore, do
not affect the shading by a large amount. One might be tempted to
dismiss small blockers without computing their influence on the
illumination. However, a whole set of small blockers might signif-
icantly affect the visibility of a light source, thus they cannot be

Figure 5: The flood-fill algorithm stores the blocker in the red pixels
where the penumbra is detected, and also in the green pixels, where the
penumbra might show up.
ignored. Each of these small blockers requires a full clipping oper-
ation. In the limit, this is a worst-case scenario for our current algo-
rithm. A possible solution might be to use some form of clustering
as in radiosity algorithms, although with loss of exact visibility; or
construct the silhouette polygon of a collection of smaller poly-
gons, and use that as the blocker.

Umbra Regions. One straightforward optimization is to make a
distinction between penumbra and umbra regions. When testing
whether a blocker overlaps with a light source as seen from a visi-
ble point, a triangle-triangle ‘‘surround’’ test indicates if the poin
lies in the umbra or penumbra region. By storing this informati
in the blocker-map, we know that this particular light source do
not have to be included in the illumination computations, a
expensive clipping operations are avoided. Also, it prevents ot
blockers associated with the same light source from being store
those pixels.

6  RESULTS

We have implemented the algorithm as outlined above, includ
umbra detection and anti-aliasing using the flood-fill extensio
Timings were performed on one Intel Pentium II 400Mhz proce
sor. All images were computed at a resolution of 512x512 pixel

Figure 6 shows three different views of the interior of the Chur
of the Year 2000 in Rome, consisting of 64,216 triangles and 
large light source, split in two triangles. All surfaces are diffus
The top row shows an overview of the chapel, looking from t
back towards the altar. The light source is located in the up
right, and casts shadows from the benches on the floor. The mi
row shows a close-up of the cross at the altar. The third row sh
a view from a small anteroom into the main chapel through a nu
ber of slats. The light is shining through the slats and causes s
ows to fall on the floor of the anteroom. For each viewpoint, thr
pictures are shown. The middle column shows pictures genera
using the blocker-map, and analytic evaluation of the direct illum
nation. The first and third columns are generated using stand
Monte Carlo rendering of the direct lighting term. Visibility is
evaluated by casting shadow rays from each visible point to 
light sources, and the shadow rays are generated by sampling
solid angles subtended by the light source. The number of sha
rays, as well as the execution times, are mentioned below each
ture. The first column executes in roughly equal time compared
the second column; the third column produces roughly eq
image quality as the second column. From these comparisons,
obvious that for an equal execution time, our algorithm genera
significantly better quality pictures. The Monte Carlo solution
show significant noise in the soft shadow regions. The special g
metrical case of the anteroom can be handled by our algori
efficiently; all slats are clipped from the light source and, the
fore, we have an almost exact visibility computation although t
execution time is quite high. The equal quality comparisons in
cate that our algorithm, while providing very accurate soft sha
ows, executes up to 20 times faster compared to the stan
Monte Carlo method.

Figure 7 shows a different scene, with a somewhat more comp
set-up. The scene consists of 556 polygons and four light sour
The four images on the right are a close-up of the area marke
red, all generated by different algorithms. Picture (a) is genera
using the blocker-map and analytic integration; picture (b) us
Monte Carlo integration with 4 sample rays and shadow rays 
pixel, using the blocker-map to restrict the integration domain. P
ture (c) and (d) are generated using standard Monte Carlo inte
tion with 30 and 100 sample rays per pixel respectively. In each
the pictures, one shadow ray was generated per sample ray for



Figure 6: Three different viewpoints for the Church of the Year 2000 in Rome. The middle column is rendered using the blocker map and analytic
integration; the left column is generated using standard Monte Carlo integration and shows pictures generated in roughly equal time; the right column
shows pictures generated with roughly equal quality.
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Monte Carlo Integration Analytic integration with blocker maps Monte Carlo Integration

148 seconds / 6 shadow rays per light 2464 seconds / 100 shadow rays per light127 seconds

3285 seconds /100 shadow rays per light 3413 seconds 29590 seconds / 900 shadow rays per light

R
ou

gh
ly

 E
qu

al
 T

im
e

R
ou

gh
ly

 E
qu

al
 T

im
e

R
ou

gh
ly

 E
qu

al
 Q

ua
lit

y
R

ou
gh

ly
 E

qu
al

 Q
ua

lit
y

light source. Again it is clear that our algorithm, using analytic
integration, provides the best quality in the least time. Picture (c)
give an equal time comparison with (a), while (d) provides an
equal quality comparison. Picture (b) indicates that Monte Carlo
integration benefits from using the blocker-map to reduce the inte-
gration domain: the noise on the back wall is almost completely
gone, and the only noise that is left on the green cubes is due to one
remaining cosine factor in the integral. Note that the execution
times for this scene are higher than for the church scene, although
the number of polygons in this scene is far less than in the church
scene. This is mainly due to the more complex soft shadows and,
therefore, the higher number of blockers stored in the blocker-map.
Execution times are comparable to the anteroom pictures of the
church. Nevertheless, by comparing images (a) and (d), our algo-
rithm provides the same image quality in about one-tenth the time.

Figure 8 shows that glossy surfaces can also be successfully han-
dled by our algorithm. Both pictures are computed using the
blocker-map and analytic evaluation of the illumination. The float-



(a) 1256 seconds / analytic integration (b) 3366 seconds / 4 sample rays per pixel

(c) 1238 seconds / 30 sample rays per pixel (d) 16526 seconds / 400 sample rays per pixel

Figure 7: The pictures on the right are close-ups from
the red area on the left, and are rendered with different
algorithms: (a) Analytic integration using the blocker
map; (b) Monte Carlo integration using the blocker-
map to reduce the integration domain; (c,d) Standard
Monte Carlo integration. Pictures (a) and (c) are an
equal time comparison, pictures (a) and (d) an equal
quality comparison. Picture (b) shows the effect of
domain reduction on the Monte Carlo integration.
ing cubes scene on the left has a glossy back wall. One can clearly
see the soft shadows cast in the glossy highlight of the light source.
In the picture on the right, the SIGGRAPH 99 title floats above a
spherical surface. One light source is positioned in front, another
placed in the back. Two different shadows are visible: the diffuse
shadow caused by the diffuse component of the BRDF, and the
specular shadows caused by the glossy component. In the second
case, the viewer is inside the Phong-lobe of light reflected from the
light source in the back. Although no indirect illumination compo-
nent is computed, the geometry of where the reflection should
occur is handled correctly and shows up as a specular shadow. 

7  FUTURE WORK

Even though the algorithm seems to perform well in our test cases,
there are areas where improvement can be achieved:

Silhouette Polygons and Clustering. In our current implementa-
tion, polygons are considered as blockers without looking at the
higher-level object of which they are part. By substituting a collec-
tion of polygons by its silhouette polygon, only the silhouette
needs to be clipped. It is likely that the complexity will be lowered
in this case, although the silhouette needs to be recomputed for
every new visible point.

Non-polygonal surfaces. Computing analytic visibility for non-
polygonal surfaces (e.g. spline surfaces) could be a very interesting
direction for future research. It is conceivable that when a point
needs to be shaded, the silhouette of an object could itself be com-
puted as a spline curve. If the clipping pass could handle two-
dimensional spline-polygon and spline-spline boolean operations,
soft shadows could be computed for smooth surfaces.
Reprojection of blocker maps. Because a blocker map contains
per pixel information, the blocker-map can be reprojected to a new
viewpoint, using an image-warping function which is common in
image-based rendering algorithms. This would open possibilities
for faster image generation in animation or interactive sequences.

Load balancing & Perception. The blocker-map gives an indica-
tion of how much work is needed to render individual pixels. This
could be used to achieve better load balancing in parallel rendering
algorithms or distribute work according to some perceptual error
metric [14].

8  CONCLUSION

We have presented an efficient and fast algorithm to compute accu-
rate direct illumination in a general polygonal environment. Two
passes over the image plane are used. A first pass identifies
blocker-light source pairs on a per pixel basis. A limited number of
shadow rays combined with a flood-fill algorithm in the image
plane gives a highly reliable method for detecting the correct
blockers. A second pass computes the actual illumination for each
pixel by performing analytic or stochastic integration.

Timing results indicate that the algorithm runs faster than more
classic Monte Carlo illumination techniques. Although there is a
probability that some shadow effects may be missed, there is in
general no visible differences between the rendered images with
our method and highly accurate reference solutions.

Our results indicate that clipping the light sources with blockers is
a viable and acceptable tactic to be used for direct illumination
computations or, more generally, for global illumination algo-
rithms.
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