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Abstract: We present a new approach for computing generalized
2D and 3D Voronoi diagrams using interpolation-based polygon
rasterization hardware. We compute a discrete Voronoi diagram
by rendering a three dimensional distance mesh for each Voronoi
site. The polygonal mesh is a bounded-error approximation of a
(possibly) non-linear function of the distance between a site and a
2D planar grid of sample points. For each sample point, we
compute the closest site and the distance to that site using polygon
scan-conversion and the Z-buffer depth comparison. We construct
distance meshes for points, line segments, polygons, polyhedra,
curves, and curved surfaces in 2D and 3D. We generalize to
weighted and farthest-site Voronoi diagrams, and present efficient
techniques for computing the Voronoi boundaries, Voronoi
neighbors, and the Delaunay triangulation of points. We also show
how to adaptively refine the solution through a simple windowing
operation. The algorithm has been implemented on SGI
workstations and PCs using OpenGL, and applied to complex
datasets. We demonstrate the application of our algorithm to fast
motion planning in static and dynamic environments, selection in
complex user-interfaces, and creation of dynamic mosaic effects.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling; I.3.3 [Computer Graphics]:
Picture/Image Generation.

Additional Key Words: Voronoi diagrams, graphics hardware,
polygon rasterization, interpolation, motion planning, proximity
query, medial axis, OpenGL, framebuffer techniques.

1 INTRODUCTION
Given a set of primitives, called Voronoi sites, a Voronoi diagram
partitions space into regions, where each region consists of all
points that are closer to one site than to any other. Voronoi
diagrams have been used in a number of applications including
visualization of medical datasets, proximity queries, spatial data
manipulation, shape analysis, computer animation, robot motion
planning, modeling spatial structures and processes, pattern
recognition, and locational optimization. The concept of Voronoi
diagrams has been around for at least four centuries, and since the

1970s, algorithms for computing Voronoi diagrams of geometric
primitives have been developed in computational geometry and
related areas.

Good theoretical and practical algorithms are known for
computing ordinary Voronoi diagrams of points in any dimension.
Ordinary Voronoi diagrams can be generalized in many different
ways by using different distance functions and site shapes. A
common generalization is to compute the diagram for higher-order
sites, such as lines and curves. This greatly increases the
complexity since the boundaries of the diagram are composed of
high-degree algebraic curves and surfaces, and their intersections;
the boundaries of an ordinary point Voronoi diagram are linear.
No practically efficient and numerically robust algorithms are
known for constructing a topologically consistent, continuous
representation of generalized Voronoi diagrams.

Given the practical complexity of computing an exact generalized
Voronoi diagram, many authors have proposed approximate
algorithms. Interesting approaches include computing the Voronoi
diagram of a point-sampling of the sites, adaptively subdividing
space to locate the Voronoi boundary, and point-sampling the
space to form a volumetric representation of the diagram. In
practice, these previous algorithms take considerable time and
memory on large numbers of input sites, or are restricted in
generality.

Main Contributions: In this paper, we present an approach that
computes discrete approximations of generalized Voronoi
diagrams to an arbitrary resolution using polygon rasterization
hardware. Our contributions include:

1. Efficient methods to approximate the distance function, with
bounded error, for points, lines, polygons, polyhedra, curves,
and curved surfaces using a polygonal mesh that is linearly
interpolated by graphics hardware.

2. Efficient algorithms to find Voronoi boundaries and neighbors,
and to construct Delaunay triangulations.

Cover Plate: Discrete approximation of the generalized Voronoi
diagram of four points, a line, a triangle, and one cubic Bézier curve
computed interactively on a PC.
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3. Techniques to construct weighted and farthest-site generalized
Voronoi diagrams in 2D and 3D.

4. Demonstration of the effectiveness of our approach to the
following applications:

• Fast motion planning in static and dynamic environments
• Selection in complex user-interfaces
• Generation of dynamic mosaics

The resulting techniques have been effectively implemented on
PCs and high-end SGI workstations using the OpenGL graphics
library. A 2D example computed in real-time is shown in the
cover plate. Our techniques improve upon the state of the art in
following ways:

• Generality: We make no assumption with respect to input
primitives. We only need to mesh the distance function of a site
over a grid of point samples.

• Efficiency: We show that our approach is quite fast. Its speed
arises from using coarse polygonal approximations of the
distance functions while still maintaining a specified error
bound, using polygon rasterization hardware to reconstruct the
distance values, and using the Z-buffer depth comparison to
perform distance comparisons. We demonstrate the 2D
approach on models composed of nearly 100K triangles in a
real-time motion planning application through a complex
dynamic scene. We derive efficient meshing strategies for
polygonal models in 3D, and show the results of a prototype
implementation that demonstrates its potential.

• Tight Bounds on Accuracy: Although our approach produces
a discretized Voronoi diagram, all sources of error are
enumerated and techniques are given to produce output within
any specified tolerance.

• Ease of Implementation: The approach can be easily
implemented on current graphics systems. The special cases are
limited and the problem reduces to simply meshing a distance
function for any new site.

2 RELATED WORK
The concept of Voronoi diagrams has been around for at least four
centuries. In his treatment of cosmic fragmentation in Le Monde
de Mr. Descartes, ou Le Traite de la Lumière, published in 1644,
Descartes uses Voronoi-like diagrams to show the disposition of
matter in the solar system and its environment. The first
presentations of this concept appeared in the work of [Diric50]
and [Voron08]. Algorithms for computing Voronoi diagrams have
been appearing since the 1970s. See the surveys by [Auren91] and
[Okabe92] on various algorithms, applications, and
generalizations of Voronoi diagrams.

2.1 Voronoi Diagrams of Points

Among the algorithms known for computing Voronoi diagrams of
points in 2D, 3D, and higher dimensions are the divide-and-
conquer algorithm proposed by [Shamo75] and Fortune’s
sweepline algorithm [Fortu86]. Numerically robust algorithms for
constructing topologically consistent Voronoi diagrams have been
proposed by [Inaga92, Sugih94]. A number of implementations in
exact and floating-point arithmetic are also available.

2.2 Generalized Voronoi Diagrams

Algorithms have been proposed for constructing Voronoi
diagrams of higher order sites. Two broad approaches based on
incremental and divide-and-conquer techniques have been
summarized in [Okabe92]. The set of algorithms includes divide-
and-conquer algorithms for polygons [Lee82, Held97], an
incremental algorithm for polyhedra [Milen93b], and 3D tracing
for polyhedral models [Milen93, Sherb95, Culve99]. Curved sites
and CSG objects are handled in [Chian92, Dutta93, Hoffm94]. In
all these cases, the computation of generalized Voronoi diagrams
involves representing and manipulating high-degree algebraic
curves and surfaces and their intersections. As a result, no efficient
and numerically robust algorithms are known for computing them.

2.3 Approximate Voronoi Diagrams

Many authors compute approximations of generalized Voronoi
diagrams based on the Voronoi diagram of a point-sampling of the
sites [e.g. Sheeh95]. However, deriving any error bounds on the
output of such an approach is difficult, and the overall complexity
is not well understood.

[Vleug95] and [Vleug96] have presented an approach that
adaptively subdivides space into regular cells and computes the
Voronoi diagram up to a given precision. [Laven92] uses an octree
representation of objects and performs spatial decomposition to
compute the approximation. [Teich97] computes a polygonal
approximation of Voronoi diagrams by subdividing the space into
tetrahedral cells. All these algorithms take considerable time and
memory for large models composed of tens of thousands of
triangles, and cannot easily be extended to directly handle
dynamic environments.

The idea of using polygon rasterizing hardware and rendering of
cones to construct 2D Voronoi diagrams of points is suggested in
[Haebe90] and in the OpenGL 1.1 Programming Guide [Woo97].

2.4 Graphics Hardware

Polygon rasterization graphics hardware has been used for a
number of geometric computations, such as visualization of
constructive solid geometry models [Rossi86, Goldf89] and
interactive inspection of solids, including cross-sections and
interferences [Rossi92]. Algorithms for real-time motion planning
using raster graphics hardware have been proposed by [Lengy90].

3 OVERVIEW
In this section, we present the basic concepts important to our
approach. We give a formal definition of generalized Voronoi
diagrams and present a simple brute-force strategy for computing
a discrete approximation. We then show how we may greatly
accelerate this using graphics hardware.

3.1 Generalized Voronoi Diagrams

The set of input sites is denoted as A1, A2, …, Ak. For any point p
in the space, dist(p, Ai) denotes the distance from the point p to the
site Ai. The dominance region of Ai over Aj is defined by

Dom(Ai, Aj) = {  p | dist(p, Ai) ≤  dist(p, Aj) }

For a site Ai, the Voronoi region for Ai is defined by

V(Ai) = j≠iDom(Ai, Aj)



The partition of space into V(A1), V(A2), …, V(Ak) is called the
generalized Voronoi diagram. The (ordinary) Voronoi diagram
corresponds to the case when each Ai is an individual point. The
boundaries of the regions V(Ai) are called Voronoi boundaries. For
primitives such as points, lines, polygons, and splines, the Voronoi
boundaries are portions of algebraic curves or surfaces.

3.2 Discrete Voronoi Diagrams

Perhaps the simplest way to compute a discrete Voronoi diagram
is to uniformly point-sample the space containing Voronoi sites.
For each sample point, we find the closest site and its distance.
Associating each point in space with its closest sample point
induces a uniform subdivision into rectangular cells. For any
point, we know the distance to the closest site to within the
maximum distance between a point in space and a sample point,
i.e. half the diagonal length of a cell.

A simple brute-force approach to find the closest sites is to iterate
through all sample points, computing distances to all sites and
recording the closest site and distance. The algorithm can be
rearranged to iterate through the sites: for each site, compute
distances to all sample points and update the current closest site
and distance. The second arrangement is amenable to an
implementation in graphics hardware.

3.3 Polygon Rasterization Hardware

Our approach makes use of standard Z-buffered raster graphics
hardware for rendering polygons. The frame buffer stores the
attributes (intensity or shade) of each pixel in the image space; the
Z-buffer, or depth buffer, stores the z-coordinate, or depth, of
every visible pixel. Given only the vertices of a triangle, the
rasterization hardware uses linear interpolation to compute depth

values across the triangle’s surface. All raster samples covered by
a triangle have an interpolated z-value.

3.4 Our Approach

A key concept for our approach is that of the distance function for
a site, which gives, for any point, the distance to that site. The
main idea of our approach is to render a polygonal mesh
approximation to each site's distance function. Each site is
assigned a unique color ID, and the corresponding distance mesh
is rendered in that color using a parallel projection. We make use
of two components of the graphics hardware: linear interpolation
across polygons and the Z-buffer depth comparison operation.
When rendering a polygonal distance mesh, the polygon
rasterization reconstructs all distances across the mesh. The Z-
buffer depth test compares the new depth value to the previously
stored value. If the new value is less, the Z-buffer records the new
distance, and the color buffer records the site’s ID. In this way,
each pixel in the frame buffer will have a color corresponding to
the site to which it is closest, and the depth-buffer will have the
distance to that site. In order to maintain an accurate Voronoi
diagram, we bound the error of the mesh to be smaller than the
distance between two sample points.

Our approach is inspired by an interesting sidenote in the OpenGL
1.1 Programming Guide [Woo97]. In the Section “Now That You
Know” on “Dirichlet Domains”, the authors briefly discuss a
simple method to construct discretized 2D Voronoi diagrams for
points using OpenGL graphics hardware. The authors mention the
use of cones for Voronoi diagrams of points in 2D, but warn that
the technique “might require thousands of polygons.” We show
that we can render cones using fewer than 100 triangles for a
1K×1K resolution grid and achieve the same level of accuracy. In
addition, we generalize this approach to higher-order sites in both
two and three dimensions.

4 THE DISTANCE FUNCTIONS
For both 2D and 3D, our discrete Voronoi diagram computation
has been reduced to finding a 3D polygonal mesh approximation
to the distance function of a Voronoi site over a planar 2D
rectangular grid of point samples. The error in the approximation
must be bounded so that by rendering this mesh using graphics
hardware, we can efficiently and accurately compute the distances
between the site and all of the point samples.

In this section, we describe the distance functions associated with
various sites, and provide efficient methods for meshing these
functions within a specified error tolerance.

4.1 2D Voronoi Diagrams

Denote the distance from a site A to each pixel location (x,y) by
dist(A,(x,y)). The distance function of A is given by
d(x,y)=dist(A,(x,y)). Meshing this function corresponds to
approximating the graph of d(x,y) with a polygonal model.

The three basic types of 2D sites are points, lines, and polygons.
Their corresponding distance functions are shown in the table. In
this section, we present algorithms for computing distance meshes
for each of them.

Figure 1: Image of the sampled distance functions for two point
sites. Uniform point sampling induces a rectangular cell subdivision
of space.

Figure 2: The two distance images are composited through a
distance comparison operation. The current closest site and the
distance to each site is updated based on the lesser distance value.
The resulting Voronoi diagram is composed of a distance image
(left) and an closest-site ID image (right).



2D site Shape of Distance Function Figure
Point Right circular cone 3a
Line segment “Tent” 3b
Polygon Cones and tents 5

Table 1: Shape of Distance Functions for 2D Sites

X

D

Y

a b

Figure 3: The distance meshes used for a point (left) and a line
segment (right). The XY-plane containing the site is shown above
each mesh.

4.1.1 Points in 2D

The distance function for a point in the plane is a right circular
cone. We approximate cones as a triangle fan proceeding radially
outward from the apex (Figures 3a and 4-left). A point’s Voronoi
region can potentially extend to any portion of the region of
interest, and thus the radius at the cone’s base must be of size M√2
if the scene is contained in an M×M square.The mesh’s radial lines
lie on the cone. The maximum error in distance occurs at the cone
base between adjacent vertices. Because the cone is right circular,
the error in approximating the circular base as viewed from above
is equal to the error in distance.
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R

Figure 4: A single triangle of the meshed point distance function
cone. α is the angle we wish to maximize, R is the radius of the
cone (max dist between site and sample pt), and ε is the max error.

From this formulation (see Figure 4), we compute the maximum
angle as:
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For example, for a maximum distance error of no more than one
pixel's width, a cone mesh for a 512×512 grid will require only 60
triangles. A 1024×1024 grid will require 85 triangles.

4.1.2 Line Segments in 2D

The distance function for a line segment is composed of three
parts: one for the segment itself and one for each endpoint. The
endpoints are treated the same way as points. The distance
function for the line segment (excluding the endpoints) is just a
“tent” (Figure 3b); its distance mesh is composed of two
quadrilaterals. These represent the distance function exactly, so
there is no error in the distance mesh representation. The only
error for the line segment is in the cone mesh for the endpoint
distance functions, as described in the previous section.

4.1.3 Polygons and Per-feature Voronoi Diagrams

It is often useful to consider sites as a collection of features, rather
than as a single entity. For example, a line segment would be
considered as three features: the two endpoints and the linear edge

between them. By rendering the distance meshes for different
features in different colors, we obtain a discrete approximation of
a per-feature Voronoi diagram. Such diagrams are useful in
several contexts: for example, the computation of a medial axis of
a polygon. A picture of a per-feature Voronoi diagram for a
polygon is given in Figure 5-left.

Figure 5: The per-feature Voronoi diagram of a quadrilateral (left).
The corresponding distance mesh (right).

Polygons are rendered as a series of linear segments connected at
the vertices. Each edge and vertex is a feature. For the vertices,
rendering a triangle fan connecting two adjacent edges, rather than
a full point distance mesh cone, saves on the total number of
triangles computed and ensures that the distance meshes for
adjacent features join smoothly. See Figure 5-right for an
illustration.

4.2 3D Voronoi Diagrams

Our algorithm computes a 3D discrete Voronoi diagram slice-by-
slice. Each slice is parallel to the (x,y)-plane and is computed
independently.

Consider the slice z=z0. To construct the intersection of the
Voronoi diagram with this slice, consider the distance function for
a site A, restricted to the slice. Denote the restricted distance
function by dist(x,y)=dist(A,(x,y,z0)). In this section, we describe
dist(x,y) for polygon, line segment, and point sites. As in the 2D
case, computing the discrete Voronoi diagram is a matter of
meshing the distance function d=dist(x,y) for each site and
rendering these meshes.

The distance meshes we give for the 3D problem are for a per-
feature Voronoi diagram. Thus, a detached triangle site is treated
as seven features: a polygon, three line segments, and three points.
As in 2D per-feature diagrams, some features have a restricted
region of influence.

3D site Shape of distance function Figure
Polygon Plane 6
Line segment Elliptical cone 7
Point 1 sheet of a hyperboloid of 2 sheets 8

Table 2: Shape of Distance Functions for 3D Sites

4.2.1 Polygons in 3D

The influence of this site in 3D is confined to the region formed by
sweeping the polygon orthogonally through space, since points
outside this region are considered to be closer to an edge or vertex
of the polygon. In the slice, this region is a polygon, and dist(x,y)
is linear within this region, as illustrated in Figure 6. The distance
to the site is computed at the vertices of the region, and a distance
mesh composed of a single polygon is rendered. No meshing error



is incurred. If the polygon intersects the slice, the intersection is
computed and the polygon is decomposed into two sub-polygons.
Each sub-polygon is treated as above.
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Figure 6: A polygonal site and its region of influence in a slice (left).
The corresponding linear distance function (right).

4.2.2 Line Segments in 3D

The graph of the distance function for a line segment site is an
elliptical cone (Figure 7). The apex of the cone lies at the
intersection of the segment's line with the slice, and the cone’s
eccentricity is determined by the relative angle of the line and the
slice. The 3D region of influence of a line segment lies between
two parallel planes through the endpoints, since a point outside
these planes is closer to one of the endpoints than to the segment.
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Figure 7: A line-segment site and its region of influence in a slice
(left). The corresponding conical distance function (right).

4.2.3 Points in 3D

The distance function for a point site is shown in Figure 8. Its
graph is one sheet of a hyperboloid of revolution of two sheets. If
the point lies in the slice, the distance function is a cone rather
than a hyperboloid. The region of influence for a single point is
the entire slice.
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Figure 8: A point site and its region of influence in a slice (left). The
corresponding hyperbolic distance function (right).

4.2.4 Meshes for Line Segments and Points in 3D

The construction of bounded-error meshes for the line-segment
and point distance functions is detailed in [Hoff99]. The method
attempts to minimize the complexity of the mesh by committing
the maximum allowable error ε in each mesh cell. The structure of
the mesh depends only on the resolution of the Voronoi diagram,
defined by the ratio of the diameter M of the model to the
maximum meshing error ε. The mesh structure is precomputed;
during the Voronoi diagram construction, the mesh is constructed

using table-lookup. Examples of the meshes produced by this
method are shown in Figure 9.
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Figure 9: A bounded-error distance mesh for the line-segment site
(left) and the point site (right).

4.3 Generalization to Curved Sites

The exact distance function for a curved site can be rather
complicated, and for splines or algebraic curves is a high-degree
algebraic function. We simplify this by creating a linear
tessellation of the curved site, and then meshing the distance
function of this approximation. We can use algorithms such as in
[Filip87] and [Kumar96] to obtain bounded-error tessellations.

Figure 10 shows the mesh for a Bézier curve. Since the mesh for a
linear segment is exact, the distance error for any of the linear
segments is just the error in the deviation of the line from the
original curve. The endpoints of the curve must be treated as
points, just as for the line segment. The distance mesh for the
“joints” between linear segments is a portion of the radial mesh of
triangles. An overall maximum error bound of ε can be obtained
for the entire curve by:

• tessellating the curve into linear segments with maximum error
bound of ε;

• rendering the distance mesh for the linear segments; and

• treating the endpoints and joints as points, and rendering each
point distance mesh with maximum error bound of ε.

This approach generalizes to 3D surfaces, which can be tesselated
into a polygonal mesh. The error is bounded in a similar way.

Figure 10: The Voronoi diagram of a Bézier curve and 5 points
(left). The distance mesh for the Bézier curve that has been
tessellated into 16 segments (right).

4.4 Weighted and Farthest-site Diagrams

In a weighted Voronoi diagram, the distance functions are
additively or multiplicatively weighted [Okabe92]. Translation of
a distance mesh along the distance axis accounts for additive



weights. Linear scaling along the distance axis accounts for
multiplicative weights. In 2D, this is equivalent to changing the
angle of the cone or tent. Scaling the distance mesh also scales the
meshing error.

In a farthest-site Voronoi diagram, the farthest site from each
point is found. Unlike in the nearest-site diagram, the distance
function monotonically decreases as we move away from the site.
We obtain the proper distance relationships by negating the
distance functions. In practice, however, we need only reverse the
depth-test (less-than to greater-than) and change the depth
initialization from ∞ to 0.

5 BOUNDARIES AND NEIGHBORS
A continuous Voronoi diagram representation usually specifies the
Voronoi boundaries that separate the set of Voronoi regions. In
our discrete representation, we must search for the boundaries
using approaches similar to iso-surface extraction and root-finding
techniques [Bloom97]. However, instead of trying to bracket zero-
crossings between sample points where iso-surface functions
evaluate to values of opposite sign, we simply find the boundaries
in the space between pixel samples of different color. Using the
same approaches, we can either point-sample the boundary or
compute an approximate mesh representation. In order to increase
the precision, we must either use a higher overall resolution or
adaptively refine.

One approach is to examine each pair of adjacent cells in 2D or
3D. If the colors are different, the location between the samples is
marked as a point on the Voronoi boundary. The operation is very
simple and can be accelerated through image operations in
graphics hardware.

Another approach is based on a continuation method that starts at
a point known to be on the boundary and walks along the
boundary until all boundary points have been found [Bloom97].
Since we only compare locations near known boundaries, it is
output sensitive. The correctness of the continuation method
depends on whether the Voronoi boundaries are connected. The
boundaries of a generalized Voronoi diagram of a collection of
convex sites are always connected, so the method is correct for
inputs consisting of point, line-segment, or convex polygonal
sites. The method may fail in the presence of curves, curved
surfaces, or concave sites where the generalized Voronoi diagram
may have isolated components.

In this approach, at least one boundary point must be known as a
“seed” value. Assuming convex sites, some Voronoi boundary
passes through the edge of the bounded region in which we are
computing the diagram, so the method begins by examining every
window border pixel. When all Voronoi boundaries are connected
only one seed point is needed since all others can be reached from
that first point. Starting from a seed point, we recursively check all

neighbors that are a different color from the current pixel's. All
visited pixels are marked and avoided in the recursion.

This algorithm also finds the Voronoi neighbors–pairs of sites that
share a Voronoi boundary. This concept is useful in a wide variety
of applications, including computing the dual of the ordinary
Voronoi diagram–the Delaunay triangulation. The boundary
finding algorithms find pairs of adjacent pixels with different
colors. The sites corresponding to those two colors are reported to
be Voronoi neighbors. Connecting Voronoi neighbors with line
segments constructs the Delaunay triangulation.

6 SOURCES OF ERROR
In this section we analyze all sources of error in our approach, and
discuss how to reduce this error. We consider two broad
categories: error in distance approximation and combinatorial
error.

6.1 Distance Error

Distance error is the error in the distance computed from a pixel to
a site. There are three sources of distance error:

• Meshing error, from approximating the true distance function
by the distance mesh. We discussed how to bound this error in
Section 4.

• Tessellation error, from tessellating a curved site into a number
of linear sites. The tessellation algorithms presented in [Filip87,
Kumar96] give tight bounds. Tessellation error is reduced by
using a finer approximation to the site.

• Hardware precision error, from the use of fixed-precision
arithmetic (integer or floating-point) during rasterization.
Hardware precision error cannot be removed without resorting
to multiple-precision arithmetic, but hardware error is usually
negligible compared to meshing error.

These errors are additive–i.e. the error from one source is not
magnified by the other sources. The total distance error is at most
the sum of the errors from these three sources.

6.2 Combinatorial Error

Combinatorial error refers to qualitative error as opposed to
quantitative. For example, a pixel is assigned the wrong color, or
the algorithm reports an incorrect pair of Voronoi neighbors.
There are three sources that contribute to combinatorial error:

• Distance error, as described in the previous section. With
significant distance error, depth comparison at a pixel may
make a farther site appear closer, causing the pixel to be
colored incorrectly.

Figure 11: Standard nearest-site Voronoi regions (left). Farthest
regions for the same sites (middle). Weighted regions (right).
Weights: line, 2; dark point, 1; light point, 0.5.

Figure 12: Voronoi diagram of set of 2D points (Left). Boundaries
found with continuation-based approach (middle). Delaunay
triangulation by connecting neighboring sites (right).



• Resolution error, a result of discrete sampling. If this sampling
is too coarse, we may miss some Voronoi regions or find
spurious neighbors. Handling resolution error is described
below.

• Z-buffer precision error, the limitations of the number of bits of
precision provided by the Z-buffer. Current graphics systems
have 24 bits or 32 bits of precision for each pixel in the Z-
buffer, which is more than the 23 bits provided in standard
floating-point. If the distances between two pixels cannot be
determined within that precision, the Z-buffer cannot
accurately choose the correct color. This effect is small when
compared to the other two, but can be significant at very high
resolutions with very little distance error. A higher-precision Z-
buffer can be simulated in software at a significant loss in
efficiency.

Adaptive resolution allows us to “zoom in” on a region of interest,
reducing potential resolution error. This involves identifying a
window of interest and applying the appropriate linear
transformation for zooming into that region. Figure 13 shows an
example. Note that when zooming in, sites outside of the viewing
region can still have Voronoi regions inside the region. Thus, the
“maximum distance to a site” must be adjusted appropriately when
computing the distance error bounds.

Resolution error can cause a number of combinatorial problems,
such as missing the entire Voronoi region of a site. One such
example is shown in Figure 14 (left two images). When no cell has
the color of a particular site, we can separately render the site
itself, computing the pixels covering that site. By zooming around
those pixels, we will find pixels in the Voronoi region of that site.
The same technique can be applied to cells in 3D. Another
problem arising from resolution error is incorrectly finding
Voronoi neighbors (shown in Figure 14 – right two images). This
problem (when due solely to resolution error) can be alleviated by
adaptively zooming in on all boundary pixels.

6.3 Error Bounds

Distance error occasionally causes a pixel to be colored
incorrectly. However, in a certain sense, the pixel is “almost” the

right color. Assume that there is no Z-buffer precision error, and
that we can bound the maximum distance error by ε, as described
earlier. For a pixel P colored with the ID of site A and with a
computed depth buffer value of D, we know that:

D - ε ≤ dist(P,A) ≤ D + ε

Furthermore, we know that for any other site B,

D - ε ≤ dist(P,B)

From this information, we easily determine that

dist(P,A) ≤ dist(P,B) + 2ε

where dist(X,Y) means the distance from the center of pixel X to
site Y. That is, if a pixel is colored with the ID of A, then site A is
no more than 2ε farther from the pixel center than any other site.
The same bound holds in 3D.

7 APPLICATIONS
There are many applications that benefit from fast computation of
a discrete Voronoi diagram, an approximation to the distance
function, or both. We describe three that we have implemented.

7.1 Motion Planning

Motion planning is a fundamental problem in robotics and
computational geometry, with applications to the animation of
digital actors, maintainability studies in virtual prototyping, and
robot-assisted medical surgery. The classic Piano Mover’s
problem involves finding a collision-free path for a robot moving
from one location (and orientation) to another in an environment
filled with obstacles. Numerous approaches to this problem have
been proposed, some of which are based on generalized Voronoi
diagrams [Latom91]. The underlying idea is to treat the obstacles
as sites. The Voronoi boundaries then provide paths of maximal
clearance between the obstacles. Due to the practical complexity
of computing generalized Voronoi diagrams, the applications of
such planners have been limited to environments composed of a
few simple obstacles.

Our discrete Voronoi computation algorithm can be applied to
motion planning in both static and dynamic environments. The
Voronoi algorithm computes the approximate distance to the
nearest obstacle. The basic approach we implemented is based on
the potential field method, which repels a robot away from the
obstacles and towards the goal using a carefully designed artificial
potential function. Other Voronoi diagram or distance-based
approaches are also possible. The details of our motion planning
algorithm are provided in [Hoff99].

We demonstrate our planner’s effectiveness in a complex
environment: the interior of a house, composed of over 100,000
triangles. We use the x- and y-components of the polygons to give
the 2D input primitives for our algorithm. The robot has three
degrees of freedom: x- and y-translation along the ground and
rotation about the z-axis. Color plate 2 and the video show a
sequence of piano motions automatically generated by our motion
planner in a static environment. Color plate 2 also shows an image
of the distance function for the house. We also apply our planner
to environments with moving obstacles. Our video demonstrates
the movement of a music stand through a house filled with
moving furniture. The entire potential field and the motion
planning sequence are computed in real time.

Figure 14: Problems caused by resolution error. An entire region in
the center will be missed since it does not hit any pixel centers (left
two images). The left and right regions, which should meet, become
disconnected after rasterization (right two images).

Figure 13: Adaptive resolution allows us to zoom in on features that
could otherwise be missed.



7.2 Selection in Complex User Interfaces

Complex 2D user interfaces sometimes require quick
determination of the object nearest to the cursor. The Voronoi
diagram of the interface can be used as a nearest-object lookup
table indexed by sample points. Given the cursor position, it is
simple to find the nearest sample point, and thus the nearest
object. In some interfaces it may be desirable to know the distance
to the selected object as well. We used this technique in our 2D
implementation to allow the user to interactively move sites with
the mouse.

7.3 Mosaics

We can use our approach for generating Voronoi diagrams to
create an interesting artistic effect called mosaicing. A mosaic is a
tiled image, where each tile has a single color. The Voronoi
diagram of a point set can be used as a tiling [Haebe90]. Each
Voronoi tile is colored with a color taken locally from the image.
In our implementation, each tile is colored by the image pixel
closest to the point site (see color plate 1). Our algorithm can
perform this operation very quickly, allowing dynamic mosaics in
which the mosaic tiling, the source image, or both may change in
real time.

By randomly distributing point sites across an image, we obtain an
effect similar to many mosaic filter effects seen in image editing
programs. By clustering point sites around areas of higher detail,
we obtain a classic tiling seen in many real-life mosaics where
smaller tiles are used in areas of greater detail.

8 IMPLEMENTATION
For the 2D case, we implemented a complete interactive system
incorporating all of the features and applications described here.
Example output is shown throughout the paper. The video
demonstrates interactive computation of more complex diagrams.
In 3D, we show results from a prototype system that uses a
simpler distance meshing strategy (see color plate 3 and the video
for example output).

We implemented the 2D and 3D systems in C++ using the
OpenGL graphics library and the GLUT toolkit. Any graphics API
specification that uses a standard Z-buffered interpolation-based
raster graphics system is sufficient to support the Voronoi diagram
computation. Motion planning and the basic operations  of
boundary and neighbor finding require reading back of the color
and depth buffers. Our system runs, without source modification,
on both an MS-Windows-based PC and a high-end SGI Onyx2
with InfiniteReality Graphics. Surprisingly, the performance on a

400 Mhz Intel Pentium II PC with an Intergraph Intense 3D Pro
3410-T graphics accelerator was comparable to the SGI
performance. In fact, in boundary finding, neighbor finding, and
particle motion planning applications, the performance exceeded
the high-end SGI. This was mainly due to intense buffer readback
requirements. Each distance mesh must cover every pixel, so
performance is bounded by the graphics hardware’s pixel fill-rate.
For large numbers of input sites, therefore, the SGI outperforms
the PC.

When the distance-error tolerance is relaxed, the amount of
geometry rendered for each site can be reduced, slightly
improving performance.  However, the biggest gains are achieved
by reducing the number of pixels filled. In many practical cases,
we can increase the performance significantly by bounding the site
distance functions to a maximum distance. This allows reduction
of the size of the distance meshes drawn so that only a portion of
the screen is covered for each site. We exploit this observation to
obtain interactive rates in the 1,000-point example shown in color
plate 1, in the 10,000-point example shown in the video, and in the
general case for the computation of the potential field used in the
motion-planner. For closed higher-order primitives, such as
polygons, we can further increase performance by restricting the
distance function to only the inside or outside regions. This is
useful in computing potential fields and medial axes.

9 CONCLUSIONS AND FUTURE WORK
We have presented a method for rapid computation of generalized
discrete Voronoi diagrams in two and three dimensions using
graphics hardware. We have presented techniques for creating a
mesh of the distance function for each site with bounded error, and
described how this distance mesh allows us to compute the
Voronoi diagram rapidly. We have analyzed various sources of
error, as well as how to bound or reduce those errors. Finally, we
have demonstrated a few applications using our approach.

In the future, we would like to extend this work in the following
ways: generalizations of distance functions and site geometry,
further applications, other distance meshing strategies, and more
acceleration techniques for the 3D Voronoi volume computation.
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