
Teddy: A Sketching Interface for 3D Freeform Design

Takeo Igarashi†, Satoshi Matsuoka‡, Hidehiko Tanaka†

† University of Tokyo, ‡ Tokyo Institute of Technology

Abstract
We present a sketching interface for quickly and easily designing
freeform models such as stuffed animals and other rotund objects.
The user draws several 2D freeform strokes interactively on the
screen and the system automatically constructs plausible 3D
polygonal surfaces. Our system supports several modeling
operations, including the operation to construct a 3D polygonal
surface from a 2D silhouette drawn by the user: it inflates the
region surrounded by the silhouette making wide areas fat, and
narrow areas thin. Teddy, our prototype system, is implemented as
a Java™ program, and the mesh construction is done in real-time
on a standard PC. Our informal user study showed that a first-time
user typically masters the operations within 10 minutes, and can
construct interesting 3D models within minutes.

CR Categories and Subject Descriptions: I.3.6 [Computer
Graphics]: Methodology and Techniques – Interaction Techniques;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Geometric algorithms

Additional Keywords: 3D modeling, sketching, pen-based
systems, gestures, design, chordal axes, inflation

1 INTRODUCTION
Although much progress has been made over the years on 3D
modeling systems, they are still difficult and tedious to use when
creating freeform surfaces. Their emphasis has been the precise
modeling of objects motivated by CAD and similar domains.
Recently SKETCH [29] introduced a gesture-based interface for
the rapid modeling of CSG-like models consisting of simple
primitives.

This paper extends these ideas to create a sketching interface
for designing 3D freeform objects. The essential idea is the use of
freeform strokes as an expressive design tool. The user draws 2D
freeform strokes interactively specifying the silhouette of an object,
and the system automatically constructs a 3D polygonal surface
model based on the strokes. The user does not have to manipulate
control points or combine complicated editing operations. Using
our technique, even first-time users can create simple, yet
expressive 3D models within minutes. In addition, the resulting
models have a hand-crafted feel (such as sculptures and stuffed

animals) which is difficult to accomplish with most conventional
modelers. Examples are shown in Figure 2.

We describe here the sketching interface and the algorithms for
constructing 3D shapes from 2D strokes. We also discuss the
implementation of our prototype system, Teddy. The geometric
representation we use is a standard polygonal mesh to allow the
use of numerous software resources for post-manipulation and
rendering. However, the interface itself can be used to create other
representations such as volumes [25] or metaballs [17].

Like SKETCH [29], Teddy is designed for the rapid
construction of approximate models, not for the careful editing of
precise models. To emphasize this design goal and encourage
creative exploration, we use the real-time pen-and-ink rendering
described in [16], as shown in Figure 1. This also allows real-time
interactive rendering using Java on mid-range PCs without

Figure1: Teddy in use on a display-integrated tablet.

Figure 2: Painted models created using Teddy and painted
using a commercial texture-map editor.

 {takeo, tanaka}@mtl.t.u-tokyo.ac.jp, matsu@is.titech.ac.jp

 http://mtl.t.u-tokyo.ac.jp/~takeo

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

dedicated 3D rendering hardware.
An obvious application of Teddy is the design of 3D models for

character animation. However, in addition to augmenting
traditional 3D modelers, Teddy’s ease of use has the potential to
open up new application areas for 3D modeling. Possibilities
include rapid prototyping in the early stages of design,
educational/recreational use for non-professionals and children,
and real-time communication assistance on pen-based systems.

The accompanying videotape demonstrates Teddy’s user
interface. Teddy is available as a Java applet at the following web
site. http://www.mtl.t.u-tokyo.ac.jp/~takeo/teddy/teddy.htm

2 RELATED WORK
A typical procedure for geometric modeling is to start with a
simple primitive such as a cube or a sphere, and gradually
construct a more complex model through successive
transformations or a combination of multiple primitives. Various
deformation techniques [15,23] and other shape-manipulation
tools [8] are examples of transformation techniques that let the
user create a wide variety of precise, smooth shapes by
interactively manipulating control points or 3D widgets.

Another approach to geometric modeling is the use of implicit
surfaces [3,18]. The user specifies the skeleton of the intended
model and the system constructs smooth, natural-looking surfaces
around it. The surface inflation technique [17] extrudes the
polygonal mesh from the skeleton outwards. In contrast, our

approach lets the user specify the silhouette of the intended shape
directly instead of by specifying its skeleton.

Some modeling systems achieve intuitive, efficient operation
using 3D input/output devices [6]. 3D devices can simplify the
operations that require multiple operations when using 2D devices.

Our sketching interface is inspired by previous sketch-based
modeling systems [7,29] that interpret the user’s freeform strokes
and interactively construct 3D rectilinear models. Our goal is to
develop a similar interface for designing rounded freeform
models.

Inflation of a 2D drawing is introduced in [27], and 3D surface
editing based on a 2D painting technique is discussed in [28].
Their target is basically a 2D array with associated height values,
rather than a 3D polygonal model.

The use of freeform strokes for 2D applications has recently
become popular. Some systems [10,14] use strokes to specify
gestural commands and others [2] use freeform strokes for
specifying 2D curves. These systems find the best matching arcs
or splines automatically, freeing the users from explicit control of
underlying parameters.

We use a polygonal mesh representation, but some systems use
a volumetric representation [9,25], which is useful for designing
topologically complicated shapes. Our mesh-construction
algorithm is based on a variety of work on polygonal mesh
manipulation, such as mesh optimization [12], shape design [26],
and surface fairing [24], which allows polygonal meshes to be
widely used as a fundamental representation for geometric

 a) initial state b) input stroke c) result of creation d) rotated view e) painting stroke f) result of painting g) rotated view

h) before extrusion i) closed stroke j) rotated view k) extruding stroke l) result of extrusion m) rotated view

n) before cutting o) cutting stroke p) result of cutting q) result of click r) extrusion after cutting s) result of extrusion t) rotated view

 u) before erasing v) scribbling w) result of erasing x) closed stroke y) scribbling z) result of smoothing z´) rotated view

Figure 3: Overview of the modeling operations.

modeling and computer graphics in general.

3 USER INTERFACE
Teddy’s physical user interface is based upon traditional 2D

input devices such as a standard mouse or tablet. We use a two-
button mouse with no modifier keys. Unlike traditional modeling
systems, Teddy does not use WIMP-style direct manipulation
techniques or standard interface widgets such as buttons and
menus for modeling operations. Instead, the user specifies his or
her desired operation using freeform strokes on the screen, and the
system infers the user’s intent and executes the appropriate editing
operations. Our videotape shows how a small number of simple
operations let the users create very rich models.

In addition to gestures, Teddy supports direct camera
manipulation using the secondary mouse button based on a virtual
trackball model [13]. We also use a few button widgets for
auxiliary operations, such as save and load, and for initiating
bending operations.

4 MODELING OPERATIONS
This section describes Teddy’s modeling operations from the
user’s point of view; details of the algorithms are left to the next
section. Some operations are executed immediately after the user
completes a stroke, while some require multiple strokes. The
current system supports neither the creation of multiple objects at
once, nor operations to combine single objects. Additionally,
models must have a spherical topology; e.g., the user cannot create
a torus. An overview of the model construction process is given
first, and then each operation is described in detail.

The modeling operations are carefully designed to allow
incremental learning by novice users. Users can create a variety of
models by learning only the first operation (creation), and can
incrementally expand their vocabulary by learning other
operations as necessary. We have found it helpful to restrict first-
time users to the first three basic operations (creation, painting,
and extrusion), and then to introduce other advanced operations
after these basic operations are mastered.

4.1 Overview
Figure 3 introduces Teddy’s general model construction process.
The user begins by drawing a single freeform stroke on a blank
canvas (Figures 3a-b). As soon as the user finishes drawing the
stroke, the system automatically constructs a corresponding 3D

shape (c). The user can now view the model from a different
direction (d). Once a model is created, it may be modified using
various operations. The user can draw a line on the surface (e-g)
by drawing a stroke within the model silhouette. If the stroke is
closed, the resulting surface line turns red and the system enters
“extrusion mode” (h-i). Then the user rotates the model (j) and
draws the second stroke specifying the silhouette of the extruded
surface (k-m). A stroke that crosses the silhouette cuts the model
(n-o) and turns the cut section red (p). The user either clicks to
complete the operation (q) or draws a silhouette to extrude the
section (r-t). Scribbling on the surface erases the line segments on
the surface (u-w). If the user scribbles during the extrusion mode
(x-y), the system smoothes the area surrounded by the closed red
line (z-z´).

Figure 4 summarizes the modeling operations available on the
current implementation. Note that the appropriate action is chosen
based on the stroke’s position and shape, as well as the current

Closed Create a new object First stroke

Second stroke

Specify reference

Specify target

Inside of the object, not closed Paint on the surface

Inside of the object, closed

Start and end outside of the object

Specify the area to be extruded/smoothed

Cut the object

Scribbling Erase painted strokes

Normal stroke

Scribbling

Click

Extrude the area

Smooth the area

Quit extrusion

Press “Bend ” buttonPress “Init ” button

PAINTING

EXTRUSION

BENDINGCREATION

Stroke Action

Legend MODE

Figure 4: Summary of the gestural operations.

a) snake b) snail c) cherry d) muscular arm

Figure 5: Examples of creation operation (top: input stroke,
middle: result of creation, bottom: rotated view).

 a) digging stroke b) result c) rotated d) closed stroke e) after click

Figure 7: More extrusion operations: digging a cavity (a-c) and
turning the closed stroke into a surface drawing (d-e).

� a) long b) thin c) fat d) sharp

Figure 6: Examples of extrusion (top: extruding stroke,
bottom: result of extrusion).

mode of the system.

4.2 Creating a New Object
Starting with a blank canvas, the user creates a new object by
drawing its silhouette as a closed freeform stroke. The system
automatically constructs a 3D shape based on the 2D silhouette.
Figure 5 shows examples of input strokes and the corresponding
3D models. The start point and end point of the stroke are
automatically connected, and the operation fails if the stroke is
self-intersecting. The algorithm to calculate the 3D shape is
described in detail in section 5. Briefly, the system inflates the
closed region in both directions with the amount depending on the
width of the region: that is, wide areas become fat, and narrow
areas become thin. Our experience so far shows that this algorithm
generates a reasonable-looking freeform shape. In addition to the
creation operation, the user can begin model construction by
loading a simple primitive. The current implementation provides a
cube and a sphere, but adding more shapes is straightforward.

4.3 Painting and Erasing on the Surface
The object surface is painted by drawing a freeform stroke within
the object’s silhouette on the canvas (the stroke must not cross the
silhouette) [11]. The 2D stroke is projected onto the object surface
as 3D line segments, called surface lines (Figure 3e-g). The user
can erase these surface lines by drawing a scribbling stroke1

(Figure 3u-w). This painting operation does not modify the 3D
geometry of the model, but lets the user express ideas quickly and
conveniently when using Teddy as a communication medium or
design tool.

4.4 Extrusion
Extrusion is a two-stroke operation: a closed stroke on the surface
and a stroke depicting the silhouette of the extruded surface. When
the user draws a closed stroke on the object surface, the system
highlights the corresponding surface line in red, indicating the
initiation of “extrusion mode” (Figure 3i). The user then rotates
the model to bring the red surface line sideways (Figure 3j) and
draws a silhouette line to extrude the surface (Figure 3k). This is
basically a sweep operation that constructs the 3D shape by
moving the closed surface line along the skeleton of the silhouette

� A stroke is recognized as scribbling when sl/pl > 1.5 , where
sl is the length of the stroke and pl is the perimeter of its convex
hull.

(Figure 3l-m). The direction of extrusion is always perpendicular
to the object surface, not parallel to the screen. Users can create a
wide variety of shapes using this operation, as shown in Figure 6.
They can also make a cavity on the surface by drawing an inward
silhouette (Figure 7a-c). The current implementation does not
support holes that completely extend to the other side of the object.
If the user decides not to extrude, a single click turns the red stroke
into an ordinary painted stroke (Figure 7d-e).

4.5 Cutting
A cutting operation starts when the user draws a stroke that runs
across the object, starting and terminating outside its silhouette
(Figure 3o). The stroke divides the object into two pieces at the
plane defined by the camera position and the stroke. What is on
the screen to the left of the stroke is then removed entirely (Figure
3p) (as when a carpenter saws off a piece of wood). The cutting
operation finishes with a click of the mouse (Figure 3q). The user
can also `bite’ the object using the same operation (Figure 8).

The cutting stroke turns the section edges red, indicating that
the system is in “extrusion mode”. The user can draw a stroke to
extrude the section instead of a click (Figure3r-t, Figure 9). This
“extrusion after cutting” operation is useful to modify the shape
without causing creases at the root of the extrusion.

4.6 Smoothing
One often smoothes the surface of clay models to eliminate bumps
and creases. Teddy lets the user smooth the surface by drawing a
scribble during “extrusion mode.” Unlike erasing, this operation
modifies the actual geometry: it first removes all the polygons
surrounded by the closed red surface line and then creates an

 a) original b) reference stroke c) target stroke d) result e) rotated

Figure 11: Examples of transformation (top: bending,
bottom: distortion).

a) cleaning a cavity

b) smoothing a sharp edge

Figure 10: Smoothing operation.

a) biting stroke b) result c) rotated view d) after click

Figure 8: Cutting operation.

a) cutting stroke b) result c) rotated d) extruding stroke e) result

Figure 9: Extrusion after cutting.

entirely new surface that covers the region smoothly. This
operation is useful to remove unwanted bumps and cavities
(Figure 3x-z’, Figure 10a), or to smooth the creases caused by
earlier extrusion operations (Figure 10b).

4.7 Transformation
We are currently experimenting with an additional
“transformation” editing operation that distorts the model while
preserving the polygonal mesh topology. Although it functions
properly, the interface itself is not fully gestural because the modal
transition into the bending mode requires a button push.

This operation starts when the user presses the “bend” button
and uses two freeform strokes called the reference stroke and the
target stroke to modify the model. The system moves vertices of
the polygonal model so that the spatial relation between the
original position and the target stroke is identical to the relation
between the resulting position and the reference stroke. This
movement is parallel to the screen, and the vertices do not move
perpendicular to the screen. This operation is described in [5] as
warp; we do not discuss the algorithm further.

Transformation can be used to bend, elongate, and distort the
shape (Figure 11). We plan to make the system infer the reference
stroke automatically from the object’s structure in order to
simplify the operation, in a manner similar to the mark-based
interaction technique of [2].

5 ALGORITHM
We next describe how the system constructs a 3D polygonal mesh
from the user’s freeform strokes. Internally, a model is represented
as a polygonal mesh. Each editing operation modifies the mesh to
conform to the shape specified by the user’s input strokes (Figure
12). The resulting model is always topologically equivalent to a
sphere. We developed the current implementation as a prototype
for designing the interface; the algorithms are subject to further
refinement and they fail for some illegal strokes (in that case, the
system indicates the problem and requests an alternative stroke).
However, these exceptional cases are fairly rare, and the algorithm
works well for a wide variety of shapes.

Our algorithms for creation and extrusion are closely related to
those for freeform surface construction based on skeletons [3,18],
which create a surface around user-defined skeletons using
implicit surface techniques. While our current implementation
does not use implicit surfaces, they could be used in an alternative
implementation.

In order to remove noise in the handwriting input stroke and to
construct a regular polygonal mesh, every input stroke is re-
sampled to form a smooth polyline with uniform edge length
before further processing [4].

5.1 Creating a New Object
Our algorithm creates a new closed polygonal mesh model from
the initial stroke. The overall procedure is this: we first create a
closed planar polygon by connecting the start-point and end-point
of the stroke, and determine the spine or axes of the polygon using

the chordal axis introduced in [21]. We then elevate the vertices of
the spine by an amount proportional to their distance from the
polygon. Finally, we construct a polygonal mesh wrapping the
spine and the polygon in such a way that sections form ovals.

When constructing the initial closed planar polygon, the system
makes all edges a predefined unit length (see Figure 13a). If the
polygon is self-intersecting, the algorithm stops and the system
requests an alternative stroke. The edges of this initial polygon are
called external edges, while edges added in the following
triangulation are called internal edges.

The system then performs constrained Delaunay triangulation
of the polygon (Figure 13b). We then divide the triangles into
three categories: triangles with two external edges (terminal
triangle), triangles with one external edge (sleeve triangle), and
triangles without external edges (junction triangle). The chordal
axis is obtained by connecting the midpoints of the internal edges
(Figure 13c), but our inflation algorithm first requires the pruning
of insignificant branches and the retriangulation of the mesh. This
pruning algorithm is also introduced in [21].

To prune insignificant branches, we examine each terminal
triangle in turn, expanding it into progressively larger regions by
merging it with adjacent triangles (Figure 14a-b). Let X be a
terminal triangle; then X has two exterior edges and one interior
edge. We erect a semicircle whose diameter is the interior edge,
and which lies on the same side of that edge as does X. If all three
vertices of X lie on or within this semicircle, we remove the
interior edge and merge X with the triangle that lies on the other
side of the edge.

a) after creation b) after extrusion c) after cutting

Figure 12: Internal representation.

a) initial 2D polygon b) result of CDT c) chordal axis

 d) fan triangles e) resulting spine f) final triangulation

Figure 13: Finding the spine.

a) start from T-triangle b) advance c) stop d) fan triangles

e) advance to J-triangle f) fan triangles at J-triangle

Figure 14: Pruning.

If the newly merged triangle is a sleeve triangle, then X now
has three exterior edges and a new interior edge. Again we erect a
semicircle on the interior edge and check that all vertices are
within it. We continue until some vertex lies outside the semicircle
(Figure 14c), or until the newly merged triangle is a junction
triangle. In the first case, we triangulate X with a "fan" of triangles
radiating from the midpoint of the interior edge (Figure 14d). In
the second case, we triangulate with a fan from the midpoint of the
junction triangle (Figure 14e-f). The resulting fan triangles are
shown in Figure 13d. The pruned spine is obtained by connecting
the midpoints of remaining sleeve and junction triangles’ internal
edges (Figure 13e).

The next step is to subdivide the sleeve triangles and junction
triangles to make them ready for elevation. These triangles are
divided at the spine and the resulting polygons are triangulated, so
that we now have a complete 2D triangular mesh between the
spine and the perimeter of the initial polygon (Figure 13f).

Next, each vertex of the spine is elevated proportionally to the
average distance between the vertex and the external vertices that
are directly connected to the vertex (Figure 15a,b). Each internal
edge of each fan triangle, excluding spine edges, is converted to a
quarter oval (Figure 15c), and the system constructs an appropriate
polygonal mesh by sewing together the neighboring elevated
edges, as shown in Figure 15d. The elevated mesh is copied to the
other side to make the mesh closed and symmetric. Finally, the
system applies mesh refinement algorithms to remove short edges
and small triangles [12].

5.2 Painting on the Surface
The system creates surface lines by sequentially projecting each
line segment of the input stroke onto the object’s surface polygons.
For each line segment, the system first calculates a bounded plane
consisting of all rays shot from the camera through the segment on
the screen. Then the system finds all intersections between the
plane and each polygon of the object, and splices the resulting 3D
line segments together (Figure 16). The actual implementation
searches for the intersections efficiently using polygon
connectivity information. If a ray from the camera crosses multiple
polygons, only the polygon nearest to the camera position is used.
If the resulting 3D segments cannot be spliced together (e.g., if the
stroke crosses a “fold” of the object), the algorithm fails.

5.3 Extrusion
The extrusion algorithm creates new polygonal meshes based on a
closed base surface line (called the base ring) and an extruding
stroke. Briefly, the 2D extruding stroke is projected onto a plane
perpendicular to the object surface (Figure 17a), and the base ring
is swept along the projected extruding stroke (Figure 17b). The
base ring is defined as a closed 3D polyline that lies on the surface
of the polygonal mesh, and the normal of the ring is defined as that
of the best matching plane of the ring.

First, the system finds the plane for projection: the plane
passing through the base ring’s center of gravity and lying parallel
to the normal of the base ring2. Under the above constraints, the
plane faces towards the camera as much as possible (Figure 17a).

Then the algorithm projects the 2D extruding stroke onto the
plane, producing a 3D extruding stroke. Copies of the base ring
are created along the extruding stroke in such a way as to be
almost perpendicular to the direction of the extrusion, and are
resized to fit within the stroke. This is done by advancing two
pointers (left and right) along the extruding stroke starting from
both ends. In each step, the system chooses the best of the
following three possibilities: advance the left pointer, the right
pointer, or both. The goodness value increases when the angle
between the line connecting the pointers and the direction of the
stroke at each pointer is close to 90 degrees (Figure 18a). This
process completes when the two pointers meet.

Finally, the original polygons surrounded by the base ring are
deleted, and new polygons are created by sewing the neighboring
copies of the base ring together [1] (Figure 18b). The system uses
the same algorithm to dig a cavity on the surface.

This simple algorithm works well for a wide variety of
extrusions but creates unintuitive shapes when the user draws
unexpected extruding strokes or when the base surface is not
sufficiently planar (Figure 19).

� The normal of the ring is calculated as follows: Project the points
of the ring to the original XY-plane. Then compute the enclosed
“signed area” by the formula:
Axy = 0.5*sum(i=0, i=n-1, x[i]*y[i+1]-x[i+1]*y[i])
(indices are wrapped around so that x[n] means x[0]).
Calculate Ayx and Azx similarly, and the vector
v=(Ayz,Azx,Axy) is defined as the normal of the ring.

 a) before b) elevate spines c) elevate edges d) sew elevated edges

Figure 15: Polygonal mesh construction.

 a) projection of the stroke b) sweep along the projected stroke

Figure 17: Extrusion algorithm�

Figure 16: Construction of surface lines.

 a) pointer advancing b) sewing adjacent rings

Figure 18: Sweeping the base ring.

5.4 Cutting
The cutting algorithm is based on the painting algorithm. Each line
segment of the cutting stroke is projected onto the front and back
facing polygons. The system connects the corresponding end
points of the projected edges to construct a planer polygon (Figure
20). This operation is performed for every line segment, and the
system constructs the complete section by splicing these planer
polygons together. Finally, the system triangulates each planer
polygon [22], and removes all polygons to the left of the cutting
stroke.

5.5 Smoothing
The smoothing operation deletes the polygons surrounded by the
closed surface line (called a ring) and creates new polygons to
cover the hole smoothly. First, the system translates the objects
into a coordinate system whose Z-axis is parallel to the normal of
the ring. Next, the system creates a 2D polygon by projecting the
ring onto the XY-plane in the newly created coordinate system,
and triangulates the polygon (Figure 21b). (The current
implementation fails if the area surrounded by the ring contains
creases and is folded when projected on the XY-plane.) The
triangulation is designed to create a good triangular mesh based on
[22]: it first creates a constrained Delaunay triangulation and
gradually refines the mesh by edge splitting and flipping; then
each vertex is elevated along the Z-axis to create a smooth 3D
surface (Figure 21d).

The algorithm for determining the Z-value of a vertex is as
follows: For each edge of the ring, consider a plane that passes
through the vertex and the midpoint of the edge and is parallel to
the Z-axis. Then calculate the z-value of the vertex so that it lies
on the 2D Bezier curve that smoothly interpolates both ends of the
ring on the plane (Figure 21c). The final z-value of the vertex is

the average of these z-values.
Finally, we apply a surface-fairing algorithm [24] to the newly

created polygons to enhance smoothness.

6 IMPLEMENTATION
Our prototype is implemented as a 13,000 line Java program. We
tested a display-integrated tablet (Mutoh MVT-14, see Figure 1)
and an electric whiteboard (Xerox Liveboard) in addition to a
standard mouse. The mesh construction process is completely real-
time, but causes a short pause (a few seconds) when the model
becomes complicated. Teddy can export models in OBJ file format.
Figure 2 shows some 3D models created with Teddy by an expert
user and painted using a commercial texture-map editor. Note that
these models look quite different from 3D models created in other
modeling systems, reflecting the hand-drawn nature of the shape.

7 USER EXPERIENCE
The applet version of Teddy has undergone limited distribution,

and has been used (mainly by computer graphics researchers and
students) to create different 3D models. Feedback from these users
indicates that Teddy is quite intuitive and encourages them to
explore various 3D designs. In addition, we have started close
observation of how first-time users (mainly graduate students in
computer science) learn Teddy. We start with a detailed tutorial
and then show some stuffed animals, asking the users to create
them using Teddy. Generally, the users begin to create their own
models fluently within 10 minutes: five minutes of tutorial and
five minutes of guided practice. After that, it takes a few minutes
for them to create a stuffed animal such as those in Figure 2
(excluding the texture).

8 FUTURE WORK
Our current algorithms and implementation are robust and
efficient enough for experimental use. However, they can fail or
generate unintuitive results when the user draws unexpected
strokes. We must devise more robust and flexible algorithms to
handle a variety of user inputs. In particular, we plan to enhance
the extrusion algorithm to allow more detailed control of surfaces.
We are also considering using implicit surface construction
techniques.

Another important research direction is to develop additional
modeling operations to support a wider variety of shapes with
arbitrary topology, and to allow more precise control of the shape.
Possible operations are creating creases, twisting the model, and
specifying the constraints between the separate parts for animation
systems [20]. While we are satisfied with the simplicity of the
current set of gestural operations, these extended operations will
inevitably complicate the interface, and careful interface design
will be required.

9 ACKNOWLEDGEMENTS
This project was not possible without the support and

encouragement of people. We would especially like to thank
Marshall Bern, Lee Markosian, Robert C. Zeleznik, and Hiromasa
Suzuki for their invaluable advice in the development of the
system, and we thank John F. Hughes, Randy Pausch, Jeffrey S.
Pierce, Joe Marks, Jock D. Mackinlay, Andrew Glassner, and
Brygg Ullmer for their help in the preparation of this paper. We
also thank the SIGGRAPH reviewers for their thoughtful
comments. This work is supported in part by JSPS Research
Fellowship.

 a) flat extrusion b) wavy extrusion c) wrapping extrusion

Figure 19: Unintuitive extrusions.

a) before b) triangulation c) calculating Z-value d) result

Figure 21: Smoothing algorithm.

Figure 20: Cutting.

 a) flat extrusion b) wavy extrusion c) wrapping extrusion

Figure 19: Unintuitive extrusions.

References
1. G. Barequet and M Sharir. Piecewise-linear interpolation

between polygonal slices. ACM 10th Computational
Geometry Proceedings, pages 93-102, 1994.

2. T. Baudel. A mark-based interaction paradigm for free-hand
drawing. UIST’94 Conference Proceedings, pages 185-192,
1994.

3. J. Bloomenthal and B. Wyvill. Interactive techniques for
implicit modeling. 1990 Symposium on Interactive 3D
Graphics, pages 109-116, 1990.

4. J.M. Cohen, L. Markosian, R.C. Zeleznik, J.F. Hughes, and
R. Barzel. An Interface for Sketching 3D Curves. 1999
Symposium on Interactive 3D Graphics, pages 17-21, 1999.

5. W.T. Correa, R.J. Jensen, C.E. Thayer, and A. Finkelstein.
Texture mapping for cel animation. SIGGRAPH 98
Conference Proceedings, pages 435-456, 1998.

6. M. Deering. The Holosketch VR sketching system.
Communications of the ACM, 39(5):54-61, May 1996.

7. L. Eggli, C. Hsu, G. Elber, and B. Bruderlin, Inferring 3D
models from freehand sketches and constraints. Computer-
Aided Design, 29(2): 101-112, Feb.1997.

8. C.Grimm, D. Pugmire, M. Bloomental, J. F. Hughes, and E.
Cohen. Visual interfaces for solids modeling. UIST ’95
Conference Proceedings, pages 51-60, 1995.

9. T. Galyean and J.F. Hughes. Sculpting: an interactive
volumetric modeling technique. SIGGRAPH ’91 Conference
Proceedings, pages 267-274, 1991.

10. M.D. Gross and E.Y.L. Do. Ambiguous intentions: A paper-
like interface for creative design. UIST’96 Conference
Proceedings, pages 183-192, 1996.

11. P. Hanrahan, P. Haeberli, Direct WYSIWYG Painting and
Texturing on 3D Shapes, SIGGRAPH 90 Conference
Proceedings, pages 215-224, 1990.

12. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle. Mesh optimization. SIGGRAPH 93 Conference
Proceedings, pages 19-26, 1993.

13. J. Hultquist. A virtual trackball. Graphics Gems (ed. A.
Glassner). Academic Press, pages 462-463, 1990.

14. J.A. Landay and B.A. Myers. Interactive sketching for the
early stages of user interface design. CHI’95 Conference
Proceedings, pages 43-50, 1995.

15. R. MacCracken and K.I. Joy. Free-form deformations with
lattices of arbitrary topology. SIGGRAPH 96 Conference
Proceedings, pages 181-188, 1996.

16. L. Markosian, M.A. Kowalski, S.J. Trychin, L.D. Bourdev,

D. Goldstein, and J.F. Hughes. Real-time nonphotorealistic
rendering. SIGGRAPH 97 Conference Proceedings, pages
415-420, 1997.

17. H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa,
K. Omura. Object modeling by distribution function and a
method of image generation. Transactions of the Institute of
Electronics and Communication Engineers of Japan, J68-
D(4):718-725, 1985

18. L. Markosian, J.M. Cohen, T. Crulli and J.F. Hughes. Skin:
A Constructive Approach to Modeling Free-form Shapes.
SIGGRAPH 99, to appear, 1999.

19. K. van Overveld and B. Wyvill. Polygon inflation for
animated models: a method for the extrusion of arbitrary
polygon meshes. Journal of Visualization and Computer
Animation, 18: 3-16, 1997.

20. R. Pausch, T. Burnette, A.C. Capeheart, M. Conway, D.
Cosgrove, R. DeLine, J. Durbin, R. Gossweiler, S. Koga,
and J. White. Alice: Rapid prototyping system for virtual
reality. IEEE Computer Graphics and Applications, 15(3):
8-11, May 1995.

21. L. Prasad. Morphological analysis of shapes. CNLS
Newsletter, 139: 1-18, July 1997.

22. J.R. Shewchuk. Triangle: engineering a 2D quality mesh
generator and Delauny triangulator. First Workshop on
Applied Computational Geometry Proceedings, pages 124-
133, 1996.

23. K. Singh and E. Fiume. Wires: a geometric deformation
technique. SIGGRAPH 98 Conference Proceedings, pages
405-414, 1998.

24. G. Taubin. A signal processing approach to fair surface
design. SIGGRAPH 95 Conference Proceedings, pages 351-
358, 1995.

25. S.W. Wang and A.E. Kaufman, Volume sculpting. 1995
Symposium on Interactive 3D Graphics, pages 109-116,
1995.

26. W. Welch and A. Witkin. Free-form shape design using
triangulated surfaces. SIGGRAPH 94 Conference
Proceedings, pages 247-256, 1994.

27. L. Williams. Shading in Two Dimensions. Graphics
Interface ’91, pages 143-151, 1991.

28. L. Williams. 3D Paint. 1990 Symposium on Interactive 3D
Graphics, pages 225-233, 1990.

29. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes. SKETCH:
An interface for sketching 3D scenes. SIGGRAPH 96
Conference Proceedings, pages 163-170, 1996.

